Driver-Map™ Immunenet™ Panel 1,741 Genes

Total Page:16

File Type:pdf, Size:1020Kb

Driver-Map™ Immunenet™ Panel 1,741 Genes Cellecta, Inc. 320 Logue Ave Mountain View, CA 94043 www.cellecta.com 650-938-3910 Driver-Map™ ImmuneNet™ Panel 1,741 Genes A2M APOE BCL3 CASP9 CD38 CHD4 CSNK2A2 DHX35 ETS1 FRG1 GZMM IFIT1 AADAT APOL2 BCL6 CAST CD3D CHD6 CSRP1 DHX58 ETV3 FRK HAL IFIT2 ABCB1 APOL3 BCL7A CAT CD3E CHD8 CST7 DHX8 EVI2B FRMD4A HAMP IFITM1 ABCB4 APOL6 BCLAF1 CBFB CD3EAP CHD9 CTAG1B DHX9 EWSR1 FRMD8 HAVCR2 IFITM2 ABCB9 APP BCOR CBL CD3G CHEK2 CTAGE1 DICER1 EZH2 FSHR HCFC1 IFNA1 ABCF1 AQP7 BEND5 CBLB CD4 CHI3L1 CTCF DIS3 F12 FUBP1 HCK IFNA10 ABL1 AQP9 BFSP1 CCAR1 CD40 CHI3L2 CTCFL DLG1 F13A1 FUT5 HCLS1 IFNA16 ABL2 AQR BID CCDC69 CD40LG CHIT1 CTLA4 DMAP1 F2RL1 FUT7 HDAC1 IFNA2 ACACA AR BIN2 CCL1 CD44 CHST15 CTNNB1 DMBT1 F8 FXR1 HDAC3 IFNA21 ACAD8 ARAP3 BIRC3 CCL11 CD46 CHST7 CTNND1 DNM1 FADD FYB HDAC9 IFNA5 ACAP1 AREG BIRC5 CCL13 CD47 CHUK CTSA DNMT3A FAF1 FYN HDC IFNA8 ACD ARF6 BLK CCL14 CD48 CIC CTSB DOCK2 FAIM3 FZD2 HECA IFNAR1 ACHE ARFGAP1 BLM CCL15 CD5 CIITA CTSC DOCK9 FAM124B FZD3 HESX1 IFNAR2 ACKR2 ARFGAP3 BLNK CCL16 CD52 CKLF CTSG DPEP2 FAM174B FZD9 HFE IFNB1 ACKR4 ARFGEF1 BMI1 CCL17 CD53 CLASP1 CTSH DPP4 FAM198B FZR1 HGF IFNGR1 ACO1 ARFGEF2 BMP2K CCL19 CD55 CLASP2 CTSL DSC3 FAM212B G3BP1 HHEX IFNGR2 ACP1 ARG1 BMPR1A CCL2 CD58 CLC CTSS DUSP2 FAM26F G3BP2 HIC1 IFNK ACSL3 ARG2 BMPR2 CCL20 CD59 CLCC1 CTSW DUSP4 FAM46C G6PD HIF1A IFNL2 ACSL6 ARHGAP15 BNC2 CCL21 CD6 CLCF1 CTSZ DUSP6 FAM65B GABBR1 HIST1H2AE IFNW1 ACTG2 ARHGAP22 BNIP3 CCL22 CD63 CLEC10A CTTN DZIP1 FANCI GAGE1 HIST1H2BG IGF1R ACVR1B ARHGAP26 BPI CCL23 CD68 CLEC18C CUL1 EBI3 FAS GAL3ST4 HK3 IGF2BP1 ACVR2A ARHGAP29 BPTF CCL26 CD69 CLEC1B CUL2 ECSIT FASLG GALR1 HLA-A IGF2R ADA ARHGAP35 BRAF CCL27 CD7 CLEC2D CUL3 EDAR FASN GARS HLA-B IGJ ADAM10 ARHGDIB BRCA1 CCL28 CD70 CLEC4A CUX1 EEF1B2 FAT1 GATA1 HLA-C IGLL1 ADAM17 ARHGEF2 BRCA2 CCL3 CD72 CLEC4C CX3CL1 EFNA2 FAT2 GATA3 HLA-DMA IGSF6 ADAM28 ARHGEF6 BRSK2 CCL4 CD74 CLEC5A CX3CR1 EFNA4 FBXL8 GBP1 HLA-DMB IKBKB ADAMDEC1 ARID1A BRWD1 CCL5 CD79A CLEC7A CXCL1 EFNA5 FBXO11 GBP2 HLA-DOB IKBKE ADCY1 ARID1B BST1 CCM2 CD79B CLIC2 CXCL12 EFTUD2 FBXW7 GBP4 HLA-DPA1 IKBKG ADCY7 ARID2 BST2 CCND1 CD80 CLOCK CXCL13 EGFR FCER1G GBP5 HLA-DPB1 IL10 ADORA2A ARID4A BTK CCND2 CD81 CLSPN CXCL14 EGR2 FCER2 GCH1 HLA-DQA1 IL10RA ADRB2 ARID4B BTLA CCND3 CD83 CLSTN1 CXCL16 EHHADH FCGR1A GDNF HLA-DQB1 IL11 AFF4 ARID5B BTN3A1 CCR1 CD84 CLTC CXCL17 EIF2AK3 FCGR2A GFI1 HLA-DRA IL11RA AHCTF1 ARNTL BTNL8 CCR10 CD86 CLU CXCL2 EIF3B FCGR2B GGT5 HLA-DRB1 IL12A AHNAK ARRB1 C11orf80 CCR2 CD8A CMA1 CXCL5 EIF4A2 FCGR3A GIMAP4 HLA-DRB5 IL12B AHR ASGR1 C19orf10 CCR3 CD8B CMKLR1 CXCL6 EIF4G1 FCGR3B GIMAP6 HLA-E IL12RB1 AICDA ASGR2 C1QA CCR4 CD9 CNOT1 CXCL9 EIF4G3 FCN1 GLI2 HLA-F IL12RB2 AIF1 ASH1L C1QB CCR5 CD96 CNOT3 CXCR1 ELANE FCRL2 GLYAT HLA-G IL13 AIM2 ASPM C1QBP CCR6 CD97 CNOT4 CXCR2 ELF1 FCRL5 GMFG HLF IL13RA1 AIRE ASXL1 C1S CCR7 CD99 CNOT6 CXCR3 ELF3 FCRLA GMIP HMBS IL13RA2 AKAP9 ATF1 C1orf162 CCR9 CDA CNTNAP1 CXCR4 ELF4 FCRLB GNAI1 HMGB1 IL15RA AKR1B1 ATF2 C2 CCRL2 CDC25A COL1A1 CXCR5 ELK1 FDXR GNAI2 HMOX1 IL16 AKR1C1 ATG10 C3 CCT2 CDC27 COL3A1 CXCR6 ELOF1 FES GNAQ HNF1A IL17A AKR1C2 ATG12 C3AR1 CCT5 CDC73 COL8A2 CXXC1 ELP2 FEZ1 GNAS HNMT IL17B AKT1 ATG16L1 C4B CD14 CDH1 COLEC12 CXorf57 EMP3 FFAR2 GNB5 HNRNPC IL17C AKT2 ATG5 C4BPA CD163 CDH12 COLQ CYBB EMR1 FGF13 GNG2 HOOK3 IL17D AKT3 ATG7 C5 CD164 CDH5 COPS2 CYFIP2 EMR2 FGF2 GNG7 HOXA1 IL17F ALAS1 ATHL1 C5AR1 CD180 CDHR1 COPS5 CYLD EMR3 FGFR1 GNLY HPRT1 IL17RA ALCAM ATIC C5AR2 CD19 CDK1 CORO1A CYP27A1 ENC1 FGFR2 GNPDA1 HPSE IL17RB ALDH1A3 ATM C6 CD1A CDK12 CPA3 CYP27B1 ENG FGFR3 GOLGA5 HRAS IL18 ALK ATP6AP2 C7 CD1B CDK2 CPA4 CYTH4 ENTPD1 FGL2 GOLGA7 HRH1 IL18R1 ALOX15 ATP8B4 C8A CD1C CDK4 CR1 CYTIP EOMES FGR GOLGA8B HSD11B1 IL1A ALOX5 ATR C8B CD1D CDK6 CR2 DACH1 EP300 FIP1L1 GPC4 HSP90AA1 IL1B ALOX5AP ATRX C8G CD1E CDK7 CRAT DAND5 EPAS1 FKBP5 GPI HSP90AB1 IL1R1 ALPK3 AURKA C9 CD2 CDKN1A CREB1 DAPK2 EPB41 FLI1 GPR1 HSPA6 IL1R2 AMBP AXIN1 CA8 CD200 CDKN1B CREB5 DCSTAMP EPB41L3 FLII GPR171 HSPA8 IL1RAP AMER1 AXIN2 CAD CD207 CDKN2A CREBBP DDX3X EPC1 FLT1 GPR18 HTR2B IL1RAPL2 AMH AXL CALM1 CD209 CDKN2B CRISP3 DDX41 EPCAM FLT3 GPR183 ICA1 IL1RL1 AMICA1 AZU1 CALM2 CD22 CDKN2C CRKL DDX5 EPHA1 FLT3LG GPR19 ICAM1 IL1RL2 AMPD1 B2M CALR CD226 CEACAM1 CRNKL1 DDX58 EPHA2 FLVCR2 GPR25 ICAM2 IL1RN ANGPT4 BACH2 CAMK2A CD244 CEACAM21 CRTAM DEAF1 EPHA4 FMR1 GPR65 ICAM3 IL21R ANK3 BANK1 CAMP CD247 CEACAM3 CRTC3 DEFA4 EPHB2 FN1 GPR97 ICAM4 IL22 ANKRD55 BAP1 CANX CD27 CEACAM6 CRYBB1 DENND2D EPHB4 FOS GPS1 ICOSLG IL22RA1 ANTXR1 BARD1 CAPN7 CD274 CEACAM8 CSDE1 DENND5B EPN2 FOSB GPS2 IDH1 IL23A ANXA1 BARX2 CARD11 CD276 CEBPB CSF1 DEPDC1B EPOR FOXA1 GPSM2 IDH2 IL23R AOAH BATF CARD9 CD28 CFB CSF2 DEPDC5 EPS8L1 FOXA2 GSTT1 IDO1 IL25 AP1M1 BAX CARM1 CD300A CFD CSF2RB DFFB EPSTI1 FOXJ1 GTF3C1 IFI16 IL26 AP2B1 BAZ2B CASP1 CD302 CFI CSF3 DGKA ERBB2 FOXP1 GUSB IFI27 IL27 APAF1 BCL11A CASP10 CD33 CFP CSF3R DHPS ERBB2IP FOXP3 GZMA IFI30 IL2RA APC BCL11B CASP3 CD34 CHAMP1 CSK DHRS11 ERBB3 FPR1 GZMB IFI35 IL2RB APOBEC3A BCL2 CASP5 CD36 CHD1L CSNK1G3 DHX15 ERBB4 FPR2 GZMH IFI44L IL2RG APOBEC3G BCL2L1 CASP8 CD37 CHD3 CSNK2A1 DHX34 ERC2 FPR3 GZMK IFIH1 IL3 www.cellecta.com 1 of 2 2/11/2016 Cellecta, Inc. 320 Logue Ave Mountain View, CA 94043 www.cellecta.com 650-938-3910 IL32 KIAA1549 LY86 MICA NFATC2 PDGFA PRDM1 RBM10 SEMA3C SPINK5 TGFB2 TRIB2 IL34 KIR2DL1 LY9 MICAL1 NFATC3 PDGFB PRF1 RBM5 SEMG1 SPN TGFBR2 TRIM24 IL3RA KIR2DL3 LYN MICAL3 NFATC4 PDGFC PRG2 RCAN1 SEPSECS SPNS1 TGM2 TRIO IL4 KIR2DL4 LYZ MICB NFE2 PDGFRA PRKAR1A RCAN3 SEPT5 SPO11 TGM5 TRIP10 IL4R KIR3DL1 LZTS1 MIF NFE2L2 PDGFRB PRKCA REL SEPT8 SPOCK2 THBD TRPM4 IL5 KIR3DL2 MACF1 MKL1 NFKB1 PDIA3 PRKCD RELA SERGEF SPOP THBS1 TRPM6 IL5RA KIR3DL3 MAF MLF2 NFKB2 PDK1 PRKCE RELB SERPINA10 SPP1 THRAP3 TSC1 IL6 KIRREL MAFB MLH1 NFKBIA PDPK1 PRKCG REN SERPINB2 SPRR3 THY1 TTC38 IL6R KIT MAGEA1 MLH3 NFKBIB PDZD2 PRKCQ RENBP SERPINF1 SPTAN1 TICAM1 TUBB2A IL6ST KLF4 MAGEA11 MLLT4 NFYA PECAM1 PRKCZ REPS1 SERPING1 SRGAP1 TICAM2 TXNIP IL7R KLF5 MAGEA12 MMAB NGFR PER1 PRKD2 REPS2 SETBP1 SRGAP2 TIGIT TYK2 ILF3 KLF6 MAGEA3 MME NIPSNAP3B PGAP1 PROM1 RFC4 SETD2 SRGAP3 TINAGL1 TYR ING1 KLK3 MAGEA4 MMP12 NKG7 PGAP3 PRPF8 RGS1 SETDB1 SRGN TIRAP TYROBP INPP4A KLRB1 MAGEB2 MMP2 NKX2-3 PGK1 PRR5L RGS3 SF3A3 SRPX2 TJP1 U2AF1 INPP5D KLRC1 MAGEC1 MMP24 NKX3-1 PGLYRP1 PRRX1 RHOA SF3B1 SRSF2 TJP2 UBASH3A INPPL1 KLRC2 MAGEC2 MMP25 NLRC5 PGR PSEN1 RHOG SF3B2 ST3GAL6 TLR1 UBASH3B INS KLRC3 MAGI1 MMP28 NLRP3 PHF6 PSEN2 RHOH SFPQ ST6GAL1 TLR10 UBD INSR KLRC4 MAGI2 MMP9 NMBR PIK3C2B PSG1 RHOT1 SGPP1 ST6GALNAC4 TLR2 UGT1A8 IQGAP1 KLRG1 MAK MNDA NME8 PIK3CA PSG2 RIN2 SH2B2 ST8SIA1 TLR3 ULBP2 IRAK1 KLRK1 MAN1A1 MNX1 NOD2 PIK3CB PSIP1 RIPK2 SH2B3 STAG1 TLR4 UPF3B IRAK2 KMT2A MANEA MPL NOS1 PIK3CD PSMA6 RNASE1 SH2D1A STAG2 TLR5 USP6 IRAK4 KMT2B MAP1B MPPED1 NOS2 PIK3CG PSMA7 RNASE2 SH2D1B STAP1 TLR6 USP9Y IREB2 KMT2C MAP2K1 MR1 NOTCH1 PIK3IP1 PSMB10 RNASE6 SHMT1 STARD13 TLR7 UTY IRF1 KMT2D MAP2K2 MRC1 NOTCH2 PIK3R1 PSMB7 RNF144B SHROOM3 STAT1 TLR8 UXT IRF2 KRAS MAP2K4 MROH7 NOTCH3 PIK3R2 PSMB8 RNF2 SIGIRR STAT2 TLR9 VAV1 IRF3 KYNU MAP3K1 MS4A1 NPL PIK3R3 PSMB9 RNMT SIK1 STAT3 TMEFF2 VCAM1 IRF4 LAG3 MAP3K11 MS4A2 NPM1 PIKFYVE PSMD11 ROBO2 SIN3A STAT4 TMEM156 VEGFA IRF5 LAIR1 MAP3K13 MS4A3 NR2F1 PIM2 PSMD7 ROPN1 SIRPG STAT5A TMEM255A VHL IRF6 LAIR2 MAP3K4 MS4A6A NR2F2 PIN1 PSME3 RORA SIT1 STAT5B TMEM56 VIM IRF7 LAMA2 MAP3K5 MSC NR4A2 PIP5K1A PSTPIP1 RORC SKAP1 STAT6 TNF VIPR1 IRF8 LAMP1 MAP3K7 MSH2 NR4A3 PLA1A PTCH1 ROS1 SLA STEAP4 TNFAIP2 VPREB3 IRF9 LAMP2 MAP4K1 MSH6 NRAS PLA2G1B PTEN RPA1 SLA2 STIP1 TNFAIP3 WASF3 IRGM LAMP3 MAP4K2 MSN NRP1 PLA2G6 PTGDR RPGR SLAMF1 STK11 TNFAIP6 WHSC1 IRS2 LAPTM5 MAP4K3 MSR1 NSD1 PLA2G7 PTGDR2 RPL10L SLAMF6 STK39 TNFRSF10B WHSC1L1 ISG15 LAT MAP9 MST1R NT5E PLAU PTGER2 RPL19 SLAMF7 STK4 TNFRSF10C WIPF1 ISG20 LBP MAPK1 MTOR NTN3 PLAUR PTGER4 RPL5 SLAMF8 STXBP6 TNFRSF11A WNK1 ITCH LCK MAPK11 MUC1 NTN4 PLCB1 PTGIR RPS6 SLC11A1 SUZ12 TNFRSF11B WNT5A ITGA1 LCN2 MAPK14 MUC20 NTRK1 PLCG1 PTGS1 RPS6KA3 SLC12A1 SVEP1 TNFRSF12A WNT5B ITGA2 LCP1 MAPK3 MUTYH NTRK2 PLCH2 PTGS2 RPSA SLC12A8 SYK TNFRSF13B WNT7A ITGA2B LCP2 MAPK7 MX1 NUP107 PLEK PTK2 RRAD SLC15A3 SYNCRIP TNFRSF13C WT1 ITGA3 LDHA MAPK8 MXD1 NUP93 PLEKHG3 PTPN11 RRP12 SLC25A15 SYNGAP1 TNFRSF14 XCL1 ITGA4 LEF1 MAPKAPK2 MYB NUP98 PLXNA1 PTPRC RRP9 SLC25A37 SYT17 TNFRSF17 XPO1 ITGA5 LGALS3 MARCH3 MYC NUTM1 PLXNB2 PTPRCAP RSAD2 SLC6A20 TAB1 TNFRSF18 XRN1 ITGA6 LGALS9 MARCO MYCN OAS3 PMEPA1 PTPRE RTN4 SLC7A10 TACC2 TNFRSF1A YBX1 ITGA9 LHCGR MASP1 MYD88 ORC1 PMS2 PTPRF RUNX1 SLCO1B1 TAF1 TNFRSF1B YBX3 ITGAE LIF MASP2 MYH10 ORC3 PNKD PTPRG RUNX3 SLCO5A1 TAL1 TNFRSF4 YTHDF2 ITGAL LILRA1 MAST1 MYH11 ORM1 PNMA1 PTPRU RYR1 SLITRK6 TANK TNFRSF8 ZAP70 ITGAM LILRA2 MAT2A MYH14 OSM PNOC PVR S100A12 SLTM TAOK1 TNFRSF9 ZBTB10 ITGAX LILRA3 MAVS MYH7B P2RX1 PNP PVRIG S100A4 SMAD1 TAOK2 TNFSF10 ZBTB32 ITGB1 LILRA4 MAX MYH9 P2RX5 POLR1A PVRL2 S100A5 SMAD2 TAP1 TNFSF11 ZBTB7B ITGB2 LILRA5 MBL2 MYL12A P2RY10 POLR1B PXDN S100A6 SMAD3 TAP2 TNFSF12 ZC3H11A ITGB3 LILRA6 MCAM MYO1F P2RY13 POLR2A PXDNL S100A8 SMAD4 TAPBP TNFSF13 ZEB1 ITGB4 LILRB1 MCL1 MZB1 P2RY14 POLR2B PYCARD S100A9 SMARCA1 TBK1 TNFSF13B ZFHX3 ITK LILRB2 MCM10 NAALADL1 P2RY2 POM121 QPCT S100B SMARCA4 TBL1XR1 TNFSF14 ZFP36L1 ITSN1 LILRB3 MCM3 NANOS2 PABPC1 POMZP3 RAB27A S100P SMARCB1 TBP TNFSF15 ZFP36L2 JAG2 LIMA1 MCM8 NAP1L1 PABPC3 POTEF RABGAP1L S100Z SMC1A TBX21 TNFSF4 ZMYM2 JAK1 LIME1 MDM2 NBN PADI4 POU2AF1 RAC1 S1PR5 SMOX TBX3 TNFSF8 ZNF135 JAK2 LNPEP MECOM NCAM1 PAK3 POU2F1 RAC2 SAA1 SMPD3 TC2N TNPO1 ZNF285 JAK3 LONRF1 MED12 NCF2 PAQR5 POU2F2 RAD21 SAMHD1 SMPDL3B TCF12 TNPO2 ZNF292 JAM3 LPHN2 MED17 NCF4
Recommended publications
  • Supporting Information
    Supporting Information Celhar et al. 10.1073/pnas.1507052112 SI Materials and Methods using a Nanodrop spectrophotometer (Thermo Fisher Scien- Proteinuria. Proteinuria was assessed using Albustix (Bayer). Al- tific). A TaqMan RNA-to-CT 1-Step Kit (Applied Biosystems) bumin levels in urine were assayed using an Albumin Mouse was used to perform the reverse transcription and quantitative ELISA Kit (Abcam) according to the manufacturer’s instructions; PCR reactions according to the manufacturer’s instructions samples were assayed at a dilution of 1:400. Samples were nor- using TaqMan gene expression assays (Applied Biosystems) to malized for creatinine using a Creatinine (urinary) Colorimetric either Tlr7 (Mm00446590) or the B2m housekeeping gene Assay Kit (Cayman Chemical) according to the manufacturer’s (Mm00437762). Real-time PCR was performed on the 7900H instructions; initial sample dilution of 1:10. fast real-time PCR system and analyzed using SDS 2.4 (Applied Biosystems). Relative mRNA expression was calculated using the Cell Sorting, RNA Isolation, and RT-PCR. Splenic B cells were comparative C method. + − + + t sorted as live CD45 Gr1 B220 CD19 , splenic T cells as live + − + + CD45 Gr1 CD3 CD5 and peritoneal macrophages as live Imaging. Kidney sections from OCT embedded tissue were fixed + − CD45 Gr1 CD11bhiF4/80hi. Sorted cells were centrifuged, re- with 4% paraformaldehyde before permeabilization with acetone suspended in TRIzol (Life Technologies) and stored at −80°. RNA and stained with Phalloidin (AF647) and anti-CD3d (unlabeled was extracted by TRIzol/chloroform and purified with the Qiagen Ab followed by secondary staining with donkey anti-goat Dylight RNeasy Mini purification kit according to the manufacturer’s 550).
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • List of Genes Used in Cell Type Enrichment Analysis
    List of genes used in cell type enrichment analysis Metagene Cell type Immunity ADAM28 Activated B cell Adaptive CD180 Activated B cell Adaptive CD79B Activated B cell Adaptive BLK Activated B cell Adaptive CD19 Activated B cell Adaptive MS4A1 Activated B cell Adaptive TNFRSF17 Activated B cell Adaptive IGHM Activated B cell Adaptive GNG7 Activated B cell Adaptive MICAL3 Activated B cell Adaptive SPIB Activated B cell Adaptive HLA-DOB Activated B cell Adaptive IGKC Activated B cell Adaptive PNOC Activated B cell Adaptive FCRL2 Activated B cell Adaptive BACH2 Activated B cell Adaptive CR2 Activated B cell Adaptive TCL1A Activated B cell Adaptive AKNA Activated B cell Adaptive ARHGAP25 Activated B cell Adaptive CCL21 Activated B cell Adaptive CD27 Activated B cell Adaptive CD38 Activated B cell Adaptive CLEC17A Activated B cell Adaptive CLEC9A Activated B cell Adaptive CLECL1 Activated B cell Adaptive AIM2 Activated CD4 T cell Adaptive BIRC3 Activated CD4 T cell Adaptive BRIP1 Activated CD4 T cell Adaptive CCL20 Activated CD4 T cell Adaptive CCL4 Activated CD4 T cell Adaptive CCL5 Activated CD4 T cell Adaptive CCNB1 Activated CD4 T cell Adaptive CCR7 Activated CD4 T cell Adaptive DUSP2 Activated CD4 T cell Adaptive ESCO2 Activated CD4 T cell Adaptive ETS1 Activated CD4 T cell Adaptive EXO1 Activated CD4 T cell Adaptive EXOC6 Activated CD4 T cell Adaptive IARS Activated CD4 T cell Adaptive ITK Activated CD4 T cell Adaptive KIF11 Activated CD4 T cell Adaptive KNTC1 Activated CD4 T cell Adaptive NUF2 Activated CD4 T cell Adaptive PRC1 Activated
    [Show full text]
  • Finding Drug Targeting Mechanisms with Genetic Evidence for Parkinson’S Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.208975; this version posted July 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Finding drug targeting mechanisms with genetic evidence for Parkinson’s disease Catherine S. Storm1,*, Demis A. Kia1, Mona Almramhi1, Sara Bandres-Ciga2, Chris Finan3, Aroon D. Hingorani3,4,5, International Parkinson’s Disease Genomics Consortium (IPDGC), Nicholas W. Wood1,6,* 1 Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom 2 Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, United States of America 3 Institute of Cardiovascular Science, Faculty of Population Health, University College London, London WC1E 6BT, United Kingdom 4 University College London British Heart Foundation Research Accelerator Centre, New Delhi, India 5 Health Data Research UK, 222 Euston Road, London, United Kingdom 6 Lead Contact * Correspondence: [email protected] (CSS), [email protected] (NWW) Summary Parkinson’s disease (PD) is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation using human evidence. Here, we use Mendelian randomization to investigate more than 3000 genes that encode druggable proteins, seeking to predict their efficacy as drug targets for PD. We use expression and protein quantitative trait loci for druggable genes to mimic exposure to medications, and we examine the causal effect on PD risk (in two large case-control cohorts), PD age at onset and progression.
    [Show full text]
  • Tfr2, Hfe, and Hjv in the Regulation of Body Iron Homeostasis
    TFR2, HFE, AND HJV IN THE REGULATION OF BODY IRON HOMEOSTASIS By Christal Anna Worthen A DISSERTATION Presented to the Department of Cell & Developmental Biology and the Oregon Health and Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2014 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL ___________________________________ This is to certify that the PhD dissertation of Christal A Worthen has been approved ______________________________________ Caroline Enns, Ph.D., mentor ______________________________________ Peter Mayinger, Ph.D., Chairman ______________________________________ Philip Stork, M.D. ______________________________________ David Koeller, M.D. ______________________________________ Alex Nechiporuk, Ph.D. TABLE OF CONTENTS i List of Figures ii Acknowledgements iv Abbreviations v Abstract: 1 Chapter 1: Introduction 5 Abstract and Introduction 6 Binding partners, regulation, and trafficking of TFR2 9 Disease-causing mutations in TFR2 12 Hepcidin regulation 12 Physiological function of TFR2 15 Current TFR2 models 18 Summary 19 Figure 21 Chapter 2: The cytoplasmic domain of TFR2 is necessary for 22 HFE, HJV, and TFR2 regulation of hepcidin Abstract 23 Capsule & Introduction 24 Materials and Methods 26 Results 32 Figures 41 Discussion 49 Chapter 3: Lack of functional TFR2 results in stress erythropoiesis 53 Introduction 54 Materials and Methods 55 Results 57 Figures 60 Discussion 65 Chapter 4: Conclusions and future directions 67 Appendices Appendix A: Coculture of HepG2 cells reduces hepcidin expression 71 Appendix B: Hfe-/- macrophages handle iron differently 80 Appendix C: Both ZIP14A and ZIP14B are regulated by HFE and iron 91 Appendix D: The cytoplasmic domain of HFE does not interact with 99 ZIP14 loop 2 by yeast-2-hybris References 105 i LIST OF FIGURES Figure Abstract 1: Body iron homeostasis.
    [Show full text]
  • Examination of the Transcription Factors Acting in Bone Marrow
    THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD) Examination of the transcription factors acting in bone marrow derived macrophages by Gergely Nagy Supervisor: Dr. Endre Barta UNIVERSITY OF DEBRECEN DOCTORAL SCHOOL OF MOLECULAR CELL AND IMMUNE BIOLOGY DEBRECEN, 2016 Table of contents Table of contents ........................................................................................................................ 2 1. Introduction ............................................................................................................................ 5 1.1. Transcriptional regulation ................................................................................................... 5 1.1.1. Transcriptional initiation .................................................................................................. 5 1.1.2. Co-regulators and histone modifications .......................................................................... 8 1.2. Promoter and enhancer sequences guiding transcription factors ...................................... 11 1.2.1. General transcription factors .......................................................................................... 11 1.2.2. The ETS superfamily ..................................................................................................... 17 1.2.3. The AP-1 and CREB proteins ........................................................................................ 20 1.2.4. Other promoter specific transcription factor families ...................................................
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • General Discussion
    UvA-DARE (Digital Academic Repository) EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface Matmati, M. Publication date 2008 Link to publication Citation for published version (APA): Matmati, M. (2008). EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Chapter 6 General Discussion GENERAL DISCUSSION Since their identification, starting about 15 years ago, a growing amount of data has accumulated about the structure, the expression, the ligands and, more recently, also the functional implications of EGF-TM7 receptors. Studies with antibody treatment and gene targeting in mice and antibody treatment of human cells in vitro, led to the implication of EGF-TM7 receptors in the trafficking of granulocytes, the generation of efferent antigen specific regulatory T cells and the potentiation of different granulocyte effector functions [1-4].
    [Show full text]
  • Mechanism of Action Through an IFN Type I-Independent Responses To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma
    International Journal of Molecular Sciences Article CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma 1, 2,3,4, 5 6 7 Ju-Fang Liu y, Chiang-Wen Lee y, Chih-Yang Lin , Chia-Chia Chao , Tsung-Ming Chang , Chien-Kuo Han 8, Yuan-Li Huang 8, Yi-Chin Fong 9,10,* and Chih-Hsin Tang 8,11,12,* 1 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan; [email protected] 2 Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; [email protected] 3 Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan 4 Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan 5 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 6 Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] 7 School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan; [email protected] 8 Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; [email protected] (C.-K.H.); [email protected] (Y.-L.H.) 9 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan 10 Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan 11 Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan 12 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] (Y.-C.F.); [email protected] (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.) These authors contributed equally to this work.
    [Show full text]