Review of Literature

Total Page:16

File Type:pdf, Size:1020Kb

Review of Literature Mousa et al. /Alexandria Journal of Veterinary Sciences 2015, 46: 110-116 Alexandria Journal of Veterinary Sciences 2015, 46: 110-116 ISSN 1110-2047, www.alexjvs.com DOI: 10.5455/ajvs.189505 Parasitic Hazard of Some Imported Frozen Fish Mohamed M. Mousa1, Fatma A. Hiekal2, Samia M. EL-Hoshey3 and Mohamed A. Khamis 1 1Department of Food hygiene, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. 2 Department of Parasitology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. 3 Department of Food hygiene, Alex Food Lab, Animal Health Research Institute, Alexandria, Egypt. Key words ABSTRACT: A total of 100 frozen fishes belonging to four different fish species were examined for presence of Frozen fish; Parasites, Nematode, different types of parasites during the period from April 2014 till the end of November 2014. Anisakis Examination of the fish specimens revealed infestation with four different parasitic classes that included Nematoda, Trematoda, Protozoa and Crustacea. When categorized according to species of fish, Herring fish (Clupea harengus ) was the most susceptible to parasitic infection with a total infection rate of 96% for different types of parasites. This was followed by Mackerel (Scomber scombrus ) with an infection rate of 92% , then the Horse mackerel (Trachurus mediterraneus) at the infection rate of 88%, and finally the Fish fillet (Pangasius hypophthalmus) was the least susceptible to parasites with the lowest infection rate of 16%.herring fish (Clupea harengus) was highly susceptible to Nematode infection at an infection rate of 92%, which was followed by infection with Protozoa (1.8%),Mackerel (Scomber scombrus) was susceptible to Nematode infection at the infection rate of 97.09% and to Protozoa with infection rate of 1.94%, while the infection rate with Crustacea was 0.97,Horse mackerel (Trachurus mediterraneus) was susceptible to Nematode infection at the infection rate of 97.8% and to Trematodes with 1.1% infection rate and to Crustacea with a rate of 1.1% and Fish fillet (Pangasius hypophthalmus) was susceptible to Trematodes with an infection rate of 16%. Corresponding Author: Mohamed A. Khamis: [email protected]. 1. INTRODUCTION tract (Lopez Serrano et al., 2000, Chai et al., 2005 Nowadays, frozen fishes are considered as and Abd El-Ghany, 2007). one of the most important source of protein used in Moreover, and owing to the thermo stability of Egypt for its price and quality. Additionally, Anisakis simplex allergens, the ingestion of safely imported fish considered as one of the cheapest and cooked fish containing Anisakis simplex allergens promising source of protein that overcome the within dead parasites can also be potentially problem of shortage of animal source protein’s dangerous and can cause severe allergic reaction shortage due to limited animal production such as contact dermatitis and asthma (Audicana et capabilities (Norman, 1951). Regarding parasitic al., 2002 and EL-Daly et al., 2004). diseases of frozen fishes, about thirteen types of So the aim of the present study is to examine parasites were of concern to the food scientists in different fish types and species that were retailed at the United States (Jackson, 1990). Anisakid larvae Alexandria markets in order to detect different types are the most important group of nematode parasites of parasites. Also the second major aim is to survey that affect marine fishes. Anisakis or Anasikidiosis which type of fish is mostly infected with the referred to infection of people with larval stage of parasites, and to undertake a comparison between nematodes belonging to family Anisakidae. This male and female in relation to severity of infection disease is common and widely distributed in with different types of parasites. countries of far East and South East Asia where 2. MATERIAL AND METHODS: there is a habit of consuming raw, inadequately The duration of the work was extended from April cooked, pickled, semi-salted or smoked fishes 2014 till the end of November 2014, we worked on containing the third larval stages of Anisakis about ten fishes per month. The study was carried species. Larvae of Anisakid are found in the viscera out on 100 frozen fishes that belong to four different and muscle of wide range of fish and Cephalopod species as follow: twenty five herring fish, twenty mollusk species. Human are accidental host in the five mackerel fish, twenty five horse mackerel fish; life cycle, nevertheless parasites almost never and twenty five fish fillet which was collected from developed further within the human gastrointestinal different retail markets at Alexandria. In order to 110 Mousa et al. /Alexandria Journal of Veterinary Sciences 2015, 46: 110-116 examine for parasitic infection, the frozen fish was and to Protozoa with infection rate of 1.94%, while allowed to thaw at room temperature for 3-4 hours the infection rate with Crustacea was 0.97% and it under running tap water. In the laboratory, the fishes was free from Trematodes as recorded in Table (3). were autopsied separately in Petri dish according to Kabata (Kabata, 1985). Horse mackerel (Trachurus mediterraneus) was Autopsy was carried out as the following. Muscles, susceptible to Nematode infection at the infection body cavity, internal organs and gonads were rate of 97.8% and to Trematodes with 1.1% examined visually for the presence of larvae. To infection rate and to Crustacea with a rate of 1.1% examine further for parasites, the Compression and it was free from Protozoa Table (3). technique and the digestion method were used according to Jackson and Manfredi (Jackson et al., Fish fillet (Pangasius hypophthalmus) was 1981 and Manfredi et al., 2000). susceptible to Trematodes with an infection rate of Examination of muscle was done by the methods of 16%, while it was free from Nematodes, Protozoa compression and digestion using pepsin according and Crustacea Table (3). to FDA method and Bier (Bier et al., 1984). Fixation, staining and mounting of Trematodes were Nematodes recovered from examined fish included done as previously published (Carleton, 1957, Anisakis simplex that was recovered from Herring Lucky, 1977 and Beaver et al., 1984). On the other fish (Clupea harengus), Mackerel (Scomber hand, fixation and mounting of Nematodes , and scombrus) and Horse mackerel (Trachurus Crustacea were done according previously mediterraneus). The relative prevalence was 58.5%, published methods (Belding, 1965, Whitelock, 57.28% and 56.04%, respectively. Internal organs 1966, Lucky, 1977 and Kruse and Pritchard, 1982). that were mainly infected included intestine, liver, Finally, collection, fixation, staining and mounting air sac, and gonads Table 4. Also, muscle was of Coccidia were done according to Molnar reported to be infected as the case in the Horse (Molnar, 1989). mackerel and Mackerel fish Table (4). 3. RESULTS Contracaecum species were recovered from Herring The total number of infected fish with different fish (Clupea harengus), Mackerel (Scomber parasites was 73 (73%). When categorized, the scombrus) and Horse mackerel (Trachurus number of fish that was infected with Nematodes mediterraneus). The relative prevalence was was 69 (69%), that with Trematodes was 7 (7%), 17.12%, 24.27% and 19.78%, respectively. that with Crustacea was 2 (2%), and that infected Infection distribution in the internal organs included with Coccidia was 4 (4%), respectively Table (1). intestine, peritoneal cavity, intestine, liver surface and gonads Table (4). In regard to susceptibility of examined fish types to parasitic infection, Herring fish (Clupea harengus ) Pseudo terranova species was recovered from was the most susceptible to parasitic infection with a Herring fish (Clupea harengus), Mackerel (Scomber cumulative infection rate of 96% with different scombrus) and Horse mackerel (Trachurus species of parasites. This is followed by Mackerel mediterraneus) with a relative prevalence of 22.5%, (Scomber scombrus ) at an infection rate of 92% , 15.53% and 21.98%, in the infected fish types, then the Horse mackerel (Trachurus mediterraneus) respectively, and were mainly recovered from with 88% infection rate, while the Fish fillet intestine, peritoneal cavity, intestine, liver surface (Pangasius hypophthalmus) was the least and gonads Table (4). susceptible to parasitic infection with the lowest Concerning Trematodes recovered from fish, infection rate of 16%, respectively Table (2). Clinostomum species were recovered from Fish fillet (Pangasius hypophthalmus) and Horse In relation to the host-parasite specificity, herring mackerel (Trachurus mediterraneus), with a relative fish (Clupea harengus) was highly susceptible to prevalence of 16% and 1.1%, respectively. Nematode infection at an infection rate of 92%, Trematodes were infecting intestine of Horse which was followed by infection with Protozoa mackerel and muscle of Fillet. On the other hand, all (1.8%), while it was free from infection with examined fishes were free from Monogenean Trematodes and Crustacea as recorded in Table (3). Trematodes Table (4). In regard to Protozoa that were recovered from fish, Mackerel (Scomber scombrus) was susceptible to Coccidia species were recovered from intestine of Nematode infection at the infection rate of 97.09% Herring fish (Clupea harengus) and Mackerel 111 Mousa et al. /Alexandria Journal of Veterinary Sciences 2015, 46: 110-116 (Scomber scombrus) with a relative prevalence of mackerel (Trachurus mediterraneus) and Mackerel 1.8% and 1.9%,
Recommended publications
  • A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback
    ARTICLE IN PRESS Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback Alexander Stewart*, Joseph Jacksonx, Iain Barber{, Christophe Eizaguirrejj, Rachel Paterson*, Pieter van West#, Chris Williams** and Joanne Cable*,1 *Cardiff University, Cardiff, United Kingdom x University of Salford, Salford, United Kingdom { University of Leicester, Leicester, United Kingdom jj Queen Mary University of London, London, United Kingdom #Institute of Medical Sciences, Aberdeen, United Kingdom **National Fisheries Service, Cambridgeshire, United Kingdom 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 3 2. Stickleback Husbandry 7 2.1 Ethics 7 2.2 Collection 7 2.3 Maintenance 9 2.4 Breeding sticklebacks in vivo and in vitro 10 2.5 Hatchery 15 3. Common Stickleback Parasite Cultures 16 3.1 Argulus foliaceus 17 3.1.1 Introduction 17 3.1.2 Source, culture and infection 18 3.1.3 Immunology 22 3.2 Camallanus lacustris 22 3.2.1 Introduction 22 3.2.2 Source, culture and infection 23 3.2.3 Immunology 25 3.3 Diplostomum Species 26 3.3.1 Introduction 26 3.3.2 Source, culture and infection 27 3.3.3 Immunology 28 Advances in Parasitology, Volume 98 ISSN 0065-308X © 2017 Elsevier Ltd. http://dx.doi.org/10.1016/bs.apar.2017.07.001 All rights reserved. 1 j ARTICLE IN PRESS 2 Alexander Stewart et al. 3.4 Glugea anomala 30 3.4.1 Introduction 30 3.4.2 Source, culture and infection 30 3.4.3 Immunology 31 3.5 Gyrodactylus Species 31 3.5.1 Introduction 31 3.5.2 Source, culture and infection 32 3.5.3 Immunology 34 3.6 Saprolegnia parasitica 35 3.6.1 Introduction 35 3.6.2 Source, culture and infection 36 3.6.3 Immunology 37 3.7 Schistocephalus solidus 38 3.7.1 Introduction 38 3.7.2 Source, culture and infection 39 3.7.3 Immunology 43 4.
    [Show full text]
  • 1756-3305-1-23.Pdf
    Parasites & Vectors BioMed Central Research Open Access Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae), in the North East Atlantic Diana Perdiguero-Alonso1, Francisco E Montero2, Juan Antonio Raga1 and Aneta Kostadinova*1,3 Address: 1Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071, Valencia, Spain, 2Department of Animal Biology, Plant Biology and Ecology, Autonomous University of Barcelona, Campus Universitari, 08193, Bellaterra, Barcelona, Spain and 3Central Laboratory of General Ecology, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria Email: Diana Perdiguero-Alonso - [email protected]; Francisco E Montero - [email protected]; Juan Antonio Raga - [email protected]; Aneta Kostadinova* - [email protected] * Corresponding author Published: 18 July 2008 Received: 4 June 2008 Accepted: 18 July 2008 Parasites & Vectors 2008, 1:23 doi:10.1186/1756-3305-1-23 This article is available from: http://www.parasitesandvectors.com/content/1/1/23 © 2008 Perdiguero-Alonso et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Although numerous studies on parasites of the Atlantic cod, Gadus morhua L. have been conducted in the North Atlantic, comparative analyses on local cod parasite faunas are virtually lacking. The present study is based on examination of large samples of cod from six geographical areas of the North East Atlantic which yielded abundant baseline data on parasite distribution and abundance.
    [Show full text]
  • Ichthyophthirius Multifiliis As a Potential Vector of Edwardsiella
    RESEARCH LETTER Ichthyophthirius multifiliis as a potential vector of Edwardsiella ictaluri in channel catfish De-Hai Xu, Craig A. Shoemaker & Phillip H. Klesius U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA Correspondence: De-Hai Xu, U.S. Abstract Department of Agriculture, Agricultural Research Service, Aquatic Animal Health There is limited information on whether parasites act as vectors to transmit Research Unit, 990 Wire Road, Auburn, bacteria in fish. In this trial, we used Ichthyophthirius multifiliis and fluorescent AL 36832, USA. Tel.: +1 334 887 3741; Edwardsiella ictaluri as a model to study the interaction between parasite, bac- fax: +1 334 887 2983; terium, and fish. The percentage (23–39%) of theronts fluorescing after expo- e-mail: [email protected] sure to E. ictaluri was significantly higher than control theronts (~ 6%) using À flow cytometry. Theronts exposed to E. ictaluri at 4 9 107 CFU mL 1 showed Received 4 January 2012; accepted 30 ~ January 2012. a higher percentage ( 60%) of fluorescent theronts compared to those (42%) 9 3 À1 Final version published online 23 February exposed to 4 10 CFU mL at 4 h. All tomonts (100%) carried the bacte- 2012. rium after exposure to E. ictaluri. Edwardsiella ictaluri survived and replicated during tomont division. Confocal microscopy demonstrated that E. ictaluri was DOI: 10.1111/j.1574-6968.2012.02518.x associated with the tomont surface. Among theronts released from tomonts exposed to E. ictaluri,31–66% were observed with attached E. ictaluri. Sixty À Editor: Jeff Cole percent of fish exposed to theronts treated with 5 9 107 E.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Fish Parasites As Quality Indicators of Aquatic Environment
    Zoologica59 FISH Poloniae-PARASITES (2009-2010)-AS-QUALITY 54-55/1-4:-INDICATORS 59-65-OF-AQUATIC-ENVIRONMENT 59 DOI: 10.2478/v10049-010-0006-y FISH PARASITES AS QUALITY INDICATORS OF AQUATIC ENVIRONMENT EWA DZIKA and IWONA WY¯LIC Division of Zoology, Warmia and Mazury University, ul. Oczapowskiego 5, 10-957 Olsztyn Email: [email protected] Abstract. Much research conducted during the last decades has shown that fish parasites are suitable indicators of aquatic environmental quality. They are sensitive to different kinds of pollution such as heavy metals, pesticides, oil-bearing substances, industrial and agricultural wastes and also thermal pollution. Key words: bioindication, fish, parasite, pollution, environment. Natural environment, which undergoes progressive degradation as a result of industrial and biological pollution needs permanent monitoring. Control of ecosystems usually includes only cyclic measurements of the degree of envi- ronment pollution based on physical, chemical and few sanitary (microbiologi- cal) parameters. More complete information about the ecosystems stability is provided by indicators, that is species which exhibit a possibly small range of tolerance of some factor are easy to recognise and which occur commonly. (OKULEWICZ, 2001). This makes possible to so called negative conclusion, that is the assumption, that the absence of some species in a reservoir results from unsuitable conditions and is not associated with its general rarity of occurrence (OGLÊCKI, 2003). Aquatic plants, algae, vertebrates or invertebrates, including fish parasites can be used as indicators. Because of its relative stability, diversity of niches and richness of flora and fauna aquatic environment favourable conditions for parasite development, transmission and dispersal.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Bornova Veteriner Kontrol Ve Araştirma Enstitüsü Dergisi Yayin Kurallari
    Bornova Veteriner Kontrol ve Araştırma Enstitüsü Dergisi, Enstitünün bilimsel yayın organı olup, yılda bir kez yayın- lanır. Derginin kısaltılmış adı Bornova Vet. Kont. Araşt. Enst. Derg.’dir. The Journal of Bornova Veterinary Control and Research Institute is the scientific publication of the institute, which is published once a year. The designation of the journal is J.of BornovaVet.Cont.Res.Inst. Bornova Veteriner Kontrol ve Araştırma Enstitüsü Adına Sahibi Necdet AKKOCA Enstitü Müdürü BORNOVA Yayın Kurulu/Editorial Board Dr. Öznur YAZICIOĞLU Dr. Özhan TÜRKYILMAZ VETERİNER Uzm.Vet. Hek. Necla TÜRK Bu sayıda görev alan Yayın Danışmanları KONTROL VE (Board of Scientific Reviewers of this issue) Prof. Dr. Yılmaz AKÇA ARAŞTIRMA Dr. Ayşen BEYAZIT Prof. Dr. Haşmet ÇAĞIRGAN Prof. Dr. Tayfun ÇARLI ENSTİTÜSÜ Dr. Fethiye ÇÖVEN Prof. Dr. Bilal DİK Prof. Dr. Ahmet DOĞANAY DERGİSİ Prof. Dr. Osman ERGANİŞ Dr. Seza ESKİİZMİRLİLER Dr. Olcay Türe GÖKSU Dr.Şerife İNÇOĞLU Dr. Gülnur KALAYCI Prof. Dr. Zafer KARAER The Journal of Dr. İbrahim ÖZ Prof. Dr. Edip ÖZER Bornova Dr. Gülçin ÖZTÜRK Prof. Dr. Sibel YAVRU Veterinary ∗İsimler soyadına göre alfabetik sırayla yazılmıştır. Control and Yazışma Adresi (Correspondance Address) Research Institute Veteriner Kontrol ve Araştırma Enstitüsü 35010 Bornova / İZMİR Tel: 0 (232) 388 00 10 Fax: 0 (232) 388 50 52 E-posta: [email protected] Web site: http://bornova.vet.gov.tr Yayın Türü: Yaygın süreli ve hakemli Bu dergi 1999 yılına kadar ”Veteriner Kontrol ve Araştırma Enstitüsü Müdürlüğü Dergisi” adı ile yayımlanmıştır. This journal was published with the name of “The Journal of Veterinary Control and Research Institute” until 1999.
    [Show full text]
  • Mathematical Models for the Control of Argulus Foliaceus in UK Stillwater
    MATHEMATICALMODELSFORTHECONTROLOF ARGULUS FOLIACEUS IN UK STILLWATER TROUT FISHERIES nicola jane mcpherson Doctor of Philosophy School of Natural Sciences University of Stirling 2013 Dedicated to my Nana 1936 - 2013 ii DECLARATION I hereby declare that this work has not been submitted for any other degree at this University or any other institution and that, except where reference is made to the work of other authors, the material presented is original. Stirling, 2013 Nicola Jane McPherson iii ABSTRACT Species of Argulus are macro-, ecto-parasites known to infect a wide variety of fish, but in the UK mainly cause problems in rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta). Argulus foliaceus is estimated to have caused problems in over 25% of stillwater trout fisheries in the UK. While A. foliaceus does not usually cause high levels of mortality, the parasite affects fish welfare, and also makes fish harder to catch due to morbidity and reduced appetite. This can cause severe economic problems for the fishery, resulting in reduced angler attendance due to poor capture rates and the reduced aesthetic appearance of fish; in the worst-case scenario this can result in the closure of the fishery. Current methods of control include chemical treatment with chemotherapeutant emamectin benzoate (Slice), physical intervention with egg-laying boards which are removed periodically and cleaned in order to reduce the number of parasites hatching into the environment, and the complete draining and liming of the lake to remove all free-living and egg stages of the parasite. While these treatments have all been shown to reduce parasite numbers, none are known to have resulted in permament eradication of the parasite.
    [Show full text]
  • Common Fish Lice
    Common Fish Lice Argulus, Lepeophtheirus and Caligus The common term 'louse' has been given to a number of different fish parasites. These include species of Argulus, which are primarily freshwater parasites, and sea lice that live and reproduce at sea. Both can be found attached to salmon and sea trout that have returned to our rivers to spawn. At first glance, Argulus and sea lice can look similar, but there are a few simple differences that can help you tell them apart. Freshwater lice Argulus (left) and sea lice (right) are common parasites of wild salmonids and are easily identified. Freshwater fish lice, Argulus spp. There are three species of Argulus that have been recorded in the UK. The most common is Argulus foliaceus, which is mainly found in still waters. Argulus coregoni prefers faster flowing conditions and is the largest of the three, measuring up to 10mm across. This is the species most frequently found on salmon and sea trout, as well as brown trout and coarse fish, in rivers. The third species, Argulus japonicus, is an introduced species and the least common. Argulus can be found anywhere on the external surface of fish, but in rivers they often seek shelter behind the fins, sometimes in tight clusters. Sea lice There are two common species of sea lice, Lepeophtheirus salmonis and Caligus elongatus. Although both are marine parasites, they are frequently found on salmon and sea trout entering freshwater. Sea lice cannot reproduce in freshwater, but can tolerate river conditions for as long as 2-3 weeks. The presence of sea lice on salmon and sea trout is therefore a clear indication that the fish has only recently entered freshwater.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • DAFINET November2012 Abstracts
    Immune gene expression in rainbow trout experimentally infected with Anisakis simplex larvae Haarder, Simon; Kania, Per Walter; Buchmann, Kurt Publication date: 2012 Citation for published version (APA): Haarder, S., Kania, P. W., & Buchmann, K. (2012). Immune gene expression in rainbow trout experimentally infected with Anisakis simplex larvae. Abstract from DAFINET: Immune Responses in Fish, Frederiksberg, Denmark. Download date: 27. Sep. 2021 DAFINET WORKSHOP IMMUNE RESPONSES IN FISH November 6th and 7th , 2012 Venue: Organised by: Lecture Theatre 1-01 Danish Fish Immunology Research Bülowsvej 17 Centre and Network 1870 Frederiksberg www.dafinet.dk Denmark University of Copenhagen Frederiksberg Denmark Book of abstracts DAFINET November 2012 University of Copenhagen DAFINET is supported by the Danish Council for Strategic Research The book of abstracts is edited by Per W. Kania and Kurt Buchmann Illustrations by Kurt Buchmann Printed by Frederiksberg Bogtrykkeri 2012 Frederiksberg, Denmark DAFINET WORKSHOP Danish Fish Immunology Research Centre and Network IMMUNE RESPONSES IN FISH November 6 th and 7 th , 2012 Venue: Organised by: Lecture Theatre 1-01 Danish Fish Immunology Research Bülowsvej 17 Centre and Network 1870 Frederiksberg www.dafinet.dk Denmark University of Copenhagen Frederiksberg Denmark Program Tuesday November 6 th , 2012 10.00 DAFINET Board meeting 10.00-12.00. Only for board members Scientific program 13.00 Welcome address by DAFINET leader Kurt Buchmann Laboratory of Aquatic Pathobiology, Department of Veterinary
    [Show full text]