1

2 2

3

35146077 4

2016 1 14 5 1

27% 2

3

4

5

6

7

8

9

2 Xe 10

11

12

13

Xe 14

16%1% 15

stycast1266 16

13 cm 30% 17

Xe 18

29cm 19 1

1 5 2

1.1 ...... 5 3

1.2 ...... 6 4

1.2.1 ...... 7 5

1.2.2 MACHO ...... 7 6

1.2.3 WIMP ...... 7 7

1.3 ...... 7 8

2 11 9

2.1 ...... 11 10

2.1.1 Xe ...... 12 11

2.2 ...... 13 12

2.3 1 2 ...... 13 13

2.3.1 1 XMASS-1 ...... 13 14

2.3.2 2 ...... 14 15

3 16 16

3.1 ...... 16 17

3.2 Xe ...... 16 18

3.3 ...... 16 19

3.3.1 Xe ...... 17 20

3.3.2 ...... 17 21

3.3.3 ...... 17 22

3.3.4 ...... 19 23

4 23 24

4.1 ...... 23 25

4.2 ...... 24 26

4.3 ...... 24 27

4.3.1 ...... 25 28

4.3.2 ...... 25 29

4.3.3 Xe ...... 26 30

4.3.4 Xe ...... 26 31

4.3.5 DAQ ...... 28 32

4.3.6 ...... 29 33

4.4 ...... 29 34

4.4.1 IVC ...... 30 35

4.4.2 Xe ...... 30 36

3 4.4.3 ...... 32 1

4.4.4 ...... 33 2

4.4.5 PE ...... 35 3

4.4.6 1PE ...... 36 4

4.5 1 ...... 39 5

4.6 2 ...... 40 6

4.6.1 1PE ...... 40 7

4.6.2 ...... 41 8

4.6.3 ...... 43 9

5 45 10

5.1 ...... 45 11

5.2 ...... 45 12

5.3 Xe ...... 46 13

5.3.1 ...... 46 14

5.4 Stycast1266 ...... 48 15

5.4.1 Stycast1266 IVC ...... 48 16

5.4.2 ...... 48 17

5.4.3 1: 1PE ...... 50 18

5.4.4 2: PMT ...... 52 19

5.4.5 3: ...... 53 20

5.5 ...... 54 21

5.6 ...... 55 22

6 57 23

A 58 24

A.1 ...... 58 25

A.2 ...... 59 26

A.3 ...... 62 27

63 28

64 29

4 1 1

2

4.9% 3

30% 4

25 5

5 6

7

8

1.1 9

1933 F.Zwikey Virial [1]

1. NGC6503 [2] () ()

mv2 GMm GM = 2 v = (1) r r ⇐⇒ ! r 1 v r M r (1) * 10

() 11 1/2 (1) r− 12

1 NGS6503 13 1/2 r− 14

*1 ()

5 (1) 1

2

3

4

1 5

6

7

2 1 8

1 9

10

11

12

( 13

) 14

15

38 16

() 17

(Cosmic Microwave Background; CMB) 18

3K CMB 19 5 10− COBE 20

21

COBE 22

WMAP CMB 23

24

Planck CMB 25

CMB 26

4.9% 26.8% 68.3% 27

28

1.2 29

30

31

(Non-luminous and Non-absorbing) 32 • • 33 4 34 • . 35

36

(baryonic) (non-baryonic) 37

baryonic 38

non-baryonic 39

6 non-baryonic (hot ; HDM) (; CDM) 1

(; WDM) HDM 2

CDM WDM 3

MACHO WIMP 4

5

1.2.1 6

non-baryonic 7

8

9

HDM 10

1.2.2 MACHO 11

baryonic MACHO 12

MACHO massive compact halo objects 13

14

MACHO 15

16

1.2.3 WIMP 17

non-baryonic 18

WIMP WIMP Weakly Interacting Massive Particle 19

WIMP 20 2 * 21

WIMP 22

1 23

24

25

26

(Lightest Supersymmetric Particle; LSP) 27

() LSP 28

WIMP WIMP 29

30

1.3 31

() 32

3 33

1. WIMP () 34

2. WIMP (γ ) 35

*2 strong CP [3]

7 3. WIMP 1

2

1 3

4

WIMP () 5

WIMP 6

7

Goodman Witten(1985) [4] 8

WIMP 9

WIMP 10

WIMP 11

WIMP [5] 12 2 3 0.3 GeV/c /cm 13

() 14

1000 1 1 100 15

MSSM 16

0.1 0.00001 events/kg/day 17 ∼ 42 46 2 10 10 cm [6]WIMP 18 ∼ 10 keV 19

20 2 A A 21

2 22

WIMP () 23 2 43 2 WIMP 100 GeV/c σ =1.0 10 cm 2 24 × (Xe) 25

26

(background; BG) 27

28

4 29

30

31

32

33

Ge Si CDMS [8]CoGeNT [9] 34

35

36

CDMS 10 mK 37

38

β γ BG WIMP 39

8 2. WIMP WIMP MWIMP = 100 GeV σW-N = 43 2 1.0 10− cm XeGe Ar [7] ×

1 3 NaI(Tl* ) DAMA/NaI DAMA/LIBRA [10] 2

NaI(Tl) 10 3

NaI 4

5

(Ar) (Xe) 6

Xe 7

( 175 nm) PMT Ar 8 ∼ (128 nm) 9 39 Ar BG Xe 10

11

12

3 100 GeV WIMP 13

LUX LUX 14

Xe [11, 12]10 GeV WIMP(Low-mass WIMP) 15

DAMA/LIBRACoGeNT 16

LUX XENON [13] 17

*3 NaI (Tl)

9 3. WIMP LUX () [14]

10 2 1

2

2.1 3

(Xe) 18 4 54 5 2.1 Xe 4

4. Xe [15]

5

54

124Xe(0.09%), 126Xe(0.09%), 128Xe(1.92%) 129Xe(26.44%), 130Xe(4.08%), 131Xe(21.18%) 132Xe(26.89%), 134Xe(10.44%), 136Xe(8.87%)

131.30 6 (b.p.) 165.1 K (@1atm) (m.p.) 161.4 K (@1atm) 3 161.3 K, 0.794 atm

2.98 g/cm3 (@165.1 K)

175 nm ()

1. Xe [15,16] 7

Xe 165.1K = 108.05℃ 8 − Xe 9

Xe 175 nm 10 129 (Photomultiplier tube; PMT) Xe 9 Xe 11

11 131 4 Xe 1/2 * 1

2.1.1 Xe 2

Xe 175 nm 2 1.) 3

2.) Xe 4

α,β,γ 5 + Xe Xe*,Xe** Xe Xe 6

7 • 8

Xe∗ + Xe Xe2∗ → 9 Xe∗ 2Xe + hν 2 →

Xe 10 • Xe+ + Xe Xe+ → 2 + Xe + e Xe∗∗ + Xe 2 − → Xe∗∗ Xe∗ + heat 11 → Xe∗ + Xe Xe∗ → 2 Xe∗ 2Xe + hν 2 →

2 12 5

5. Xe [17] (fission fragments) α 1 (τS) 3

(τT) 2

*4 0

12 Xe 2 Xe*2 1 3 α 1

τS =4ns, τT = 22 ns 2

Xe 45 ns 1 2 3

4

2.2 5

Xe Xe 6

7

5 1. WIMP * γ 8

9

2. Xe 10

BG Xe 11

3. Xe BG ArKr 12

13

4. 100℃ 14 − 15

5. 1MeV 42,000 16

(42,000 photon/MeV) 17

18

Xe 19

2.3 1 2 20

Xe 2 1 1 (single phase detector) 21

2 (double phase detector) Xe 22

1 Xe 2 2 23

Xe 4 24

XMASS 1 (LUX, XENON, PANDA-X) 2 25

WIMP 26

LUX ( 3) 27

2.3.1 1 XMASS-1 28

6 1 XMASS XMASS-1 XMASS* 29

832 kg Xe 642 PMT 30

6 31

1000 m 32

*5 (spin independent) *6 XMASS Xenon Detector for Weakly Interacting Massive Particles, Xenon Neutrino Mass Detector, Xenon Massive Detector for Solar Neutrino β

13 (a) ID 60 PMT

(b) ID

6. XMASS [19]

1

BG BG 2

BG 3

1000 m 2700 m 4 5 10− [18] 6b Xe 5

(outer 6 detector; OD) Xe (inner detector; ID) 7

8

6a ID Xe ID OVC(outer vacuum 9 chamber) IVC(Inner Vacuum Chamber) IVC 10 7 PMT(6 HAMAMATSU R10789-11 HAMAMATSU R10789-11MOD)642 * 11 8 60 * PMT 12

PMT LED 6 13

80 cm Xe 832 kg 14

2.3.2 2 15

2 XENON100 2 Xe 16

7a Xe (S1 ) 17

- 18

(S2 ) 2 S1 S2 Time Projection 19

*7 630 R10789-1112 R10789-11MOD *8 12 5 5

14 Chamber(TPC) 1

S2 S1 S2 2

PMT xy S1 S2 3

z 1mm 4

5

(a) 2 [20]

(b) XENON100 [21]

7. XENON100 HAMAMATSU R8520-06-A1 1 PMT Xe PMT Top array() 98 bottom array() 80 veto PMT 64

XENON100 161 kg Xe 2 6

7b HAMAMATSU R8520-06-A1 1 PMT 7

Xe PMT Top array() 98 bottom array( 8

) 80 veto PMT 64 Xe 9

(PTFE panels) 30 cm 30 cm TPC 10

11

15 3 1

Xe 2

3

3.1 4

3 5

1. Xe 6

2. Xe 7

3. XMASS Xe 8

9

3.2 Xe 10

Xe 2 1 11

XMASS Ge [22, 23] 1 12

PMT Xe 13

Xe Xe 14

Xe 1 Xe 15

Xe 16

17

18

Xe XMASS 19

Xe annual modulation [24] 20

Xe ( 8) 21

Xe 22

23

3.3 24

Xe Xe 25

Xe 26

Xe 27

Xe 28

29

30

16 3.3.3 3.3.2 LED Am-241 1PE) photoelectron; (1 PMT 3.3.1 * .XMASS 8. 9 AAAS 1791,XMASS R10789-11, HAMAMATSU rltv eue cnilto ih yield) light scintillation deduced (relative Am-241 LED Xe cm 6 Xe cm 3 Xe ( 0keV 60 Relative deduced Abs.(m) scintillation light yield NPE/122 0.98 1.00 1.02 KE4895 14 16 10 9 5 P/2 keV) (PE/122 4 Xe 1 2013. Dec31 0 PMT 100 [ PMT ) 24 2 RTV ] 2014. Jul02 XMASS 17 KE4895 PMT 200 0cm 40 ( * 9 § 5.3.1 Day from2014.Jan.1 KE4895 asrto length) (absorption 300 1 0cm 10 0 ,1kg 1 L, 300 2014. Dec31 57 o12keV 122 Co cm 6 ) 400 241(Am-241) LED 9 Xe PMT [ 25 Xe LED ] 1 Am-241 2 38 10 21 20 19 18 17 16 15 14 13 12 11 9 8 7 6 5 4 3 2 1 9. PMT

1

2

1 [26] 3

4

10 IVC PMT 5

6

18 10. IVC Xe 5.5 g

3.3.4 1

4 Am-241 60 keV /LED 2

11 3

19 (a) PMT () LED () PMT PMT

(b) PMT () LED () PMT PMT

11.

12 1

20 (a) PMT (b) PMT

(c) PMT (d) PMT

(e) (f)

12. (e),(f) 48PE 737PE 2 93% (a,b,c,d)

12 93% 1

21 IVC ( 13)

(a) IVC (b)

13. IVC FT-IR( 39 17)

1

Xe 2

12a 12d 3 ∼ Xe 4

2 5

1. Xe 6

(Xe ) 7

2. Xe 8

(Xe ) 9

Am-241 PMT 3 cm PMT 10

2 11

PMT 12

2 13

14

22 4 1

2

4.1 3

Am-241 PMT 3 cm 4

PMT 5

2 6

2 7

1 Xe 8

(Xe ) 9

2 Xe 10

(Xe ) 11

2 12

14 Xe ( 1) 13

14 (NPE(bottom)/NPE(top)) 14

Xe ( 2) 15

NPE(bottom)/NPE(top) 16

2 1 Xe 17

18

1PE 19

LED occupancy 20

21

14. PMT Xe (NPE(bottom)/NPE(top)) NPE(bottom)/NPE(top)

23 15. PMT 2cm Am-241 LED 3cm (6 cm, 9 cm) () 21

4.2 1

15 2

PMT 2 cm PMT 13 cm 3

PMT 4

5

4.3 6

16 XMASS 7

XMASS PMT 8

[25] Xe XMASS 9

832 kg 1 3kg Xe 10 cm 40 cm 10 ∼ 80 cm XMASS 11 • 12 • 13 Xe 14 • Xe 15 • DAQ 16 • • 17 18

24 16.

4.3.1 1

Xe (Inner 2

Vacuum Chamber; IVC) Xe () 100℃ 3

(Outer Vacuum Chamber; OVC) Xe 4

() 5

Xe 6

IVC 7

4.3.2 8

17 9

() 200℃ 10 − Xe 100℃ 11

IVC 12

BOX [25] BOX 13

1/4inch 14

Xe 15

BOX IVC IVC 16

17

IVC 18

19

25 17. [25] IVC PMT 1 IVC 2 1

4.3.3 Xe 1

Xe 1/4inch Xe IVC 2

( L/min) ( L) 3

Xe Xe 4

18 19 18 5

Xe 6

4.3.4 Xe 7

20 21 13 cm PMT 1 8

Xe PMT XMASS (HAMAMATSU 9

R10789-11) PMT Xe 10

PMT 2 11

PMT PMT 12

PMT High Voltage (HV ) 13

PMT LED PMT 14

24pin 15

26 18. Xe getter

19. ()

27

20. IVC Am-241 PMT 15

1

21. PMT Am-241 Am-241 PMT M5

4.3.5 DAQ 2

FADC(Flash ADC; CAEN V1751) 10 bit 1 3

V 1 GHz 1200 ns 4

200 ns 1000 ns NIM ( 22) 5

23 6

discriminator PMT 7

(coincidence trigger) 10 mV 8

FADC 1 350 µs veto 9

28 22. NIM module

23. DAQ

4.3.6 1

IVC PMT IVC 2

2 3 3

4 3 2 4

3 4 5

3 4 6

Model 1632 ClassA 7

4.4 8

6 Xe 9

IVC 10

29 Xe 1

4.4.1 IVC 2

IVC 3

Xe IVC IVC 4 10 11 PMT * EVOH * 5

15 6

() PMT 7

8 ✓ ✏ HV, signal • LED • IVC • M5 • M5 • PMT • ( 9 cm 6 cm 2 ) • • 9 ✒ ✑ 4.4.2 Xe 10

Xe Xe 11

Xe 12

13

1. IVC 14

IVC 15

2 LEDPMT HV ICF152 16 12 He * 17

18

He 19

ICF 20

2. IVC 21

Xe () 22

IVC 23 1 10 Pa 24 3 10− Pa 2 3 25

3. 26

*10 PMT *11 () (IPA) *12 HELIOT 712D2-AS75, ULVAC

30 Xe 100℃ Xe 1 − Xe Xe 2

12 3

Xe 4

4. Xe 5

Xe IVC IVC IVC Xe 6

IVC IVC 7

0.03 0.06 MPa 8 ∼ 5.0 L/min 5.0 L/min Xe IVC 9

Xe IVC Xe 10

11

IVC 12

PMT PMT 13

Xe 14

15

PMT PMT 16

PMT PMT 17 13 3 6 * Xe 550 L, 3 kg 18 ∼ 24 25 Xe 19

24. Xe 0

*13 PMT Xe 24,25

31 25. Xe PMT PMT PMT 50℃ − ( PMT ) Xe

4.4.3 1

FADC 1 8ch 1ns 40 ns 26 27 150 ns 550 ns LED 600 ns 1000 ∼ ∼ ns 10 ns [mV ns] ± · dQ Q I = dt V = IR

12 1 10− Q = dt I = dt V [ns mV]= dt V [s V] R · 50 · " " "

32 26.

27. LED

4.4.4 1

6 2 2 14 1 15 * 20 3

6 1,2,3 4

IVC Xe Xe 5

4,5,6 6

7

*14 42MB

33 IVC

12015/10/152015/10/16 open ∼ ⃝ 22015/10/222015/10/30 close IVC Xe ∼ 32015/11/42015/11/5 × close 3 ∼ 1 42015/11/222015/11/24 × open IVC ∼ ⃝ 52015/11/302015/12/04 open 4 ∼ ⃝ IVC 62015/12/102015/12/12 open ∼ ×

2. = = 2 ⃝ × 1PE LED 100 Hz LED 1PE 3

(occupancy) 28 PMT 10% 3 PMT HV 4 LED

28. 1PE occupancy occupancy PMT PMT Occupancy §4.4.6 Xe

5

34 PMT HV [V] PMT HV [V] [V]

12015/10/152015/10/16 1275 1605 3.24 ∼ 22015/10/222015/10/30 1275 1605 3.24 ∼ 32015/11/42015/11/5 1275 1605 3.27 1 ∼ 42015/11/222015/11/24 1225 1300 3.26 ∼ 52015/11/302015/12/04 1225 1300 3.25 ∼ 62015/12/102015/12/12 1225 1300 3.25 ∼ 3. PMT LED 2

4.4.5 PE 3

LED LED 4

PMT LED 29 30 Am-241 60 5 keV 1PE (NPE) 6

29. Am-241 60 keV 2 PMT PMT 60 keV 60 keV

35 30. LED 2 PMT PMT 1PE

4.4.6 1PE 1

28 Occupancy 2

1PE Occupancy LED 3 (4 ) 31 31 LED Occupancy PMT

31. 1PE Occupancy (4 ) LED 3.30 V PMT 30% 22 12 3.28 V 20% 22 21 3.26 V

36 LED 3.30 V Occupancy PMT 62% PMT 32% 1

LED 3.28 V Occupancy PMT 48% PMT 22% 2

PMT Occupancy 10% LED 3.26 V 3

PMT 28% PMT 12% 1PE 4

Occupancy 10% 20% LED 5 ∼ 31 1PE 32 31 32 LED

(a) PMT 1PE [ADC] (b) PMT 1PE [ADC]

32. 4 1PE [ADC]

(a) PMT 1PE [ADC] Occupancy (b) PMT 1PE [ADC] Occupancy

33. 4 1PE [ADC] Occupancy

6

1PE 33a PMT 7

Occupancy 62% 48% 1PE 44.4ADC(@3.30 V) 42.8ADC(@3.28 V) 8 ⇒ 4% PMT Occupancy 48% 28% 1PE 9

42.8ADC(@3.28 V) 41ADC(@3.26 V) 4% PMT 33b 10 ⇒ 32% 22% 1PE 2% 33 Occupancy 11

22% 12% 10% 1PE 2% 12

28 Occupancy 1PE 13

37 4 Occupancy 1

10% 1PE 2% 2

28 4 5 Occupancy PMT 28%(4 )18%(5 ) 10% 3

4 5 1PE 2% PMT 12%(4 ) 4

7%(5 ) 5% 1PE 1% 5

1,2% 1PE 6

Occupancy 7

10 ns 2 2 8 ± 2PE 30 9

1PE 10

2PE 1PE Occupancy 11

Occupancy 10% 1PE 2% 12

1PE 2% 13

38 4.5 1 1

1,2,3 §4.1 2 2

2 PMT 3

NPE(bottom)/NPE(top) PMT (Total PE= NPE(bottom) + NPE(top)) 4 34 1

34. 1,2,3 Total PE NPE(bottom)/NPE(top) 2 1 1 2 () 1 ()

5 15 LED LED LED * 6 16 * Xe 7

(Fourier Transform 8 17 18 infrared spectroscopy; FT-IR)* * 9

[27] Xe 10

11

4,5,6 1,2,3 12

300PE 4,5,6 13

Xe 14

15

1,2,3 IVC Xe 16

1,2,3 Xe 17

18

*15 *16 *17 *18 FT-IR

39 (4,5 1

) 2

4.6 2 3

4,5,6 1,2,3 1,2,3 34 4

4,5,6 1PE 5

34 6

4,5 7

37 16% IVC 8

6 9

IVC IVC 10

11

4.6.1 1PE 12

1PE 35 13

(a) PMT 1PE (b) PMT 1PE

(c) PMT 60 keV (d) PMT 60 keV

35. 1PE 4 5 6

40 4.6.2 1

4 5 28 PMT 1PE occupancy 4 5 2

4.4.6 36 3 4

(a) 4 NPE(top) (b) 4 NPE(bottom)

(c) 5 NPE(top) (d) 5 NPE(bottom)

(e) 6 NPE(top) (f) 6 NPE(bottom)

36. PMT 4 5 6

41 1

occupancy(top) occupancy(bottom) NPE(top) NPE(bottom)

4 28% 12% 561.93 0.04 PE 96.69 0.09 PE ± ± 2 5 18% 7% 634.56 0.03 PE 128.96 0.05 PE ± ± 6 25% 10% 632.35 0.04 PE 141.27 0.08 PE ± ± 4. 1PE occupancy 3

42 4.6.3 1

4,5,6 NPE(bottom)/NPE(top) 2

PMT NPE(bottom) + NPE(top) 37 3

37. 4,5,6 Total PE NPE(bottom)/NPE(top) 4 5 6 4,5,6 1,2,3 2 4 5 16

37 4 5 6 4 4

110 5 215 6 90 5

6

4 5 4 5 7

8

§4.4.1 9

37 () 10

16% 11

1. 12

2. Xe 13

14

1 15

16

1). 2). 17

18

6 19

43 IVC 1

6 IVC 20 2

6 37 5 6 3

1% PMT 129PE 141PE 10% 4

IVC PMT 5

6

IVC 7

4 5 8

4 4 561.93 + 96.69 = 658.62PE5 9 763.52 658.62 634.56 + 128.96 = 763.52PE 100 ( − ) = 15.93 16% 10 × 658.62 ∼ 36 4 PMT 11

PMT PMT 12

Xe PMT 96.69PE 128.96PE 13 ⇒ 128.96 96.69 100 ( − ) = 33.4 33% 14 × 96.69 ∼ IVC 5 6 15

4 5 634.56 + 128.96 = 763.52PE6 16 773.62 763.52 632.35 + 141.27 = 773.62PE 100 ( − )=1.322 1% 17 × 763.52 ∼ 141.27 128.96 PMT 128.96PE 141.27PE 100 ( − )=9.55 10% 18 ⇒ × 128.96 ∼ 5 19

PMT

16% 33% 20 1% 10%

5. 21

PMT 22

Xe () 23

4,5 IVC 24

1266 (§5.4) 6 25

26

1266 27

28

44 5 1

2 Xe 2

Xe Xe 3

4

5.1 5

6

Xe Xe 7

Xe Xe 8

9

Xe 10

Xe 11

XMASS 12 19 (* ) Xe 13

Xe 14

Xe 15

5.2 16

Xe Xe 3 17

18

1. PMT HV 19 20 2. PMT * 20

3. 21

21 Xe SUS* 22

23

Xe 24

PMT 25

Xe Xe 26

Xe 27

*19 *20 XMASS-1 PMT(HAMAMATSU R10789-11) XMASS Xe *21

45 5.3 Xe 1

XMASS XMASS1.5 [28]XMASS1.5 2

3

PMT 4

5

[29] 6

7

8

9

3 10

1. (100℃) 11

2. 12

3. 13

3 14

1. (100℃) 15

() A 16 ⇒ 2. 17

18

3. Ge 19

1 2 3 20

1 21

22

2 23

5.3.1 24

1 25 22 (stycast1266, stycast2850* ) 26

(araldite) [30–32] 2 27

stycast1266 28

*22 2 [32]

46 38. 1 RTV [33]

23 (silicone)* 1 24 [26] 1 RTV * 2

KE4895( 38) 1 3

4

stycast1266 2 5

§3.3 stycast1266 6

*23 (Si, ) (Si O Si) − − [26] *24 1 RTV: Room Temperature Vulcanizing

47 5.4 Stycast1266 1

stycast1266 2

MEG Xe 3

[34] stycast1266 4 4,5,6 4

4 (6 ) 5

5.4.1 Stycast1266 IVC 6

stycast1266 2 2 7

28℃ 1440 (24 ) stycast1266 8

9

2 IVC PMT 10 25 1.8 cm 3.0 cm * 11 × 1 1 12 26 39 * IVC 13

Xe 40 g 14

(a) 1 1 (b) (a) IVC PMT

39. stycast1266 IVC Xe 39a

15

5.4.2 16

4 4 4,5,6 17

IVC 18

19

IVC 20

*25 mm *26

48 1

PMT 2 27 50℃ * 3 28 * on/off 3 4 2 3 10− Pa 10− Pa 40 5

15 15 6

PMT LED Am-241 60 keV 1PE §4.4 7

§4.4 Am-241 60 keV ADC 8 3 PMT LED

2 3 40. IVC IVC 10− Pa 10− Pa 12 15 12 18 3

9

PMT HV [V] PMT HV [V] [V] 10 stycast1266 2015/12/19 2015/12/22 1225 1300 3.30 ∼ 6. PMT LED 11

*27 DG2N-100, HAKKO *28 35℃ or 40℃

49 5.4.3 1: 1PE 1

1PE 41 (4,5,6 ) 2

3

(a) PMT 1PE (b) PMT 1PE

(c) PMT Am-241 60 keV (d) PMT Am-241 60 keV

41. ( 4 ) ( 5 ) ( 6 ) 41c,41d

41 6 Am-241 60 keV 4

5

1PE occupancy 42 6

42 6 PMT occupancy 25% PMT occupancy 10% 7

PMT 10% PMT 8% 8

PMT 25% 10% 15% PMT 10% 8% 2% 9 ⇒ ⇒ §4.4.6 Occupancy 10% 1PE 10

2% 1PE 11 15 PMT 15% 2=3% PMT 2% 12 10 × 2 2=0.4% Occupancy PMT 1PE 13 10 ×

50 3%( PMT), 0.4%( PMT) 1

42. 1PE occupancy Occupancy PMT PMT Xe

51 5.4.4 2: PMT 1

(a) PMT (b) PMT

43. PMT

43 4,5,6 2

3

7 6 4

5

occupancy(top) occupancy(bottom) NPE(top) NPE(bottom)

6th(w/o sample) 25% 10% 632.35 0.04 PE 141.27 0.08 PE 6 ± ± stycast1266 20% 8% 579.20 0.04 PE 99.11 0.08 PE ± ± 7. PMT 7

52 5.4.5 3: 1

37 Xe 2

44 3

4

44. NPE(bottom)/NPE(top) NPE(bottom) + NPE(top) 37

§4.6.3 4 110 5 215 6 5

90 120 (4 6

) 7

§4.6.3 8

6 ( 9

) () 44 10

11

1. 6 100PE PMT 12

13

2. 14

3. 4 15

1 2 Xe 16

17

43 18

40.16 g 39.89 g=0.27 0.3 19 − ∼ g 20

53 0.3 g 1

PMT 6 632.35 + 2 773.62 678.31 141.27 = 773.62PE 579.20+99.11 = 678.31PE 100 − = 3 × 773.62 12.32 12% PMT 6 141.27PE 99.11PE 4 ∼ 141.27 99.11 100 − = 29.84 30% 5 × 141.27 ∼

5.5 6

Xe 5.4.5 6 PMT 141.27PE 99.11PE 30% 4.6.3 PMT 10% 10% 6 PMT 30% PMT (Am-241 PMT ) 13 cm I ℓ cm 13 I = I exp 0 − ℓ # $ ℓ 0 I 0ℓ I I 30% → → →∞ → 0 I =(1 0.3)I =0.7I − 0 0 13 13 13 0.7I = I exp = log 0.7= = ℓ = = 36.448 0 0 − ℓ ⇒ − ℓ ⇒ −log 0.7 # $ 36 cm 13 cm 13 cm stycast1266 6 L

L 36 cm ≥ 10% 13 cm 10% 0.7I 1.1 0.7I /1.1 0 × 0 13 log(0.7 1.1) = = ℓ = 49.73 50 cm × − ℓ ⇒ ∼ 13 log(0.7/1.1) = = ℓ = 28.76 29 cm − ℓ ⇒ ∼ 0.7 1.1 0.7/1.1 36 cm ×

L 50 cm L 36 cm L 29 cm ≥ ≥ ≥ L L 29 cm ≥

Xe 29 cm 7

54 5.6 1

stycast1266 29 cm 10% 2

36 cm 8 XMASS 3

10 m(=1000 cm) stycast1266 4

5

6

1. 7

2. 8

3. () 9

10

11

12

4 13 • 14

100% 100% 15 • 16

PMT IVC 17 • LED HV 18 • 3 2 19

20

2 21 • 22

1 23

Xe 24 • PMT 25

26 • 27 Xe 28

PMT Xe 29 • 30

Am-241 1 31 • 32

Xe 33 • Xe 34

55 1

LED 600 ns 1000 ns 10 ns 2 • ∼ ± 4.4.6 1PE 600 ns 1000 ns 3 ∼ 4

1PE occupancy 5 •

6

Xe 7 • 8

9 • 10 11

XMASS 12

FT-IR 13 • 14 • 15 16

17

? 18 • 19

20

2 3 1 Xe 21 • ∼ 22

23 • 24 25

26

1. Xe 27

Xe 28

29

30

2. 31

32

3. Xe Xe 33

34

56 6 1

Xe 2 2

Xe 3

4

2 2 Xe 5

Xe 6

Am-241 2 PMT 2 cm, 13cm 7

8

2 9

6 3 6 10

Xe 11

Xe 12

Xe 13

14

15

16% 1% PMT 33% 16

10% 17

1 stycast1266 18

(6 ) 19

PMT 30% Xe 20

13 cm Xe 21

L 29 cm PMT 10% 1PE 22 ≥ occupancy 23

24

57 A 1

A.1 2

*29 (viscoelasticity) E = σ/γ η = σ/γ˙ Pa Pa s σ · dγ [Pa] γ γ˙ = dt σ = ηγ˙ () 2

γ = γ0 sin ωt

σ = Eγ = Eγ0 sin ωt

π σ = ηγ˙ = ηωγ cos ωt = ηωγ sin ωt + 0 0 2 % & π/2 δ σ = σ0 sin(ωt + δ)=σ0 sin ωt cos δ + σ0 cos ωt sin δ

δ 0 <δ<π/2 E′ π/2 E′′ σ0 cos δ σ0 sin δ σ = γ0 sin ωt + γ0 cos ωt γ0 γ0 ' () * ' () * ∴ σ = γ0E′ sin ωt + γ0E′′ cos ωt (⋆)

σ0 cos δ σ0 sin δ E′ = ,E′′ = γ0 γ0

iωt i(ωt+δ) γ = γ0e ,σ= σ0e

*29

58 (⋆)

σ σ0 iδ σ0 E∗ = = e = (cos δ + i sin δ)=E′ + iE′′ γ γ0 γ0

E∗ E′ (storage modulus) E′′ 1

(loss modulus) tan δ = E′′/E′ (loss tangent) 2

3

E′ 4

E′ 5

A.2 6

A.1 7

(Dynamic Mechanical Analysis; DMA) 8 30 DMA * 9

RSA-G2 solids analyzer(TA Instruments, 45) 10 8

45. RSA-G2 solids analyzer(TA Instruments) [36]

11

: RSA-G2 :1Hz : :0.2% 12 : :20s/1℃ :3℃/min : 150℃ 30℃ − ∼ 8. DMA 13

14

§5.3.1 (KE4895) (stycast1266) 15

DMA 46() 47() 16

*30 UBE ()[35]

59 46. DMA ()30℃ 150℃ 40℃ 100℃ 1GPa − − −

47. stycast1266 DMA ()30℃ 150℃ −

3 1.5 10 GPa(@30℃) 0.8 GPa(@ 100℃) 1 × − − 2.5 GPa(@30℃) 5.0 GPa(@ 100℃) 100℃ 2 − − 9 100℃ 1 GPa 3 − 4

9 47 5

6

7

60 E [GPa] E [GPa]

ABS 1.4 3.1 210 ∼ 3.2 45 69 79 170 ∼ 17 -6 2 4 ∼ 117 10 1 ∼ 1220 PET 2 2.7 ∼ 2 3 1.5 2 ∼ ∼ 50 90 PTFE 0.4 ∼ 74 () 0.01 0.1 ∼ 1000 130 185 ∼ 9. [37] 2

3

48. [38] 2 1 1GPa10− 10− GPa ∼ 1 0 ()10− 10 GPa () ∼

61 A.3 1

2 1 2

Xe 3

() 4

100℃ 5 − 6

1 100℃ 7 − 8

100℃ 100℃ 9 − − 10

62 1

63 1

[1] F.ZWicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helv. Phys. Acta 6, 110-127 (1933) 2

[2] K.G.Begeman, A.H.Broeils and R.H.Sanders, “Extended rotation curves of spiral galaxies:dark haloes 3

and modified dynamics,” Mon.Not.Roy.Aston.Soc.,249,523(1991) 4

[3] Jonathan L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection, ”Ann. 5

Rev. Astron. Astrophys. 48 (2010) 495, arXiv:1003.0904 [astro-ph.CO]. 6

[4] M. W. Goodman and E. Witten, “Detectability of certain dark-matter candidates,” Phys. Rev. D31 7

(1985) 3059. 8

[5] G.Jungman, M.Kamionkowski, K.Griest, “Supersymmetric dark matter,” Phys. Rep. 267 (1996) 9

pp.196-373. 10

[6] J. Ellis et al., “Hadronic uncertainties in the elastic scattering of supersymmetric dark matter,” Phys. 11

Rev. D77,065026(2008). 12

[7] XENON10 13

(2008) 14

[8] R. Agnese et al., “Search for Low-Mass WIMPs with SuperCDMS,” Phys. Rev. Lett. 112 (2014). 15

[9] C.E. Aalseth et al., “Results from a Search for Light-Mass Dark Matter with a P-type Point Contact 16

Germanium Detector,” Phys. Rev. Lett. 106,131301(2011). 17

[10] R. Bernabei et al. (DAMA Collaboration), “First results from DAMA/LIBLA and the combined 18

results with DAMA/NaI,” Eur. Phys. J. C56(2008) 333-355, arXiv:0804.3607[astro-ph]. 19

[11] D.S. Akerib et al. (LUX Collaboration), “First results from the LUX dark matter experiment at the 20

Sanford Underground Research Facility,” Phys. Rev. Lett. 112,091303 21

[12] D.S. Akerib et al. (LUX Collaboration), “Improved WIMP scattering limits from the LUX experi- 22

ment,” arXiv:1512.03506 [astro-ph.CO]. 23

[13] E. Aprile et al. (The XENON100 Collaboration), “Dark Matter Results from 100 Live Days of 24

XENON100 Data,” Phys. Rev. Lett. 107,131302 25

[14] K.A. Olive et al. (PDG), Chin. Phys. C38,090001(2014)(http://pdg.lbl.gov) 26

[15] E. Aprile and T. Doke, “Liquid detectors for particle physics and astrophysics” Rev. Mod. 27

Phys. 23 (2010) 2053. 28

[16] 29

(2012) 30

[17] A. Hitachi, T. Takahashi, “Effect of ionization density on the time dependence of luminescence from 31

liquid argon and xenon,” Phys. Rev. B27 (1983) pp.5279-5285. 32

[18] SuperKamiokande HP 33

http://www-sk.icrr.u-tokyo.ac.jp/sk/index.html 34

[19] K. Abe et al. (XMASS Collaboration), Nucl. Instr. and Meth. in Phys.Res. A716 (2013) 78-85 35

[20] S.E.A. Orrigo, “Direct Dark Matter Search with XENON100,” Proceedings of the 5th Roma Inter- 36

national Conference on Astroparticle Physics RICAP-14. 37

[21] E. Aprile and L. Baudis, “Status and Sensitivity Projections for the XENON100 Dark Matter Ex- 38

64 periment,” Proceedings of Science (IDM2008) 018, August 18-22, 2008, Stockholm, Sweden. 1

[22] XMASS (2014) 2

[23] Ge XMASS 3

(2014) 4

[24] K.Abe et al. (XMASS collaboration), “Direct dark matter search by annual modulation in XMASS-I,” 5

arXiv:1511.07597 [astro-ph.CO]. 6

[25] Th XMASS (2015) 7

[26] HP 8

https://www.silicone.jp/ 9

10

http://www.silicone.jp/catalog/index.shtml 11

RTV 12

[27] PMT 13

(2009) 14

[28] 2015 XMASS1.5 (2015) 15

[29] 2015 XMASS (2015) 16

[30] 10 17

http://hdl.handle.net/11094/4289 18

[31] http://pota.hatenablog.jp/entry/2014/07/17/020428 19

[32] http://www-jlc.kek.jp/ tauchi/index/LXeTPC/meetings/d070809/catlog.pdf 20

[33] MonotaRO() 21

http://www.monotaro.com/ 22 + [34] J. Adam et al., “The MEG detector for µ e + γ decay search,” Eur. Phys. J. C73 (2013) 2365 23 → [35] UBE HP 24

http://www.ube-ind.co.jp/usal/index.htm 25

[36] TA Instruments Japan Inc. 26

http://www.tainstruments.co.jp/products/dma/rsa-g2.html 27

[37] http://www.engineeringtoolbox.com/young-modulus-d_417.html 28

[38] http://docplayer.net/251068-Materials-science-data-book-this-booklet-is-for-use-in-the-written- 29

examination.html 30

[39] 31

[40] 32

65