Identification of Prestress Force in Prestressed Concrete Box Girder
Total Page:16
File Type:pdf, Size:1020Kb
IDENTIFICATION OF PRESTRESS FORCE IN PRESTRESSED CONCRETE BOX GIRDER BRIDGES USING ULTRASONIC TECHNOLOGY Manal Kamil Hussin Bachelor Degree in Civil Engineering University of Baghdad Master Degree in Civil Engineering University of Southern Queensland Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Civil Engineering and Built Environment Science & Engineering Faculty Queensland University of Technology 2018 Keywords nondestructive technology, piezoelectric transducers, prestressed concrete bridges, structure health monitoring, ultrasonic waves, fast Fourier transform, destructive methods, box-girder, unbonded tendons, amplitude, attenuation, resonance frequency i Abstract Prestressed concrete box-girder bridges are gaining popularity in bridge engineering systems because of their better stability, serviceability and structural efficiency. These advantages can be achieved by using the prestressing technique, which involves applying a prestress force (PF) to the reinforced concrete structure to improve the weakness of concrete to tension. Monitoring the PF in prestressed concrete box-girder bridges without affecting serviceability has been known as one of the most suitable approaches to achieve a timely decision-making process concerning the health status of the bridges, including emergency cases such as bridge collapse. However, there are currently no accepted nondestructive technologies (NDTs) to evaluate the PF of these bridges, because implementing such a technology in practice is not always feasible due to various difficulties such as the large scale of the bridge, tight budget and uncertainties of new sensing technologies. To overcome these problems altogether, this research program aims to develop a practical and simple, yet more comprehensive and reliable method to identify the PF of new and existing prestressed concrete bridges using ultrasonic technology. Towards this objective, parametric studies were carried out using a finite element method (FEM) to identify the effect of the PF on the ultrasonic wave behaviour. The simulation results showed that there is a relationship between the relative change in the wave velocity and the PF applied to the tendons. The results demonstrated that it is possible to relate the relative change in the wave velocity to the applied PF according to acoustoelastic theory. Prestressed concrete with a box-girder cross-section and unbonded embedded tendons is one of the most popular bridges. However, most of the available methods found in the literature were designed to identify the PF directly from attaching the ultrasonic transducers on the ends of accessible prestressing tendons. To overcome this drawback, a number of laboratory tests have been carried out on a simply supported prestressed concrete box-girder bridge with a uniform cross section model. This was used to determine whether it is possible to identify the PF from the inverse calculation ii of the compressive stress developed on the concrete surface due to applying the PF to the tendons. The effectiveness of the PF on ultrasonic wave parameters has been tested experimentally and linear and nonlinear acoustic parameters of the ultrasonic wave have been examined. Different parameters related to the prestressed concrete model have been investigated to provide a valid technique to identify the PF. Experimental results have shown that the ultrasonic technology is applicable for PF monitoring in new and existing prestressed concrete box-girder bridges with good accuracy. It is evident that the novel method developed in this research can effectively identify the PF in box-girder using the ultrasonic technology. iii Table of Contents Keywords .................................................................................................................................. i Abstract .................................................................................................................................... ii Table of Contents .................................................................................................................... iv List of Tables ......................................................................................................................... viii List of Figures ......................................................................................................................... ix List of Abbreviations ............................................................................................................. xiii Statement of Original Authorship .......................................................................................... xv Publications ........................................................................................................................... xvi Acknowledgements .............................................................................................................. xvii Chapter 1: Introduction ...................................................................................... 1 1.1 Background .................................................................................................................... 1 1.2 Research problem ........................................................................................................... 3 1.3 Research aim and objectives .......................................................................................... 4 1.4 Significance of the developed method and scope of research ........................................ 4 1.5 Thesis outline ................................................................................................................. 7 Chapter 2: Literature Review ............................................................................. 9 2.1 Introduction .................................................................................................................... 9 2.2 Destructive methods ..................................................................................................... 10 2.3 Semidestructive methods ............................................................................................. 12 2.4 Nondestructive methods ............................................................................................... 13 2.4.1 Vibration-based techniques in prestress evaluation ................................. 13 2.4.2 Non-vibration techniques in prestress evaluation .................................... 15 2.5 Summary and conclusion remark ................................................................................. 24 Chapter 3: Ultrasonic Guided Wave and Linear and Nonlinear Acoustic Theory .......................................................................................................... 26 3.1 Introduction .................................................................................................................. 26 3.2 Ultrasonic testing and linear acoustoelastic theory ...................................................... 29 3.2.1 Linear acoustoelastic theory .................................................................... 30 3.2.2 Wave propagation in isotropic elastic media ........................................... 35 3.2.3 Phase velocity and group velocity ........................................................... 43 3.3 Ulatrsonic testing and Nonlinaer acoustic parameter ................................................... 45 3.3.1 Contact acoustic nonlinearity ................................................................... 46 3.3.2 Nonlinear Acoustic theory ....................................................................... 48 3.3.3 Ultrasonic wave interaction with discontinuous surface.......................... 52 3.4 Summary ...................................................................................................................... 53 iv Chapter 4: Research Design .............................................................................. 54 4.1 Requirement of study ....................................................................................................54 4.2 Methodology .................................................................................................................54 4.2.1 Achieving objective 1 .............................................................................. 55 4.2.2 Achieving objective 2 .............................................................................. 56 4.2.3 Achieving objective 3 .............................................................................. 56 4.3 Summary .......................................................................................................................56 Chapter 5: Effect of Prestress Force on Ultrasonic Wave Characteristics .. 57 5.1 Introduction ..................................................................................................................57 5.2 Numerical model and the effect of the bonded and unbonded tendon..........................58 5.3 Effect of the PF on the box-girder ................................................................................64 5.4 ABAQUS /explicit and numerical integration ..............................................................66 5.5 Theoretical analysis of wave propagation ....................................................................68 5.6 Mesh and load ...............................................................................................................69 5.7 Results and discussion