Downloaded on June 15, 2021 From
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
RANKL As a Novel EMT Marker 858 Cell Research (2008) 18:858-870
npg RANKL as a novel EMT marker 858 Cell Research (2008) 18:858-870. npg © 2008 IBCB, SIBS, CAS All rights reserved 1001-0602/08 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells Valerie A Odero-Marah1, Ruoxiang Wang1, Gina Chu1, Majd Zayzafoon2, Jianchun Xu1, Chunmeng Shi1, Fray F Marshall1, Haiyen E Zhau1, Leland WK Chung1 1Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365B Clifton Road, NE, Atlanta, GA 30322, USA; 2Department of Pathology, University of Alabamn, Birmingham, AL 35294, USA Epithelial-mesenchymal transition (EMT) in cancer describes the phenotypic and behavioral changes of cancer cells from indolent to virulent forms with increased migratory, invasive and metastatic potential. EMT can be induced by soluble proteins like transforming growth factor β1 (TGFβ1) and transcription factors including Snail and Slug. We uti- lized the ARCaPE/ARCaPM prostate cancer progression model and LNCaP clones stably overexpressing Snail to identify novel markers associated with EMT. Compared to ARCaPE cells, the highly tumorigenic mesenchymal ARCaPM and ARCaPM1 variant cells displayed a higher incidence of bone metastasis after intracardiac administration in SCID mice. ARCaPM and ARCaPM1 expressed mesenchymal stromal markers of vimentin and N-cadherin in addition to elevated levels of Receptor Activator of NF-κB Ligand (RANKL). We observed that both epidermal growth factor (EGF) plus TGFβ1 treatment and Snail overexpression induced EMT in ARCaPE and LNCaP cells, and EMT was associated with increased expression of RANKL protein. -
RANK Interaction and Signaling − RANKL Structural and Functional
Structural and Functional Insights of RANKL −RANK Interaction and Signaling Changzhen Liu, Thomas S. Walter, Peng Huang, Shiqian Zhang, Xuekai Zhu, Ying Wu, Lucy R. Wedderburn, Peifu This information is current as Tang, Raymond J. Owens, David I. Stuart, Jingshan Ren and of October 1, 2021. Bin Gao J Immunol published online 14 May 2010 http://www.jimmunol.org/content/early/2010/05/14/jimmun ol.0904033 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 1, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2010, doi:10.4049/jimmunol.0904033 The Journal of Immunology Structural and Functional Insights of RANKL–RANK Interaction and Signaling Changzhen Liu,*,†,1 Thomas S. Walter,‡,1 Peng Huang,x Shiqian Zhang,{ Xuekai Zhu,*,† Ying Wu,*,† Lucy R. Wedderburn,‖ Peifu Tang,x Raymond J. Owens,‡ David I. Stuart,‡ Jingshan Ren,‡ and Bin Gao*,†,‖ Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kB ligand (RANKL)/receptor activator of the NF-kB (RANK)/osteoprotegerin molecular triad. -
(CS-ⅣA-Be), a Novel IL-6R Antagonist, Inhibits IL-6/STAT3
Author Manuscript Published OnlineFirst on February 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0551 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Chikusetsusaponin Ⅳa butyl ester (CS-Ⅳa-Be), a novel IL-6R antagonist, inhibits IL-6/STAT3 signaling pathway and induces cancer cell apoptosis Jie Yang 1, 2, Shihui Qian 2, Xueting Cai 1, 2, Wuguang Lu 1, 2, Chunping Hu 1, 2, * Xiaoyan Sun1, 2, Yang Yang1, 2, Qiang Yu 3, S. Paul Gao 4, Peng Cao 1, 2 1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China 2. Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China 3. Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201203, China 4. Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA Running title: CS-Ⅳa-Be, a novel IL-6R antagonist, inhibits IL-6/STAT3 Keywords: Chikusetsusaponin Ⅳ a butyl ester (CS- Ⅳ a-Be), STAT3, IL-6R, antagonist, cancer Grant support: P. Cao received Jiangsu Province Funds for Distinguished Young Scientists (BK20140049) grant, J. Yang received National Natural Science Foundation of China (No. 81403151) grant, and X.Y. Sun received National Natural Science Foundation of China (No. 81202576) grant. Corresponding author: Peng Cao Institute: Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China Mailing address: 100#, Shizi Street, Hongshan Road, Nanjing, Jiangsu, China Tel: +86-25-85608666 Fax: +86-25-85608666 Email address: [email protected] The first co-authors: Jie Yang and Shihui Qian The authors disclose no potential conflicts of interest. -
BCMA-Targeted Immunotherapy for Multiple Myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2*
Yu et al. Journal of Hematology & Oncology (2020) 13:125 https://doi.org/10.1186/s13045-020-00962-7 REVIEW Open Access BCMA-targeted immunotherapy for multiple myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2* Abstract B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development. Keywords: B cell maturation antigen, BCMA, Belantamab mafodotin, CAR-T, Antibody-drug conjugate, Bispecific T cell engager Introduction B cell maturation antigen (BCMA) Recent advances in novel therapeutics such as prote- BCMA is encoded by a 2.92-kb TNFRSF17 gene located asome inhibitors (PI) and immunomodulatory drugs on the short arm of chromosome 16 (16p13.13) and (IMiD) have significantly improved the treatment out- composed of 3 exons separated by 2 introns (Fig. 1). comes in patients with multiple myeloma (MM) [1–8]. BCMA is a 184 amino acid and 20.2-kDa type III trans- However, most MM patients eventually relapse due to membrane glycoprotein, with the extracellular N the development of drug resistance [9]. In addition, terminus containing a conserved motif of 6 cysteines many of the current popular target antigens, such as [18–21]. -
TRAIL and Cardiovascular Disease—A Risk Factor Or Risk Marker: a Systematic Review
Journal of Clinical Medicine Review TRAIL and Cardiovascular Disease—A Risk Factor or Risk Marker: A Systematic Review Katarzyna Kakareko 1,* , Alicja Rydzewska-Rosołowska 1 , Edyta Zbroch 2 and Tomasz Hryszko 1 1 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] (A.R.-R.); [email protected] (T.H.) 2 Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland; [email protected] * Correspondence: [email protected] Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdomi- nal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accor- dance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pul- monary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear Citation: Kakareko, K.; whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. -
The Roadmap of RANKL/RANK Pathway in Cancer
cells Review The Roadmap of RANKL/RANK Pathway in Cancer Sandra Casimiro 1,* , Guilherme Vilhais 2, Inês Gomes 1 and Luis Costa 1,3,* 1 Luis Costa Laboratory, Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] 2 Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] 3 Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal * Correspondence: [email protected] (S.C.); [email protected] (L.C.) Abstract: The receptor activator of the nuclear factor-κB ligand (RANKL)/RANK signaling pathway was identified in the late 1990s and is the key mediator of bone remodeling. Targeting RANKL with the antibody denosumab is part of the standard of care for bone loss diseases, including bone metastases (BM). Over the last decade, evidence has implicated RANKL/RANK pathway in hormone and HER2-driven breast carcinogenesis and in the acquisition of molecular and phenotypic traits associated with breast cancer (BCa) aggressiveness and poor prognosis. This marked a new era in the research of the therapeutic use of RANKL inhibition in BCa. RANKL/RANK pathway is also an important immune mediator, with anti-RANKL therapy recently linked to improved response to immunotherapy in melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC). This review summarizes and discusses the pre-clinical and clinical evidence of the relevance of the RANKL/RANK pathway in cancer biology and therapeutics, focusing on bone metastatic disease, BCa onset and progression, and immune modulation. -
The Role of the Immune Checkpoint Modulator OX40 and Its Ligand in NK Cell Immunosurveillance and Acute Myeloid Leukemia
1 The role of the immune checkpoint modulator OX40 and its ligand in NK cell 2 immunosurveillance and acute myeloid leukemia 3 Running title: OX40-OX40L in NK cell immunosurveillance 4 Keywords: OX40, AML, NK cells, immunotherapy, checkpoint 5 Tina Nuebling*1, Carla Emilia Schumacher*1,2, Martin Hofmann3, Ilona Hagelstein1, Benjamin Joachim 6 Schmiedel1, Stefanie Maurer1, Birgit, Federmann4, Kathrin Rothfelder1, Malte Roerden2, Daniela Dörfel1,2, 7 Pascal Schneider5, Gundram Jung3, Helmut Rainer Salih1,2 8 1 9 Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German 10 Cancer Research Center (DKFZ), Heidelberg, Germany 2 11 Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany 3 12 Department of Immunology, Eberhard Karls University, Tuebingen, Germany 13 4 Department of Pathology, Eberhard Karls University, Tuebingen, Germany 14 5 Department of Biochemistry, Epalinges, Switzerland 15 16 *these authors contributed equally to this work 17 18 Corresponding Author: 19 Helmut R. Salih, M.D. 20 Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German 21 Cancer Research Center (DKFZ) 22 Department of Hematology and Oncology, Eberhard Karls University 23 Otfried-Mueller Str. 10, 72076 Tuebingen, Germany 24 Phone: +49-7071-2983275; Fax: +49-7071-293671; Email: [email protected] 25 26 Funding: Supported by grants from the Deutsche Forschungsgemeinschaft (NU341/1-1, SA1360/7-3, 27 SFB685, project A07), Deutsche Krebshilfe (projects 111828 and 111134). PS is supported by grants from 28 the Swiss National Science Foundation. 29 Conflict-of-interest disclosure: The authors declare no potential conflicts of interest. 30 31 32 Text word count: 4347; Abstract word count: 238 33 5 figures, 2 tables, 4 supplementary figures 34 References: 50 1 35 Abstract 36 The TNF receptor family member OX40 promotes activation and proliferation of T cells, which 37 fuels present attempts to modulate this immune checkpoint to reinforce anti-tumor immunity. -
(Blys) on Diabetes-Related Periodontitis
ORIGINAL RESEARCH Immunology Preliminary findings on the possible role of B-lymphocyte stimulator (BLyS) on diabetes-related periodontitis Marx Haddley Ferreira Abstract: The possible role of B-cell growth and differentiation- DRUMOND(a) related cytokines on the pathogenesis of diabetes-related periodontitis Luciano Eduardo PUHL(a) has not been addressed so far. The aim of this study was to evaluate Poliana Mendes DUARTE(b) the effects of diabetes mellitus (DM) on the gene expression of Tamires Szeremeske de proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator MIRANDA(c) (BLyS), two major cytokines associated to survival, differentiation Juliana Trindade and maturation of B cells in biopsies from gingival tissue with CLEMENTE-NAPIMOGA(a) periodontitis. Gingival biopsies were obtained from subjects with Daiane Cristina PERUZZO(a) periodontitis (n = 17), with periodontitis and DM (n = 19) as well as Elizabeth Ferreira MARTINEZ(a) from periodontally and systemically healthy controls (n = 10). Gene Marcelo Henrique NAPIMOGA(a) expressions for APRIL, BLyS, RANKL, OPG, TRAP and DC-STAMP were evaluated using qPCR. The expressions APRIL, BLyS, RANKL, (a) Faculdade São Leopoldo Mandic, Instituto OPG, TRAP and DC-STAMP were all higher in both periodontitis de Pesquisas São Leopoldo Mandic, groups when compared to the control group (p < 0.05). Furthermore, Campinas, SP, Brazil. the expressions of BLyS, TRAP and RANKL were significantly higher (b) University of Florida, College of Dentistry, in the subjects with periodontitis and DM when compared to those Department of Periodontology, Gainesville, FL, USA. with periodontitis alone (p < 0.05). The mRNA levels of BLyS correlated positively with RANKL in the subjects with periodontitis and DM (c) Guarulhos University, Dental Research Division, Department of Periodontology, São (p < 0.05). -
Multimeric Forms of 4-1BBL As Stimulators of T Cells for Adoptive Immunotherapy
Kornbluth et al. Journal for ImmunoTherapy of Cancer 2014, 2(Suppl 3):P246 http://www.immunotherapyofcancer.org/content/2/S3/P246 POSTERPRESENTATION Open Access Multimeric forms of 4-1BBL as stimulators of T cells for adoptive immunotherapy Richard S Kornbluth1*, Victoria Snarsky1, Geoffrey W Stone2 From Society for Immunotherapy of Cancer 29th Annual Meeting National Harbor, MD, USA. 6-9 November 2014 Members of the TNF SuperFamily of ligands (TNFSFs) Authors’ details 1Multimeric Biotherapeutics, Inc., La Jolla, CA, USA. 2University of Miami, have significant potential as immuno-oncology therapeu- Miller School of Medicine, Miami, FL, USA. tic agents. The TNFSFs are trimeric membrane proteins that can be cleaved into soluble single trimers. While Published: 6 November 2014 the soluble single trimers can be easily prepared and studied, they have little or no activity in vivo. This defi- ciency is caused by the need to cluster their cognate doi:10.1186/2051-1426-2-S3-P246 Cite this article as: Kornbluth et al.: Multimeric forms of 4-1BBL as receptors in the plane of the membrane in order to stimulators of T cells for adoptive immunotherapy. Journal for induce a supramolecular signaling complex on the cyto- ImmunoTherapy of Cancer 2014 2(Suppl 3):P246. plasmic side of the plasma membrane. For the TNFSF ligands, this requires that they be used as many-trimer multimers that mimic the natural expression of many trimers on the surface of stimulating cells. To meet this need, we prepared fusion proteins comprised of the extracellular domains of TNFSF ligands joined to a nat- ural protein that provides a multimerization scaffold. -
Belongs to the TNF Family a New Class of Reverse Signaling
A New Class of Reverse Signaling Costimulators Belongs to the TNF Family Mingyi Sun and Pamela J. Fink This information is current as J Immunol 2007; 179:4307-4312; ; of September 27, 2021. doi: 10.4049/jimmunol.179.7.4307 http://www.jimmunol.org/content/179/7/4307 References This article cites 85 articles, 38 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/179/7/4307.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 27, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. THE JOURNAL OF IMMUNOLOGY BRIEF REVIEWS A New Class of Reverse Signaling Costimulators Belongs to the TNF Family Mingyi Sun and Pamela J. Fink1 Recent evidence shows that many molecules of the TNF still remains unclear (7). The N-terminal cytoplasmic domains family serve as counter-receptors, inducing costimulation of most TNF family members are conserved across species but through reverse signals in addition to delivering signals not between family members, suggesting that the intracellular through their respective TNF receptors. -
GP130 Cytokines in Breast Cancer and Bone
cancers Review GP130 Cytokines in Breast Cancer and Bone Tolu Omokehinde 1,2 and Rachelle W. Johnson 1,2,3,* 1 Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA; [email protected] 2 Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA 3 Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA * Correspondence: [email protected]; Tel.: +1-615-875-8965 Received: 14 December 2019; Accepted: 29 January 2020; Published: 31 January 2020 Abstract: Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment. -
Snapshot: Cytokines III Cristina M
SnapShot: Cytokines III Cristina M. Tato and Daniel J. Cua Schering-Plough Biopharma (Formerly DNAX Research), Palo Alto, CA 94304, USA Cytokine Receptor Source Targets Major Function Disease Association TNFα Murine: Macrophages, Neutrophils, Inflammatory; ↓ = disregulated fever; increased TNFR,p55; TNFR,p75 monocytes, T cells, macrophages, promotes activation susceptibility to bacterial infection; others monocytes, and production of enhanced resistance to LPS-induced septic Human: endothelial cells acute-phase proteins shock TNFR,p60; TNFR,p80 ↑ = exacerbation of arthritis and colitis LTα Murine: T cells, B cells Many cell types Promotes activation ↓ = defective response to bacterial TNFR,p55; TNFR,p75 and cytotoxicity; pathogens; absence of peripheral lymph development of lymph nodes and Peyer’s patches Human: nodes and Peyer’s TNFR,p60; TNFR,p80 patches LTβ LTβR T cells, B cells Myeloid cells, other Peripheral lymph ↓ = increased susceptibility to bacterial cell types node development; infection; absence of lymph nodes and proinflammatory Peyer’s patches ↑ = ectopic lymph node formation LIGHTa LTβR, DcR3, HVEM Activated T cells, B cells, NK cells, Costimulatory; ↓ = defective CD8 T cell costimulation monocytes, DCs DCs, other tissue promotes CTL activity TWEAK Fn14 Monocytes, Tissue progenitors, Proinflammatory; macrophages, epithelial, promotes cell growth endothelial endothelial for tissue repair and remodeling APRIL TACI, BAFF-R, BCMA Macrophages, DCs B cell subsets Promotes T cell- ↓ = impaired class switching to IgA independent