Evidence for Eustasy at the Kinderhookian-Osagean (Mississippian) Boundary in the United States: Response to Late Tournaisian Glaciation?

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Eustasy at the Kinderhookian-Osagean (Mississippian) Boundary in the United States: Response to Late Tournaisian Glaciation? The Geological Society of America Special Paper 441 2008 Evidence for eustasy at the Kinderhookian-Osagean (Mississippian) boundary in the United States: Response to late Tournaisian glaciation? Thomas W. Kammer† Department of Geology and Geography, West Virginia University, Morgantown, West Virginia 26506-6300, USA David L. Matchen Division of Natural Sciences, Concord University, Athens, West Virginia 24712, USA ABSTRACT Evidence for eustasy at the Kinderhookian-Osagean boundary is presented here in a new synthesis based on detailed analysis of the boundary in the central Appala- chian Basin and regional mapping of the Kinderhookian-Osagean boundary uncon- formity in the conterminous United States. Detailed stratigraphic analysis within the central Appalachian Basin shows that coarse-grained, fl uvial sandstones (Black Hand, Burgoon, Big Injun, Purslane) are associated with valley incision up to 60 m and a widespread sequence boundary (SB2) that is inferred to have resulted from a forced regression during the Kinderhookian-Osagean boundary interval. The extent of unconformity at the boundary was evaluated by mapping the inferred positions of shorelines during the Kinderhookian, Kinderhookian-Osagean boundary interval, and early Osagean based on stratigraphic data from Correlation of Stratigraphic Units of North America (COSUNA) charts. This analysis shows areas of extensive unconformity at the Kinderhookian-Osagean boundary across the United States inferred to be the result of sea-level fall and recovery during a period of ~2 m.y. or less, based on missing conodont zones. The Kinderhookian-Osagean boundary is equivalent in age to the global Tn2-Tn3 boundary, and supporting evidence for global regression and eustasy at this boundary is also reviewed. The combination of this evidence for eustasy with recently reported middle to early late Tournaisian (Tn2a-Tn3b) diamictites in South America permits the inference of continental glaciation at this time. Previous studies of oxygen and carbon isotope data from marine carbonates and fossils have shown strong positive anomalies suggestive of global cooling at the Kinderhookian-Osagean and Tn2-Tn3 boundary, providing fur- ther support for the hypothesis of continental glaciation in the late Tournaisian. Keywords: eustasy, Kinderhookian, Osagean, Tournaisian, glaciation, Black Hand Sandstone, Burgoon Sandstone, incised valley, Appalachian Basin, sea-level maps. †E-mail: [email protected]. Kammer, T.W., and Matchen, D.L., 2008, Evidence for eustasy at the Kinderhookian-Osagean (Mississippian) boundary in the United States: Response to late Tournaisian glaciation?, in Fielding, C.R., Frank, T.D., and Isbell, J.L., eds., Resolving the Late Paleozoic Ice Age in Time and Space: Geological Society of America Special Paper 441, p. 261–274, doi: 10.1130/2008.2441(18). For permission to copy, contact [email protected]. ©2008 The Geological Society of America. All rights reserved. 261 262 Kammer and Matchen INTRODUCTION STRATIGRAPHY OF THE KINDERHOOKIAN-OSAGEAN BOUNDARY The purpose of this paper is to present a new synthesis of the available data on both the stratigraphic and geographic To argue the case for eustasy at the Kinderhookian-Osagean extent of the unconformity, and the correlative sequence boundary in North America, we present a review of previous boundary, at the Kinderhookian-Osagean boundary across the studies interpreted under the hypothesis of sea-level fall at the conterminous United States. The synthesis is based on our boundary. Additionally, lithostratigraphic cross sections are own detailed analysis of the Kinderhookian-Osagean bound- presented in support of regression at the Kinderhookian- ary stratigraphy; newly constructed shoreline, or sea-level, Osagean boundary. maps for the early Mississippian; and proxy data from other studies. The Kinderhookian-Osagean boundary is equivalent North American Midcontinent to the late Tournaisian Tn2-Tn3 global boundary (Ross and Ross, 1985; Jones, 1996), and we briefl y review the evidence The Kinderhookian-Osagean boundary is defi ned in the for unconformity, or the correlative sequence boundary, out- Mississippi Valley stratotype region at Kinderhook, Pike County, side of North America as well. These data are then used to Illinois, and along the Osage River, St. Clair County, Missouri support the hypothesis of an episode of eustasy at the Kinder- (Lane and Brenckle, 2005). Two conodont zones (upper part of hookian-Osagean and Tn2-Tn3 boundary during which there the upper crenulata-isosticha and punctatus biozones) are miss- was a global fall in sea level followed by a relatively rapid ing in the stratotype region where a physical unconformity is rec- recovery. The hypothesized eustasy is then related to evidence ognized (Lane and Brenckle, 2005). for early late Tournaisian glaciation, including diamictites in The unconformity at the Kinderhookian-Osagean bound- South America (Caputo et al., 2006a, 2006b, this volume), ary has long been recognized (Ham and Wilson, 1967; Craig and carbon and oxygen positive isotope anomalies in marine and Connor, 1979, pl. 9-A). In the subsurface of western Illinois, limestones and fossils from North America and Europe, which Workman and Gillette (1956) documented extensive erosion indicate apparent global cooling (Mii et al., 1999; Saltzman, of the upper Kinderhookian formations. In Missouri, the early 2002a; Buggisch and Joachimski, 2006). Together, these vari- Osagean Burlington Limestone may directly overlie the Hanni- ous lines of evidence are discussed in support of the hypoth- bal Formation (Thompson, 1986) (Fig. 1). esis for late Tournaisian glaciation. Two brief ice ages apparently occurred in the Late Appalachian Basin Devonian and early Mississippian prior to the late Mississip- pian Gondwanan ice age (Crowell, 1999; Crowley and Berner, General Stratigraphy 2001; Royer et al., 2004). The older ice age occurred in the late The Kinderhookian and Osagean stages in the central Appa- Famennian at the Devonian-Mississippian boundary, evidence lachian Basin (consisting of eastern Ohio, southwestern Pennsyl- for which includes glacial deposits and a wide range of proxy vania, western Maryland, and West Virginia) (Fig. 2) comprise a records (Crowell, 1999; Isaacson et al., 1999, 2005). Isaacson 200–300-m-thick siliciclastic succession. This siliciclastic suc- and Hladil (2003) estimated a minimum of 60 m for the sea- cession was deposited near the end of the Acadian orogeny on a level fall. The younger ice age apparently occurred in the middle foreland ramp (Castle, 2000) that extended as far west as the Illi- to late Tournaisian (Tn2-Tn3), at or near the Kinderhookian- nois Basin (Matchen and Kammer, 1994, 2006). The succession Osagean boundary; it is supported by evidence of diamictites is bounded by unconformities at the upper and lower contacts in the Solimões Basin of Brazil (Caputo et al., 2006a, 2006b, (SB1 and SB3 on Figs. 1 and 2). A third sequence boundary (SB2 this volume). on Figs. 1 and 2) occurs at the Kinderhookian-Osagean bound- Indirect, or proxy, evidence for a late Tournaisian ice age ary (Matchen and Kammer, 2006). Interpretation of SB2 includes is robust and consists of (1) a massive incised valley (60 m) evidence for incised valley fi ll at the Kinderhookian-Osagean (Matchen and Kammer, 2006), and associated sequence bound- boundary in Ohio (Matchen and Kammer, 2006) and corroborat- ary and fl uvial sandstones in the Appalachian Basin of the east- ing evidence for the sequence boundary over a wider area in at ern United States; (2) a widespread unconformity over much of least West Virginia and Pennsylvania. North America at the Kinderhookian-Osagean boundary, pre- sented herein; (3) a global sequence boundary associated with Incised Valley Fill in Ohio widespread regression and unconformity at the Tn2-Tn3 bound- Matchen and Kammer (2006) interpreted the Black Hand ary in Saudi Arabia, Belgium, Czech Republic, Germany, west- Sandstone Member of the Cuyahoga Formation (Fig. 1) as ern Russia, Siberia, and China (Ross and Ross, 1985; Swennen incised valley fi ll. The Black Hand Sandstone extends across et al., 1986; Kalvoda, 1989, 1991, 2002; Isaacson et al., 1999; southeastern Ohio (Fig. 2), and it is a multistory, cross-bedded, Hance et al., 2002; Haq and Al-Qahtani, 2005); and (4) stable coarse-grained sandstone up to 60 m thick that is surrounded isotope anomalies (Mii et al., 1999; Saltzman, 2002a; Buggisch on all sides by fi ner-grained marine sediments of the underly- and Joachimski, 2006). ing Cuyahoga Formation and the overlying Logan Formation. Mississippi Michigan Central West Virginiad Pennsylvaniag,h,i 1 2 3 Valley Section Basina Ohiob,c Southe,f Centrale,f Northe,f Keokuk Limestone No Section Michigan Visean Osagean Formation ? ?? c Burlington SB3 Limestone Rushville Member Tn3 Vinton Member s. Allensville en L Maccrady n Gl Member Fer Formation Meppen Byer Member SB3 Logan Fm. ab Berne Member Marshall Burgoon c Black Hand “Big Injun” “Big Injun” Sandstone Sandstone SB2 Sandstone sandstones sandstone SB2 ? ? Tn2 Tournaisian b Cuyahoga Chouteau Coldwater “Weir” Mississippian Shale Formation sandstones a Group Hannibal Rockwell Member Kinderhookian Formation Price Formation Sunbury Price Formation Riddlesburg Riddlesburg Rockwell Formation Tn1b Shale Sunbury Shale Glen Park Ls. Sunbury Shale Shale Shale Cloyd Cussewago Berea Sandstone Berea Sandstone Conglomerate Sandstone ? SB1 ?SB1 Oswayo Fam. Louisiana (part) Dev. Limestone Sandstone Figure 1. Lower Mississippian
Recommended publications
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY , THE UNIVERSITY OF MICHIGAN VOL. XWI, No. 11, pp. 241-263 (2 pk., 5 figs.) OCTOBER9, 1962 A MISSISSIPPIAN FLORA FROM NORTHEASTERN UTAH AND ITS FAUNAL AND STRATIGRAPHIC RELATIONS BY CHESTER A. ARNOLD and WALTER SADLICK Published with aid from the Edward Pulteney Wright and Jean Davies Wright Expendable Trust Fund MUSEUM OF PfiEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XV. Parts of volumes may be obtained if available. VOLUMEXVI 1. Two Late Pleistocene Faunas from Southwestern Kansas, by Claude W. Hibbard and Dwight W. Taylor. Pages 1-223, with 16 plates. 2. North American Genera of the Devonian Rugose Coral Family Digonophylli- dae, by Erwin C. Stumm. Pages 225-243, with 6 plates. 3. Notes on Jaekelocystis hartleyi and Pseudocrinjtes gordoni, two Rhombi- feran Cystoids Described by Charles Schuchert in 1903, by Robert V. Kesling. Pages 245-273, with 8 plates. 4. Corals of the Traverse Group of Michigan. Part VI, Cladopora, Striatopora, and Thamnopora, by Erwin C.
    [Show full text]
  • Download the Poster
    EVALUATION OF POTENTIAL STACKED SHALE-GAS RESERVOIRS ACROSS NORTHERN AND NORTH-CENTRAL WEST VIRGINIA ABSTRACT Jessica Pierson Moore1, Susan E. Pool1, Philip A. Dinterman1, J. Eric Lewis1, Ray Boswell2 Three shale-gas units underlying northern and north-central West Virginia create opportunity for one horizontal well pad to produce from multiple zones. The Upper Ordovician Utica/Point Pleasant, Middle Devonian Marcellus, and Upper Devonian Burket/Geneseo 1 West Virginia Geological & Economic Survey, 2 U.S. DOE National Energy Technology Laboratory construction of fairway maps for each play. Current drilling activity focuses on the Marcellus, with more than 1,000 horizontal completions reported through mid-2015. Across northern West Virginia, the Marcellus is 40 to 60 ft. thick with a depth range between 5,000 and 8,000 ft. Total Organic Carbon (TOC) REGIONAL GEOLOGY is generally 10% or greater. Quartz content is relatively high (~60%) and clay content is low (~30%). Reservoir pressure estimates STRUCTURAL CROSS-SECTION FROM HARRISON CO., OHIO TO HARDY CO., WEST VIRGINIA range from 0.3 to 0.7 psi/ft and generally increase to the north. Volumetric assessment of the Marcellus in this area yields preliminary NW SE 81° 80° 79° 78° 1 2 3 4 5 original gas-in-place estimates of 9 to 24 Bcf/mi2. OH WV WV WV WV Pennsylvania Figure 2.—Location of seismic sections, wells, and major basement Harrison Co. Marshall Co. Marion Co. Preston Co. Hardy Co. 34-067-20103 47-051-00539 47-049-00244 47-077-00119 47-031-00021 UTICA SHALE PLAY GR 41 miles GR 36 miles GR 27 miles GR 32 miles GR Westmoreland The Burket /Geneseo interval is approximately 15 to 40 ft thick across the fairway.
    [Show full text]
  • Carboniferous Coal-Bed Gas Total Petroleum System
    U.S. Geological Survey Open-File Report 2004-1272 Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System Robert C. Milici U.S. Geological Survey 956 National Center Reston, VA 20192 1 Table of Contents Abstract Introduction East Dunkard and West Dunkard Assessment units Introduction: Stratigraphy: Pottsville Formation Allegheny Group Conemaugh Group Monongahela Group Geologic Structure: Coalbed Methane Fields and Pools: Assessment Data: Coal as a source rock for CBM: Gas-In-Place Data Thermal Maturity Generation and Migration Coal as a reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Pocahontas basin and Central Appalachian Shelf Assessment Units Introduction: Stratigraphy: Pocahontas Formation New River Formation Kanawha Formation 2 Lee Formation Norton Formation Gladeville Sandstone Wise Formation Harlan Formation Breathitt Formation Geologic Structure: Coalbed Methane Fields: Coal as a Source Rock for CBM Gas-in-Place Data Thermal Maturity Generation and Migration Coal as a Reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Assessment Results: Appalachian Anthracite and Semi-Anthracite Assessment Unit: Pennsylvania Anthracite Introduction: Stratigraphy: Pottsville Formation Llewellyn Formation Geologic Structure: Coal as a Source Rock for CBM: Gas-In-Place-Data Thermal
    [Show full text]
  • Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust Belt: Some New Vitrinite Reflectance Data Sharon E
    University of Kentucky UKnowledge Center for Applied Energy Research Faculty Center for Applied Energy Research Publications 11-1990 Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust Belt: Some New Vitrinite Reflectance Data Sharon E. Lewis Montana Tech James C. Hower University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/caer_facpub Part of the Geology Commons Repository Citation Lewis, Sharon E. and Hower, James C., "Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust Belt: Some New Vitrinite Reflectance Data" (1990). Center for Applied Energy Research Faculty Publications. 11. https://uknowledge.uky.edu/caer_facpub/11 This Article is brought to you for free and open access by the Center for Applied Energy Research at UKnowledge. It has been accepted for inclusion in Center for Applied Energy Research Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Implications of Thermal Events on Thrust Emplacement Sequence in the Appalachian Fold and Thrust Belt: Some New Vitrinite Reflectance Data Notes/Citation Information Published in The Journal of Geology, v. 98, no. 6, p. 927-942. © 1990 by The nivU ersity of Chicago. All rights reserved. The opc yright holder has granted the permission for posting the article here. Digital Object Identifier (DOI) https://doi.org/10.1086/629462 This article is available at UKnowledge: https://uknowledge.uky.edu/caer_facpub/11 IMPLICATIONS OF THERMAL EVENTS ON THRUST EMPLACEMENT SEQUENCE IN THE APPALACHIAN FOLD AND THRUST BELT: SOME NEW VITRINITE REFLECTANCE DATAl SHARON E.
    [Show full text]
  • Key, M. M., Jr. and N. Potter, Jr. 1992
    Guidebook for the llth Annual Field Trip of the Harrisburg Area Geological Society May 9, 1992 Paleozoic Geology of the Paw Paw-Hancock Area of Maryland and West Virginia by Marcus M. Key, Jr. and Noel Potter, Jr. Dickinson College TABLE OF CONTENTS . .. List of F1gures . .............................................. 111 Introduction . ....................................... · ......... 1 Road Log • ..•... • ..... · .... • •.....•....•...•......• e ••• '0 ••••••••• 3 Stop 1. Roundtop Hill . ............ o •••••••••• o •••••••••••••••••• 5 stop 2. Sideling Hill Road Cut ..•.••............••.••••......... 8 Stop 3. Sideling Hill Diamictite Exposure ....•.•....•.•....•... 11 Stop 4. Cacapon Mountain Overlook .••.......•......•.•••••...... 15 Stop 5. Fluted Rocks Overlook .•..•••.••....•.•.•••.•........... 16 Stop 6. Fluted Rocks ................. .,. .......... ., o ••••• ., •••••• • 19 Stop 7. Berkeley Springs state Park •...•.....................•. 20 Acknowled·gments . ........................... :- ... e ••••••••••••••• 21 References .....••.•..•.•••.•..•.•..•.••......................•. 2 2 Topogrpphic maps covering field trip stops: USGS 7 1/2 minute quadrangles Bellegrove (MD-PA-WV), Great Cacapon (WV-MD), Hancock (WV-MD-PA) Cover Photo: Anticline in Silurian Bloomsburg Formation. From Stose and swartz (1912). The anticline is visible from the towpath of the c & 0 Canal at Roundtop Hill (Stop# 1). Guidebook copies may be obtained by writing: Harrisburg Area Geological Society cjo Pennsylvania Geological Survey P.O. Box 2357 Harrisburg,
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • Stratigraphy and Structure of the "Catskill Group" in Southeastern NY
    ·...[)-l STRATIGRAPHY AND STRUCTURE OF '." ..I. ••. : .• .": THE'~CATSKI Lt' GROUP" IN SOUTHEASTERN NEW YORK' ~., :'i:", ;'1: ",' :... _ . 3fLf ~ .. ;~ r ~ ;:' r:~.~ : TM!" Universi ty of Iloche~i;~.:r: .'ff· i" :".' i-..e:." TRIP D .. :;. ·-'1:r,· ..... "' "A blackboard drawing or "a.!,textbook,·'· il;1ustratioh' of a sedimentary fa'cies has quite a different appearance from a sedi- mentary facies when one encounters i 1:; -in.· ;: ,. , the field. In the field, facies changes ,-," ',:' .,s-eem baffling' and bewildering, especially,,;":;""" ~;' .. "'~ in an area of new and unknown stratigraphy .. ·r. ";".j,~" It is as if stratigraphy, hitherto su};lject' .,-. .. .. ,r''':'· . to natural laws a,nd capable of rational :~~r I. >.1,.: ·.3:~:~' analysis, had suddenly gone lawless and ,2',;,) ",:i-,)'" planless. II "J :"," ' .. , \ P. B. King { .... I ~ .; THE CATSKILL PROBLEM Introductory Statement ..... := ~j'~{;:,": " -': Withi'~ the Devonian rocks of southeastern New York there are approxi- mately 5000 feet of interbedded red and gray sandstones, shales"1and.tol'l­ glomerates known collectively as "Catskill." After more than''';c;ntury of investigation, virtually the only conclusions agreed upon by·theTvarious worker& ,in the area are that the facies changes care. GQmplex,: ,the. ,1oGation of formation boundaries'is difficult, fe"l fossils. are present:, ,corl'eia'fion is uncertain, and the sedimentary environment is eJthers;u~aerial. or subaqueous.·.:,:'···· ,',f' ~ :: . The complex-intertonguing and intergrading Rf strata of t6e Catskill de~ ta offers exoellent opportunity for the study>q,f sedill)entary facies"."" The'roi:;~s which comprise the"Catskill group" '!xh~bH Ef~ceptio.rlaL'fntttcacy because of threemaj or variations: lateral andv~i-iical 'interg-nac!atf6:ri 6f lithologies,lateral.
    [Show full text]
  • Bibliography of the Publications of Patricia G. Gensel
    Bibliography of the Publications of Patricia G. Gensel Compiled by William R. Burk, Ian Ewing, Elena M. Feinstein, Joy Mermin, Drew Posny, and Laurel E.D. Roe 1969 [Abstract]. (with H.N. Andrews and A.E. Kasper). An early Devonian flora from northern Maine, U.S.A., p. 4. In Abstracts of the Papers Presented at the XI International Botanical Congress, August 24-September 2, 1969 and the International Wood Chemistry Symposium, September 2-4, 1969, Seattle, Washington. [XI International Botanical Congress], Seattle, Washington. 260 pp. (with Andrew Kasper and Henry N. Andrews). Kaulangiophyton, a new genus of plants from the Devonian of Maine. Bulletin of the Torrey Botanical Club 96: 265-276. 1972 (with Tom L. Phillips and Henry N. Andrews). Two heterosporous species of Archaeopteris from the Upper Devonian of West Virginia. Palaeontographica, Abt. B, Palaophytol. 139: 47-71 + plates 36-45. 1973 [Abstract]. (with Henry Andrews and William Forbes). An apparently heterosporous plant from the Middle Devonian of New Brunswick. American Journal of Botany 60(4, supplement): 15. A new plant from the Lower Mississippian of southwestern Virginia. Palaeontographica, Abt. B, Palaophytol. 142: 137-153 + plates 33-40 + folder. [Abstract]. A new plant from the Lower Mississippian of southwestern Virginia. American Journal of Botany 60(4, supplement): 16-17. 1974 (with Henry N. Andrews and William H. Forbes). An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology 17: 387-408 + plates 52-57. 1975 (with Henry N. Andrews and Andrew E. Kasper). A new fossil plant of probable intermediate affinities (Trimerophyte-Progymnosperm). Canadian Journal of Botany 53: 1719-1728.
    [Show full text]
  • Wyoming Counties Pennsylvania
    Geology of the Ransom Quadrangle Lackawanna, Luzerne, and Wyoming Counties Pennsylvania By THOMAS M. KEHN, ERNEST E. GLICK, and WILLIAM C. CULBERTSON GEOLOGICAL SURVEY BULLETIN 1213 Description of the outcropping and subsurface strata of Devonian, Mississippian, and Pennsylvanian age and of the unconsolidated sediments of Quaternary age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 66-215 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract---------------------------------------------------------- 1 Introduction______________________________________________________ 2 Location and extent of area_____________________________________ 2 Purpose and scope of report_____________________________________ 3 Fieldwork and examination of well cuttings_______________________ 4 Acknowledgments _____________________________ - _____ --- ---- --_ 5 Previouswork_________________________________________________ 5 Topography and drainage ____________________ ------_------_________ 5 StratigraphY------------------------------------------------------ 7 DevonianSystem---------------------------------------------- 8 Lower Devonian Series_____________________________________ 8 IIelderberg GrouP------------------------------------- 8 Kalkberg Limestone ____________ --------______ ----_ 8 New Scotland Limestone equivalent_________________
    [Show full text]
  • Field Guide to the Geology of Parts of the Appalachian Highlands and Adjacent Interior Plains
    DOCUMENT RESUME ED 262 974 SE 046 186 AUTHOR McKenzie, Garry D.; Utgard, Russell 0. TITLL Field Guide to the Geology of Parts of the Appalachian Highlands and Adjacent Interior Plains. INSTITUTION Ohio State Univ., Columbus. Dept. of Geology and Mineralogy. PUB DATE 85 NOTE 140p.; Document contains several colored maps which may not reproduce clearly. PUB TYPE Guides - Classroom Use - Materials (For Learner) (051) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *College Science; *Field Trips; *Geology; Higher Education; *Science Activities; Science Education ABSTRACT This field guide is the basis for a five-day, 1000-mile trip through six states and six geomorphic provinces. The trip and the pre- and post-trip exercises included in the guide constitute a three credit course at The Ohio State University entitled "Field Geology for Science Teachers." The purpose of the trip is tc study the regional geology, which ranges from Quaternary glacial deposits through a folded and faulted Paleozoic terrane to an igneous and metamorphic terrane. Study of geomorphological features and the application of geomorphology to aid in understanding the geology are also important objectives of the field trip. The trip also provides the opportunity to observe and study relationships between the geology of an area, its natural resources, and the culture and life styles of the inhabitants. For teachers participating in the trip, it demonstrates the advantages of teaching a subject like geology in the field and the nature of field evidence. In addition to a road log and stop descriptions, the guide includes a very brief introduction to the geology of the Appalachian Highlands and the Interior Plains, a review of geological terms, concepts, and techniques, and notes on preparing for and running field trips.
    [Show full text]
  • Adding Value to the Atlas of Major Appalachian Gas Plays
    Adding Value to the Atlas of Major Appalachian Gas Plays Natural Gas Conference Paper Douglas G. Patchen Ronald McDowell Katharine Lee Avary April 1997 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Abstract Adding Value to the Atlas of Major Appalachian Gas Plays Patchen, Douglas G., Ron McDowell and Lee Avary, West Virginia Geological Survey and Appalachian Oil and Natural Gas Research Consortium, Morgantown, WV Natural gas is produced from more than 100 stratigraphic levels in more than 1000 named fields in a broad trend that extends from New York to Tennessee and includes large portions of Pennsylvania, Ohio, West Virginia, and eastern Kentucky. In the new Atlas of Major Appalachian Gas Plays these gas-bearing reservoirs have been organized into 30 major plays that have both historic significance and future potential. A “play” as used in the atlas is a group of geologically similar drilling prospects having similar source, reservoir and trap controls of gas migration, accumulation, and storage.
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic-GIS Data for Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial alpo_jofl_geology.pdf Version: 5/11/2020 I Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial Geologic Resources Inventory Map Document for Allegheny Portage Railroad National Historic Site and Johnstown Flood National Memorial Table of Contents Geologic Resourc..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS Ge..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Maps a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t.i.o...n..s.................................................................................. 5 Index Map .................................................................................................................................................................... 6 Digital Bedrock Geologic-GIS Map of Allegheny Portage Railroad National Historic Site, John..s..t..o..w...n.. .F..l.o..o...d.. .N...a..t.i.o..n..a..l. .M...e..m...o...r.i.a..l. .a..n..d... .V..i.c..i.n..i.t.y.................................................. 7 Map Unit Lis.t................................................................................................................................................................... 7 Map Unit De.s..c..r.i.p..t.io..n..s...................................................................................................................................................... 8 PNcc - Cas.s..e..l.m...a..n.
    [Show full text]