Trichodinidae in Commercial Fish in South America

Total Page:16

File Type:pdf, Size:1020Kb

Trichodinidae in Commercial Fish in South America Rev Fish Biol Fisheries (2018) 28:33–56 https://doi.org/10.1007/s11160-017-9490-1 REVIEWS Trichodinidae in commercial fish in South America Patricia Oliveira Maciel . Fabiana Garcia . Edsandra Campos Chagas . Rodrigo Yudi Fujimoto . Marcos Tavares-Dias Received: 30 August 2016 / Accepted: 28 June 2017 / Published online: 5 July 2017 Ó Springer International Publishing AG 2017 Abstract Ciliates of the family Trichodinidae are in three genera in Brazil, along with information on protozoan parasites of importance for fish farming in parasite-host-environment relationships, diagnostic South America, given that at high infestation levels, methods and treatments. The occurrence of parasitic they cause significant mortality among farmed fish. ciliates must be correlated with farming conditions Although data on economic losses due to parasitosis such as stress factors, water quality, seasonality, age are not available for South America, mortality and host immunity to elucidate the critical points of outbreaks correlated to trichodinids are very common each production system. Furthermore, for tropical fish, in the tilapia production chain, especially in Brazil, the studies on treatment against trichodinid species are largest aquaculture chain in the country. In Brazil in needed to provide support for approval of antiparasitic the past, trichodinids were considered only as Tri- medications for use in fish farming. However, it is chodina sp. Today, they have been better studied and recommended that the production sector use intensive identified taxonomically in wild and farmed fish. production systems that are more sustainable, with However, in other countries in South America, biosafety protocols, to increase production and trichodinids continue to be described only as Trichod- productivity. ina sp. This review presents the history of occurrences of trichodinids in fish of interest in South America, Keywords Aquaculture Á Fish Disease Á Parasites Á highlighting 15 new species that have been described Protozoan Á Trichodina P. O. Maciel (&) R. Y. Fujimoto Empresa Brasileira de Pesquisa Agropecua´ria, Embrapa Embrapa Tabuleiros Costeiros, Avenida Beira Mar, 3250, Pesca e Aquicultura, Postal Box 90, Palmas, Bairro Jardins, Aracaju, SE 49025-040, Brazil TO 77008-900, Brazil e-mail: [email protected] e-mail: [email protected] M. Tavares-Dias F. Garcia Embrapa Amapa´, Rodovia Juscelino Kubitschek, km 5, Ageˆncia Paulista de Tecnologia dos Agronego´cios/SAA, 2600, Macapa´, AP 68903-419, Brazil Postal Box 61, Votuporanga, SP 15500-970, Brazil e-mail: [email protected] e-mail: [email protected] E. C. Chagas Embrapa Amazoˆnia Ocidental, Postal Box 319, Manaus, AM 69011-970, Brazil e-mail: [email protected] 123 34 Rev Fish Biol Fisheries (2018) 28:33–56 Introduction urinary tract and gonads (Noga 2010; Vallada˜o et al. 2014). In these hosts, they feed on cells, bacteria and The South American continent is known for its high detritus from the body surface and are carried by the production and exports in fisheries and aquaculture. cilia to the cytostome, which is in the adoral region of Aquaculture plays a particularly important role in food the parasite (Basson and Van As 2006; Bruno et al. production and in the local economy, in addition to 2006). having a large international presence with an impact The life cycle of these parasites is monoxenic, and on the global economy. The production of native fish reproduction occurs by means of binary division and, is currently overtaking the production of non-native under certain conditions, conjugation (Van As and species in some countries, which is considered a Basson 1987; Martins et al. 2015). In Trichodina milestone for South American aquaculture (Vallada˜o pseudoheterodentata from I. punctatus, during asex- et al. 2016b). South America has recorded increases in ual reproduction, the youngest individuals that form fish production. In terms of production of freshwater immediately are smaller than the older individuals and water fish, Brazil is the largest power in the Americas only possess 50% as many denticles in their adhesive (611.343 tons), and its production in this area is discs. At subsequent developmental stages, the old approximately 10 times greater than that of Chile ring with 50% of the usual number of denticles (59.527 tons). The main pathogens of South American underwent gradual resorption, while a new ring was fish are similar to those observed throughout the formed with the usual number of denticles around the world, such as the bacteria Aeromonas hydrophila, old one around the perimeter of the disc (Tang et al. Ichthyophthirius multifiliis, monogeneans and tricho- 2017). Wild larvae of amphibians (tadpoles) may be dinids (Vallada˜o et al. 2016b). reservoirs of trichodinids for some fish (Lom and Organisms of the family Trichodinidae are com- Dykova 1992). Trichodinids are present in natural monly found in aquatic environments as symbionts. environments but do not occur at high levels of However, they can behave as commensals or parasites infection in healthy animals (Basson and Van As of a variety of aquatic vertebrates and invertebrates, 2006). such as ciliates, coelenterates planctophagous crus- The mechanism of pathogenic action of tricho- taceans, mollusks, echinoderms, amphibians and fish dinids is related to the manner in which they infect (Van As and Basson 1987; Basson and Van As 1989; their hosts, since when the parasite is fixed firmly onto Sabry and Magalha˜es 2005; Pinto et al. 2006; Dias its host, the border of the aboral membrane creates a et al. 2009; Silva-Briano et al. 2011; Martins et al. suction movement on the surface of the epithelial 2016). Trichodinid species are therefore of great cells, which likely causes irritation to the tissues of the importance for fish farming, given that they parasitize fish (Basson and Van As 2006). Thus, a high farmed fish. When parasitism levels are high, they can abundance of these parasites and their constant cause epizooty and considerable economic losses in circular movements may seriously damage the epithe- intensive production systems. lium of their hosts, thereby triggering physiological Most trichodinids have a conical, rounded or alterations (Van As and Basson 1987). hemispherical body shape (e.g., Tripartiella) that is In the past, trichodinids in Brazil were generally completely covered with a thin membrane (pellicle) considered only as Trichodina Ehrenberg, 1830 and have a typical structure in the aboral region known (Martins and Ghiraldelli 2008; Marchiori and Martins as the adhesive disk. The presence of cilia, in both the 2012), since this is the largest genus of the Tricho- aboral and adoral regions, provides them with motility dinidae, with more than 150 species that parasitize fish in free-living environments and on their hosts and aids (Asmat et al. 2003). In addition to this genus, the in feeding (Basson and Van As 2006). They range in family Trichodinidae includes seven of the ten asso- size from 20 to 100 lm and can be classified as small, ciated genera (Basson and Van As 2006). However, medium or large (Van As and Basson 1987; Basson Trichodina Ehrenberg, 1830, Paratrichodina Lom, and Van As 1989; Vallada˜o et al. 2013). 1963, Trichodinella (Raabe 1950) Sˇra´mekhusˇek, In fish, trichodinids mainly parasitize the skin, fins 1953, and Tripartiella Lom, 1959, are the genera that and gills (Van As and Basson 1987), and less have been described as parasitizing aquatic animals in frequently the eyes, mouth, gastrointestinal tract, Brazil (Martins et al. 2015). Therefore, it is possible 123 Rev Fish Biol Fisheries (2018) 28:33–56 35 that some trichodinids that were previously classified as Trichodina sp. are members of the genera Tri- chodinella and, especially, Tripartiella (Marchiori and Martins 2012). The genus Paratrichodina comprises more than eleven species that are known in Europe, Asia, Africa and the United States, of which eight parasitize the gills, and three the urinary tract of fish (Basson and Van As 2006). The few known species of Tri- chodinella parasitize the gills and are distributed in Europe, Asia, Africa, Middle East, Mexico, United States and Philippines. Tripartiella species have well- known distribution in Europe, Asia, United States and the Far East (Basson and Van As 2006; Kent and Fournie 2007) but are not well known in South America. In Brazil, only two species of Tripartiella are known (Martins et al. 2015). In recent years, there has been considerable evolu- tion in taxonomic studies of the diversity of tricho- dinids among different species of fish in the wild and in farms, especially in Brazil (Fig. 1). The objective of this review was to present a history of the descriptions of occurrence of trichodinids in farmed fish in South America, highlighting new described species and including information about parasite-host relation- ships, the pathology of infection and methods for Fig. 1 Distribution of the records of trichodinids in South diagnosis and treatment. America (gray countries), with emphasis on Brazil and on new species that have been described over the last ten years. Open circles denote descriptions of Trichodina sp. and solid circles denote the new species that have been described Trichodinids in farmed fish in Brazil parasites in fish farms conducted between 1993 and In the 1990s, the first studies of the occurrence of 1998 recorded high mortality among both native and trichodinids in teleost fish reared in Brazil appeared, non-native fish, such as pacu, tambaqui,
Recommended publications
  • BIOLOGICAL FIELD STATION Cooperstown, New York
    BIOLOGICAL FIELD STATION Cooperstown, New York 49th ANNUAL REPORT 2016 STATE UNIVERSITY OF NEW YORK COLLEGE AT ONEONTA OCCASIONAL PAPERS PUBLISHED BY THE BIOLOGICAL FIELD STATION No. 1. The diet and feeding habits of the terrestrial stage of the common newt, Notophthalmus viridescens (Raf.). M.C. MacNamara, April 1976 No. 2. The relationship of age, growth and food habits to the relative success of the whitefish (Coregonus clupeaformis) and the cisco (C. artedi) in Otsego Lake, New York. A.J. Newell, April 1976. No. 3. A basic limnology of Otsego Lake (Summary of research 1968-75). W. N. Harman and L. P. Sohacki, June 1976. No. 4. An ecology of the Unionidae of Otsego Lake with special references to the immature stages. G. P. Weir, November 1977. No. 5. A history and description of the Biological Field Station (1966-1977). W. N. Harman, November 1977. No. 6. The distribution and ecology of the aquatic molluscan fauna of the Black River drainage basin in northern New York. D. E Buckley, April 1977. No. 7. The fishes of Otsego Lake. R. C. MacWatters, May 1980. No. 8. The ecology of the aquatic macrophytes of Rat Cove, Otsego Lake, N.Y. F. A Vertucci, W. N. Harman and J. H. Peverly, December 1981. No. 9. Pictorial keys to the aquatic mollusks of the upper Susquehanna. W. N. Harman, April 1982. No. 10. The dragonflies and damselflies (Odonata: Anisoptera and Zygoptera) of Otsego County, New York with illustrated keys to the genera and species. L.S. House III, September 1982. No. 11. Some aspects of predator recognition and anti-predator behavior in the Black-capped chickadee (Parus atricapillus).
    [Show full text]
  • First Report of Some Trichodinid Cilioph (Ciliophora: Trichodinidae
    SpeciesREPORT, Vol. 17A,RTICLE No. 56, July 1, 2016 REPORT ISSN 2319–5746 EISSN 2319–5754 SpeciesAn International Journal First report of some Trichodinid Ciliophorans (Ciliophora: Peritrichida) (Ciliophora: Trichodinidae) parasitizing cultured Oranda Gold Fish (Carassius auratus auratus L.) in India Saha M1, Mondal S2, Mandal SK3, Mitra P4, Das K5 and Bandyopadhyay PK6☼ ( 1-6) Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India ☼Corresponding author : Bandyopadhyay PK, Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India. Publication History Received: 7 August 2016 Accepted: 28 August 2016 Online First: 1 September 2016 Published: July-September 2016 Citation Saha M, Mondal S, Mandal SK, Mitra P, Das K, Bandyopadhyay PK. First report of some Trichodinid Ciliophorans (Ciliophora: Peritrichida) (Ciliophora: Trichodinidae) parasitizing cultured Oranda Gold Fish (Carassius auratus auratus L.) in India. Species, 2016, 17(56), 131-140 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital color version in recycled paper. ABSTRACT Ornamental fish culture considered as one of the most important means of home entertainment, because of its diversity and beauty of picturesque colors. Trichodiniasis of fishes causing harm and economic losses in this fish industry. There are many records of trichodinids ectoparasites infesting fish have been found throughout the World, but no such study has been conducted on this 131 131 131 parasitic group infesting ornamental fish Carassius auratus auratus L. in India. During the survey, four already known trichodinid Saha et al. Page Page Page First report of some Trichodinid Ciliophorans (Ciliophora: Peritrichida) (Ciliophora: Trichodinidae) parasitizing cultured Oranda Gold Fish (Carassius auratus auratus L.) in India, Species, 2016, 17(56), 131-140, www.discoveryjournals.com © 2016 Discovery Publication.
    [Show full text]
  • Protozoologica
    Acta Protozool. (2014) 53: 207–213 http://www.eko.uj.edu.pl/ap ACTA doi:10.4467/16890027AP.14.017.1598 PROTOZOOLOGICA Broad Taxon Sampling of Ciliates Using Mitochondrial Small Subunit Ribosomal DNA Micah DUNTHORN1, Meaghan HALL2, Wilhelm FOISSNER3, Thorsten STOECK1 and Laura A. KATZ2,4 1Department of Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; 2Department of Biological Sciences, Smith College, Northampton, MA 01063, USA; 3FB Organismische Biologie, Universität Salzburg, A-5020 Salzburg, Austria; 4Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Abstract. Mitochondrial SSU-rDNA has been used recently to infer phylogenetic relationships among a few ciliates. Here, this locus is compared with nuclear SSU-rDNA for uncovering the deepest nodes in the ciliate tree of life using broad taxon sampling. Nuclear and mitochondrial SSU-rDNA reveal the same relationships for nodes well-supported in previously-published nuclear SSU-rDNA studies, al- though support for many nodes in the mitochondrial SSU-rDNA tree are low. Mitochondrial SSU-rDNA infers a monophyletic Colpodea with high node support only from Bayesian inference, and in the concatenated tree (nuclear plus mitochondrial SSU-rDNA) monophyly of the Colpodea is supported with moderate to high node support from maximum likelihood and Bayesian inference. In the monophyletic Phyllopharyngea, the Suctoria is inferred to be sister to the Cyrtophora in the mitochondrial, nuclear, and concatenated SSU-rDNA trees with moderate to high node support from maximum likelihood and Bayesian inference. Together these data point to the power of adding mitochondrial SSU-rDNA as a standard locus for ciliate molecular phylogenetic inferences.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq
    Vol. 2 (2): 180-218, 2018 Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq Furhan T. Mhaisen1*, Kefah N. Abdul-Ameer2 & Zeyad K. Hamdan3 1Tegnervägen 6B, 641 36 Katrineholm, Sweden 2Department of Biology, College of Education for Pure Science, University of Baghdad, Iraq 3Department of Biology, College of Education for Pure Science, University of Tikrit, Iraq *Corresponding author: [email protected] Abstract: Literature reviews of reports concerning the parasitic fauna of fishes of Salah Al-Din province, Iraq till the end of 2017 showed that a total of 115 parasite species are so far known from 25 valid fish species investigated for parasitic infections. The parasitic fauna included two myzozoans, one choanozoan, seven ciliophorans, 24 myxozoans, eight trematodes, 34 monogeneans, 12 cestodes, 11 nematodes, five acanthocephalans, two annelids and nine crustaceans. The infection with some trematodes and nematodes occurred with larval stages, while the remaining infections were either with trophozoites or adult parasites. Among the inspected fishes, Cyprinion macrostomum was infected with the highest number of parasite species (29 parasite species), followed by Carasobarbus luteus (26 species) and Arabibarbus grypus (22 species) while six fish species (Alburnus caeruleus, A. sellal, Barbus lacerta, Cyprinion kais, Hemigrammocapoeta elegans and Mastacembelus mastacembelus) were infected with only one parasite species each. The myxozoan Myxobolus oviformis was the commonest parasite species as it was reported from 10 fish species, followed by both the myxozoan M. pfeifferi and the trematode Ascocotyle coleostoma which were reported from eight fish host species each and then by both the cestode Schyzocotyle acheilognathi and the nematode Contracaecum sp.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]
  • Full-Text (PDF)
    African Journal of Microbiology Research Vol. 6(9), pp. 2145-2149, 9 March, 2012 Available online at http://www.academicjournals.org/AJMR DOI: 10.5897/AJMR11.1582 ISSN 1996-0808 ©2012 Academic Journals Full Length Research Paper Two trichodinids of Paratrichodina (Ciliophora, Peritrichida, Trichodinidae) infecting gills of Ietalurus punetaus from Chongqing, China Fahui Tang, Yuanjun Zhao* and Chunning Liu Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, P. R. China. Accepted 13 January, 2012 During a parasitological survey in China, two species of trichodinid ectoparasite (Ciliophora, Peritrichida, Trichodinidae) belonging to genus Paratrichodina , were isolated from letalurus punetaus (Siluridae ). One species was identified as a new species and named as Paratrichodina rotundiformis sp. nov. and this new species has round and undeveloped blade with round tangent point, undeveloped triangular central part, slim ray with inclining backward, and whole fitting loose denticle. The other species, Paratrichodina corlissi is described for the first time in Asia in the present work. The morphometric data were obtained from specimens prepared using dry silver nitrate and methyl green- pyronin stain techniques. Results of comparison between the new species and closely related species are provided. Key words: Ciliophora, oligohymenophorea, Peritrichida, Paratrichodina , new species, Ietalurus punetaus. INTRODUCTION Trichodinid ciliates are well-known ectoparasites of MATERIALS AND METHODS fishes, amphibians
    [Show full text]
  • Redalyc.Paratrichodina Africana (Ciliophora: Trichodinidae) of Wild and Cultured Nile Tilapia in the Northern Brazil
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Tavares-Dias, Marcos; da Costa Marchiori, Natália; Laterça Martins, Maurício Paratrichodina africana (Ciliophora: Trichodinidae) of wild and cultured Nile tilapia in the Northern Brazil Revista Brasileira de Parasitologia Veterinária, vol. 22, núm. 2, abril-junio, 2013, pp. 248- 252 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Available in: http://www.redalyc.org/articulo.oa?id=397841488011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Full Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 22, n. 2, p. 248-252, abr.-jun. 2013 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Paratrichodina africana (Ciliophora: Trichodinidae) of wild and cultured Nile tilapia in the Northern Brazil Paratrichodina africana (Ciliophora: Trichodinidae) de tilápia do Nilo selvagem e cultivada no Norte do Brasil Marcos Tavares-Dias1; Natália da Costa Marchiori2; Maurício Laterça Martins2* 1Laboratório de Aquicultura e Pesca, Embrapa Amapá, Macapá, AP, Brasil 2Laboratório de Sanidade em Organismos Aquáticos – AQUOS, Departamento de Aquicultura, Universidade Federal de Santa Catarina – UFSC, Florianópolis, SC, Brasil Received September 8, 2012 Accepted February 1, 2013 Abstract The present work morphologically characterizes Paratrichodina africana from the gills of wild and farmed Nile tilapia from Northern Brazil (eastern Amazonia). Ninety fish were captured for parasitological analysis in Macapá, State of Amapá, from a wetland area bathed by the Amazon River commonly called ‘Ressaca do Zerão’ (n = 52), as well as from a local fish farm (n = 38).
    [Show full text]
  • D070p001.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine.
    [Show full text]
  • Trichodina Diaptomi (Ciliophora: Peritrichia) from Two Calanoid Copepods from Botswana and South Africa, with Notes on Its Life History
    Acta Protozool. (2016) 55: 161–171 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.16.016.5748 PROTOZOOLOGICA Trichodina diaptomi (Ciliophora: Peritrichia) from Two Calanoid Copepods from Botswana and South Africa, with Notes on its Life History Deidre WEST, Linda BASSON, Jo VAN AS Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa Abstract. Members of the genus Trichodina are mostly found on fish, but have also been recorded from a variety of other aquatic organisms, including calanoid copepods. So far, it appears that all the trichodinid populations collected from calanoids in various parts of the world are the same species, i.e. Trichodina diaptomi Šrámek-Hušek, 1953. This paper reports on a new record of T. diaptomi from Metadiaptomus meridianus in a large reservoir in South Africa, as well as on a new host species, Metadiaptomus transvaalensis, and the first record ofT. di- aptomi from pools in an ephemeral river in north-eastern Botswana, therefore adding a new country to the distribution of this species. We used the history of the discovery of T. diaptomi in different parts of the world and came to the conclusion that it is a cosmopolitan species, exclusively associated with copepods of the order Calanoida. Based on existing information, T. diaptomi does not appear to have a reser- voir host. Against this background, we provide a discussion on the possibility that, although no dormant stage has been recorded for any trichodinid, it may be possible that T. diaptomi possesses some form of diapause and that this might be related to that of calanoid copepods.
    [Show full text]
  • Fusiforma Themisticola N. Gen., N. Sp., a New Genus and Species Of
    Protist, Vol. 164, 793–810, November 2013 http://www.elsevier.de/protis Published online date 23 October 2013 ORIGINAL PAPER Fusiforma themisticola n. gen., n. sp., a New Genus and Species of Apostome Ciliate Infecting the Hyperiid Amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), and Establishment of the Pseudocolliniidae (Ciliophora, Apostomatia) a,1 b,c d Chitchai Chantangsi , Denis H. Lynn , Sonja Rueckert , e a f Anna J. Prokopowicz , Somsak Panha , and Brian S. Leander a Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand b Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada c Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada d School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, Scotland, United Kingdom e Québec-Océan, Département de Biologie, Université Laval, Quebec, QC G1V 0A6, Canada f Canadian Institute for Advanced Research, Departments of Zoology and Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Submitted May 30, 2013; Accepted September 16, 2013 Monitoring Editor: Genoveva F. Esteban A novel parasitic ciliate Fusiforma themisticola n. gen., n. sp. was discovered infecting 4.4% of the hyperiid amphipod Themisto libellula. Ciliates were isolated from a formaldehyde-fixed whole amphi- pod and the DNA was extracted for amplification of the small subunit (SSU) rRNA gene. Sequence and phylogenetic analyses showed unambiguously that this ciliate is an apostome and about 2% diver- gent from the krill-infesting apostome species assigned to the genus Pseudocollinia. Protargol silver impregnation showed a highly unusual infraciliature for an apostome.
    [Show full text]
  • And Endoparasite Communities of Wild Mediterranean Teleosts by a Metabarcoding Approach
    RESEARCH ARTICLE Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach 1 1 1 Mathilde ScheiflerID *, Magdalena Ruiz-RodrõÂguez , Sophie Sanchez-Brosseau , 1 2 3 4 Elodie Magnanou , Marcelino T. SuzukiID , Nyree West , SeÂbastien Duperron , Yves Desdevises1 1 Sorbonne UniversiteÂ, CNRS, Biologie InteÂgrative des Organismes Marins, BIOM, Observatoire OceÂanologique, Banyuls/Mer, France, 2 Sorbonne UniversiteÂ, CNRS, Laboratoire de Biodiversite et Biotechnologies Microbiennes, LBBM Observatoire OceÂanologique, Banyuls/Mer, France, 3 Sorbonne a1111111111 UniversiteÂ, CNRS, Observatoire OceÂanologique de Banyuls, Banyuls/Mer, France, 4 CNRS, MuseÂum a1111111111 National d'Histoire Naturelle, MoleÂcules de Communication et Adaptation des Micro-organismes, UMR7245 a1111111111 MCAM, MuseÂum National d'Histoire Naturelle, Paris, France a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellu- Citation: Scheifler M, Ruiz-RodrõÂguez M, Sanchez- lar and multicellular symbiont communities within hosts. In this study, we analyzed the non- Brosseau S, Magnanou E, Suzuki MT, West N, et specific reads obtained during a metabarcoding survey of the bacterial communities associ- al. (2019) Characterization of ecto- and ated to three different tissues collected from 13 wild Mediterranean teleost fish species. In endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS ONE total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to 14(9): e0221475. https://doi.org/10.1371/journal. skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nema- pone.0221475 todes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates Editor: Anne Mireille Regine Duplouy, Lund (Syndiniales).
    [Show full text]