Mapping the Phases of Glacial Lake Algonquin in the Upper Great Lakes Region, Canada and USA, Using a Geostatistical Isostatic Rebound Model
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Lexicon of Pleistocene Stratigraphic Units of Wisconsin
Lexicon of Pleistocene Stratigraphic Units of Wisconsin ON ATI RM FO K CREE MILLER 0 20 40 mi Douglas Member 0 50 km Lake ? Crab Member EDITORS C O Kent M. Syverson P P Florence Member E R Lee Clayton F Wildcat A Lake ? L L Member Nashville Member John W. Attig M S r ik be a F m n O r e R e TRADE RIVER M a M A T b David M. Mickelson e I O N FM k Pokegama m a e L r Creek Mbr M n e M b f a e f lv m m i Sy e l M Prairie b C e in Farm r r sk er e o emb lv P Member M i S ill S L rr L e A M Middle F Edgar ER M Inlet HOLY HILL V F Mbr RI Member FM Bakerville MARATHON Liberty Grove M Member FM F r Member e E b m E e PIERCE N M Two Rivers Member FM Keene U re PIERCE A o nm Hersey Member W le FM G Member E Branch River Member Kinnickinnic K H HOLY HILL Member r B Chilton e FM O Kirby Lake b IG Mbr Boundaries Member m L F e L M A Y Formation T s S F r M e H d l Member H a I o V r L i c Explanation o L n M Area of sediment deposited F e m during last part of Wisconsin O b er Glaciation, between about R 35,000 and 11,000 years M A Ozaukee before present. -
Vegetation and Fire at the Last Glacial Maximum in Tropical South America
Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher -
Lake Ontario a Voice!
Statue Stories Chicago: The Public Writing Competition Give Lake Ontario a voice! Behind the Art Institute of Chicago, is the Fountain of the Great Lakes. Within the famous fountain is the wistful figure of Lake Ontario. She sits apart from her sister lakes, gazing into the distance with arms outstretched. But what does she have to say for herself? Write a Monologue! Monologos means “speaking alone” in Greek, but we all know that people who speak without thinking about their listener can be very dull indeed. Your challenge is to find a ‘voice’ for your statue and to write an engaging monologue in 350 words. Get under your statue’s skin! Look closely and develop a sense of empathy with the sculpture and imagine how it would feel. How does Lake Ontario feel about her sister lakes? Invite your listener to feel with you: create shifts in tempo and emotion, use different tenses, figures of speech and anecdotes, sensory details and even sound effects. Finding your sculpture’s voice? Write in the first person and adopt the persona of your character: What kind of vocabulary will you use - your own or that of another era/dialect? Your words will be spoken so read them aloud: use their rhythm and your sentence structure to convey emotion and urgency. Read great monologues for inspiration, for example Hamlet’s Alas Poor Yorick, or watch film monologues, like Morgan Freeman’s in The Shawshank Redemption. How will you keep people listening? Structure your monologue! How will you introduce yourself? With a greeting, a warning, a question, an order, a riddle? Grab and hold your listener’s attention from your very first line. -
Indiana Glaciers.PM6
How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago. -
Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
Hemingway's Michigan
Map Locations P ETOSKEY, 49770 1.1 Pere Marquette Railroad Station—100 Depot St. Hemingway’s (Little Traverse History Museum) 2.2 Grand Rapids & Indiana Railroad Station—Corner of Bay St. and Lewis St. (Pennsylvania Plaza Offices) 3.3 The Perry Hotel—100 Lewis St. Michigan 4.4 The Annex—432 East Lake St. (City Park Grill) 5.5 McCarthy’s Barber Shop—309 Howard St. 6.6 Jesperson’s Restaurant—312 Howard St. 7.7 Carnegie Library Building—451 East Mitchell St. 8.8 Potter’s Rooming House—602 State St. (This is a private residence and not open to the public.) WALLOON LAKE, 49796 EH1 Hemingway Historical Marker—Walloon Village, Melrose Township Park on Walloon Lake VILLAGE OF HORTON BAY, 49712 EH2 Walloon Lake Public Access & Boat Launch—Go SE of Horton Bay on the Boyne City-Charlevoix Rd. for approximately one mile; turn (due east) on to Sumner Rd. and follow it to the end. Approx. 2.25 mi. 9.9 Pinehurst and Shangri-La—5738 Lake St., (First two dwellings on the east side of Lake St. as it descends down the road to the bay on Lake Charlevoix.) EH3 Lake Charlevoix Public Access Site & Boat Launch—At the end of Lake St. down from Pinehurst and Shangri-La. 10.10 Horton Bay General Store—5115 Boyne City Rd. (on Ernest Hemingway the Charlevoix-Boyne City Rd., village of Horton Bay) (Clockwise from top left) 11 11. Horton Creek—Approximately 5408 Boyne City Rd. -Ernest with cane, suitcase, and a wine bottle in his pocket. BAY VIEW ASSOCIATION, 49770 Petoskey, 1919 EH4 Evelyn Hall On the campus of the Bay View Assoc. -
2021- 2025 Recreation Plan Resort Township Emmet County
2021- 2025 Recreation Plan Resort Township Emmet County Adopted: December 8, 2020 Prepared by: Resort Township Recreation Committee With the assistance of: Richard L. Deuell, Planning Consultant RESORT TOWNSHIP RECREATION PLAN 2021-2025 TABLE OF CONTENTS Title Page ............................................................................................................... i Table of Contents .................................................................................................. ii Section 1. Introduction and History ................................................................................... 1-1 2. Community Description ..................................................................................... 2-1 3. Administrative Structure .................................................................................... 3-1 4. Recreation and Resource Inventories ............................................................... 4-1 5. Description of the Planning and Public Input Process ....................................... 5-1 6. Goal and Objectives .......................................................................................... 6-1 7. Action Program ................................................................................................. 7-1 8. Plan Adoption .................................................................................................... 8-1 Appendix A: Survey Findings ...................................................................................... A-1 Appendix B: Supporting -
MAPPING and CHARACTERIZING a RELICT LACUSTRINE DELTA in CENTRAL LOWER MICHIGAN by Christopher B. Connallon a THESIS Submitted T
MAPPING AND CHARACTERIZING A RELICT LACUSTRINE DELTA IN CENTRAL LOWER MICHIGAN By Christopher B. Connallon A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Geography – Master of Science 2015 ABSTRACT MAPPING AND CHARACTERIZING A RELICT LACUSTRINE DELTA IN CENTRAL LOWER MICHIGAN By Christopher B. Connallon This research focuses on, mapping and characterizing the Chippewa River delta - a sandy, relict delta of Glacial Lake Saginaw in central Lower Michigan. The delta was first identified in a GIS, using digital soil data, as the sandy soils of the delta stand in contrast to the loamier soils of the lake plain. I determined the textural properties of the delta sediment from 142 parent material samples at ≈1.5 m depth. The data were analyzed in a GIS to identify textural trends across the delta. Data from 3276 water well logs across the delta, and from 185 sites within two-storied soils on the delta margin, were used to estimate the thickness of delta sands and to refine the delta's boundary. The delta heads near Mount Pleasant, expanding east, onto the Lake Saginaw plain. It is ≈18 km wide and ≈38 km long and comprised almost entirely of sandy sediment. As expected, delta sands generally thin away from the head, where sediments are ≈4-7m thick. In the eastern, lower portion of the delta, sediments are considerably thinner (≈<1-2m). The texturally coarsest parts of the delta are generally coincident with former shorezones. The thick, upper delta portion is generally coincident with the relict shorelines of Lakes Saginaw and Arkona (≈17.1k to ≈ 16k years BP), whereas most of the thin, distal, lower delta is generally associated with Lake Warren (≈15k years BP). -
Late Quaternary Stratigraphy and Sedimentary Features Along The
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Late Quaternary stratigraphy and sedimentary features along the Wisconsin shoreline, southwestern Lake Michigan by Juergen Reinhardt U.S. Geological Survey1 Open-File Report 90-215 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. iReston, VA 22092 TABLE OF CONTENTS Page INTRODUCTION 2 Acknowledgements 2 Previous work 2 STRATIGRAPHIC SECTIONS 3 South Racine 4 Sixmile Road 4 Fitzslmmons Road 4 Grant Park 4 Cudahy 5 Bayview Park 5 Vlrmond Park 5 Concordia College 5 Grafton 6 Port Washington 6 DISTRIBUTION OF DEFORMED STRATA 6 Cudahy 6 Vlrmond Park 7 Port Washington 7 SUMMARY 7 REFERENCES 8 FIGURES Figure 1. Map of shoreline................. 10 Figure 2. Aerial view of Sixmile Road...... 11 Figure 3. Aerial view Fitzsimmons Road..... 11 Figure 4. Aerial view Grant Park........... 12 Figure 5. Aerial view Cudahy............... 12 Figure 6. Aerial view Bayview Park......... 13 Figure 7. Aerial view Virmond Park......... 13 Figure 8. Aerial view Concordia College.... 14 Figure 9. Photo of small slump............. 14 Figure 10. Upper part of large slump....... 15 Figure 11. Base of Concordia slump......... 15 Figure 12. Deformed sediments, Cudahy...... 16 Figure 13. Internally deformed sediment.... 16 Figure 14. Contorted fine sand............. 17 Figure 15. Injection structure............. 17 Figure 16. Lower part Virmond Park......... 18 Figure 17. Chaotic bedding, Virmond Park... 18 Figure 18. Deformed strata, Lake Park....... 19 Figure 19. Brittle deformation, Lake Park.. 19 TABLE 1. Location of stratigraphlc sections........ 20 INTRODUCTION This report is a summary of observations made during field work along the southwestern shoreline of Lake Michigan between August 23 and August 30, 1989. -
Oxygen Isotope Geochemistry of Laurentide Ice-Sheet Meltwater Across Termination I
Quaternary Science Reviews 178 (2017) 102e117 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I * Lael Vetter a, , Howard J. Spero a, Stephen M. Eggins b, Carlie Williams c, Benjamin P. Flower c a Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA b Research School of Earth Sciences, The Australian National University, Canberra 0200, ACT, Australia c College of Marine Sciences, University of South Florida, St. Petersburg, FL 33701, USA article info abstract Article history: We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) Received 3 April 2017 meltwater across the last deglaciation, and reconstruct decadal-scale variations in the d18O of LIS Received in revised form meltwater entering the Gulf of Mexico between ~18 and 11 ka. We employ a technique that combines 1 October 2017 laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic Accepted 4 October 2017 18 foraminifer Orbulina universa to quantify the instantaneous d Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/ Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same 18 18 O. universa for d O using the remaining material from the shell. From these proxies, we obtain d Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete 18 18 core intervals yield d Ow vs. -
Fall 2012/Winter 2013
SUPERIOR TO SARNIA : The Line 5 Pipeline Millions of miles of oil and gas transport pipelines crisscross – how are you going to ensure all of us in Northern Michigan that Michigan and the rest of the United States. By their nature, these what happened to the Kalamazoo River won’t happen to Lake Michigan, underground pipelines tend to go unnoticed until a leak or ruptur e Lake Huron, Douglas, Burt, and Mullett Lakes and the rivers Line occurs, or there is controversy over building or expanding a 5 crosses on its way to Sarnia? pipeline. Recently, Enbridge’s Line 5 drew public attention when the company expanded the line’s capacity by 10% earlier this year Enbridge insisted that they have no intention of using Line 5 to to meet rising demand. Line 5 starts in Superior, Wisconsin, crosses transport the heavy oil produced from tar sands, though there Michigan’s Upper Peninsula, goes under the Straits of Mackinac are no long term assurances to that effect. Enbridge has improved and travels between Burt and Mullett Lakes on its way to Sarnia, its detection system as well as its integrity monitoring process Ontario. This line expansion raised concerns about the possible since the spill in Marshall. However, the line which transports almost future transport of tar sands through the line and the increased 541,000 barrels a day of light and medium crude or natural gas risk of a disaster similar to Enbridge’s Line 6B, which caused the could still pose a risk if leaks and ruptures occur. The steps taken 2nd largest inland oil spill in US history.