2019 IEEE 35th International Conference on Data Engineering (ICDE) Information Diffusion Prediction via Recurrent Cascades Convolution Xueqin Chen∗, Fan Zhou∗†, Kunpeng Zhang‡, Goce Trajcevski§, Ting Zhong∗, Fengli Zhang∗ ∗School of Information and Software Engineering, University of Electronic Science and Technology of China ‡Department of Decision, Operations & Information Technologies, University of Maryland, college park MD §Department of Electrical and Computer Engineering, Iowa State University, Ames IA †Corresponding author:
[email protected] Abstract—Effectively predicting the size of an information cas- for cascade prediction; (2) feature-based approaches – mostly cade is critical for many applications spanning from identifying focusing on identifying and incorporating complicated hand- viral marketing and fake news to precise recommendation and crafted features, e.g., structural [20]–[22], content [23]–[26], online advertising. Traditional approaches either heavily depend on underlying diffusion models and are not optimized for popu- temporal [27], [28], etc. Their performance strongly depends larity prediction, or use complicated hand-crafted features that on extracted features requiring extensive domain knowledge, cannot be easily generalized to different types of cascades. Recent which is hard to be generalized to new domains; (3) generative generative approaches allow for understanding the spreading approaches – typically relying on Hawkes point process [6], mechanisms, but with unsatisfactory prediction accuracy. [29],