Notes on Koszul Complexes and Commutative Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Koszul Complexes and Commutative Algebra Notes on Koszul complexes and commutative algebra Akhil Mathew January 2009 Abstract I wrote this short set of notes to cover some of the basic ideas of the homolog- ical theory of local rings. I didn’t get that far, only up to the syzygy theorem. The main source was Eisenbud’s book on commutative algebra. In these notes, all rings are commutative, Noetherian, and have an identity element. 1 Krull Dimension 1.1 Krull’s Theorem Let R be a commutative Noetherian ring. Then we define the dimension of R, i.e. dim R, to be the supremum of lengths r of prime chains p0 ⊂ · · · ⊂ pr; where all the inclusions are strict and the pi are prime ideals of R. We define the codimension or height of a prime ideal p (denoted by htp) as the dimension of the local ring Rp; it is the maximum length of a prime ideal descending from p. This notion of dimension is fundamental, and will occupy this section. One of the most important results is: Theorem 1.1 (Krull’s Hauptidealsatz). Let I ⊂ R denote an ideal with g generators. Then any minimal prime p ⊃ I has codimension at most g. To prove it, we introduce the idea of symbolic powers. Let q be prime; then the n-th symbolic power is defined as fs : 9t2 = q s:t: ts 2 qng; it is the inverse image in R of the n-th power of the localized ideal qq ⊂ Rq. Proof. The case g = 0 is trivial. Consider the case g = 1, i.e. with I principal. Then we fix a minimal prime p over I. Localizing at p if necessary, we assume p maximal as well. Suppose there exists a prime ideal q ⊂ p distinct from p. We show that q is minimal, proving the result for g = 1. Now the only prime ideal in the ring R=(x) is the image of p since p is minimal over (x) and maximal in R. Hence, R=(x) is 1 Artinian; therefore any descending sequence of ideals of R containing (x) stabilizes. As an example, consider q(n) + (x). There thus exists N very large such that q(N) ⊃ (x) + q(N+1): In other words, for each w 2 q(n), we can write w = xr + s for s 2q 2 Projective Modules and Global Dimension We will work over a Noetherian ring R. Projective modules are necessary to the de- velopment of homological dimension. We develop some of the properties of projective modules below. A basic familiarity with the definitions is assumed; cf. [?]. 2.1 Projective Modules over Local Rings We want to show that a finitely generated projective module over a local ring R is free. First we need Lemma 2.1 (Nakayama). Let M be a finitely generated module over the local ring R, whose maximal ideal is m. Suppose mM = M. Then M = 0. Proof. Let x1; : : : ; xn be a set of generators for M with n as small as possible. If the set is empty, then M = 0 and we are done. If not, then xn 2 mM and we can write xn = m1x1 + ··· + mnxn; for m1; : : : ; mn 2 m. Hence (1 − mn)xn can be written as a linear combination of x1; : : : ; xn−1. Thus so can xn, 1 − mn being a unit. We could therefore have deleted xn from the list of generators, which was assumed minimal, contradiction. That result holds more generally if R is an arbitrary (not even necessarily Noethe- rian) ring and m denotes the Jacobson radical, i.e. the intersection of all maximal ideals. The proof is the same. Corollary 2.2. With the same hypotheses as above, suppose the images of x1; : : : ; xn 2 M generate the R=m-vector space M=mM. Then they generate M. Proof. Let N denote the submodule of M generated by x1; : : : ; xn. Consider M=N. We have m(M=N) = (mM + N)=N = M=N, since every element of M is congruent mod mM to an element of N. Thus we can apply Nakayama to show that M=N = 0, concluding the proof. We may now apply these results to projective modules: Theorem 2.3. Let M be a finitely generated projective module over the local ring R, with maximal ideal m. Then M is free. 2 Proof. Let x1; : : : ; xn 2 M be such that their images form a basis for the vector space M=mM. Then x1; : : : ; xn generate M by the corollary. Take a free module F of rank n, with generators e1; : : : ; en. We have a surjective homomorphism: F ! M ! 0 mapping the ej ! xj. Since M is projective, the map splits. Therefore we can write (up to isomorphism) F = F1 ⊕ M. Here F1 is the kernel of the map to M. Now, any P element f of F1 is a linear combination of the ej, say f = ajmj for aj 2 R. The P aj are actually in m since the image of f, which is ajxj, is 0 in M. Thus f 2 mF . Moreover, f 2 F1, so f 2 m(F1 ⊕ F2) \ F1 = mF1. Hence F1 = mF1, so F1 = 0. Thus F = M and M is free. Finally, we generalize this result to projective modules in general: Theorem 2.4. Let R be a Noetherian ring and M a finitely generated R-module. Then M is projective if and only if for all maximal ideals m, the localized module Mm is free over Rm. Proof. If M is projective over R, then the localized modules are projective over the localized rings. Indeed, M is a direct summand of a free R-module, and localization preserves direct sums. So one implication is obvious. The other implication follows be- cause projectiveness can be tested for with the Ext functor, the Ext functor commutes with localization on Noetherian rings, and a module whose localizations at maximal ideals vanish vanishes itself. In more detail, M is projective over R if and only if Mm is projective over Rm for all m maximal. Then the last theorem completes the proof. 2.2 Homological Dimension Let R be a Noetherian ring and M a module. The projective dimension of M, denoted by pdM is the minimum natural number n such that a resolution 0 ! Pn ! Pn−1 !···! P0 ! M ! 0 exists with all the Pj projective. If no such chain exists, then we write pdM = 1. We define the global dimension of R, denoted by glR, to be supM pdM, the sup being taken over all R-modules. It is an important theorem of commutative algebra that the notion of global dimen- sion coincides with the usual Krull dimension (cf. [?] or [?]) over regular local rings. We prove this later. Lemma 2.5. We have pdM ≤ n if and only if Exti(M; N) = 0 for all modules N and i > n. Proof. Suppose we have a resolution 0 ! Pn ! Pn−1 !···! P0 ! M ! 0 3 with the Pj projective (with some possibly zero). Then by dimension-shifting we see i i−n that Ext (M; N) = Ext (Pn;N) = 0 (assuming i > n). This gives one implica- tion. We can essentially reverse the argument for the other. Pick a projective (e.g. free) resolution Pn−1 ! Pn−2 !···! P0 ! M ! 0: This can be constructed by an elementary argument, of course. The new part here is the zero at the left. Let Pn be the kernel at the far left, so we have an exact sequence 0 ! Pn ! Pn−1 ! Pn−2 !···! P0 ! M ! 0: Now using dimension-shifting one can easily see that Pn is projective, whence the lemma. We can define the notion of the iojective dimension of a module N, denoted by 2 N, in the same way, considering resolutions 0 ! N ! I0 ! I1 !···! In ! 0 for injective moduels Ij. The same technique as above proves: Lemma 2.6. We have 2 N ≤ n if and only if Exti(M; N) = 0 for all modules M and i > n. Theorem 2.7 (Auslander). The global dimension of R is equal to supN 2 N, and is the smallest n such that all the Exti with i > n vanish for all modules. Moreover, n is the smallest integer such that Extn(R=I; N) = 0 for all ideals I and modules N. Finally, we can restrict our attention to finitely generated modules in the above supremums. Proof. The first part follows immediately from the above lemmas and discussion. Only the last part remains. So fix a module N and an ideal I, and consider an injective resolution 0 ! N ! I0 !···! In−1: Let In be the final cokernel, and so we get an exact sequence 0 ! N ! I0 !···! In−1 ! In ! 0: i i+n We see that Ext (R=I; In) = Ext (R=I; N) = 0 for all i > 0. By a criterion of 1 Baer, this will show that In is injective. All we really need is that Ext (R=I; In) = 0 for all ideals I. We have an exact sequence 0 ! I ! R ! R=I ! 0; which yields to a long exact sequences; chopping off parts of it gives Hom(R; In) ! Hom(I;In) ! 0: This means any homomorphism I ! In extends to R. Using a criterion of Baer (an application of Zorn’s lemma; see [?]), we see that In is actually injective. The last part follows since any module is the direct limit of its finitely generated submodules, and the Ext functors commute with direct limits. Indeed, direct limits are exact and commute with Hom.
Recommended publications
  • A NOTE on COMPLETE RESOLUTIONS 1. Introduction Let
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 11, November 2010, Pages 3815–3820 S 0002-9939(2010)10422-7 Article electronically published on May 20, 2010 A NOTE ON COMPLETE RESOLUTIONS FOTINI DEMBEGIOTI AND OLYMPIA TALELLI (Communicated by Birge Huisgen-Zimmermann) Abstract. It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using com- plete resolutions. It is also shown that for an LHF-group G the kernels in a complete resolution of a ZG-module coincide with Benson’s class of cofibrant modules. 1. Introduction Let G be a group and ZG its integral group ring. A ZG-module M is said to admit a complete resolution (F, P,n) of coincidence index n if there is an acyclic complex F = {(Fi,ϑi)| i ∈ Z} of projective modules and a projective resolution P = {(Pi,di)| i ∈ Z,i≥ 0} of M such that F and P coincide in dimensions greater than n;thatis, ϑn F : ···→Fn+1 → Fn −→ Fn−1 → ··· →F0 → F−1 → F−2 →··· dn P : ···→Pn+1 → Pn −→ Pn−1 → ··· →P0 → M → 0 A ZG-module M is said to admit a complete resolution in the strong sense if there is a complete resolution (F, P,n)withHomZG(F,Q) acyclic for every ZG-projective module Q. It was shown by Cornick and Kropholler in [7] that if M admits a complete resolution (F, P,n) in the strong sense, then ∗ ∗ F ExtZG(M,B) H (HomZG( ,B)) ∗ ∗ where ExtZG(M, ) is the P-completion of ExtZG(M, ), defined by Mislin for any group G [13] as k k−r r ExtZG(M,B) = lim S ExtZG(M,B) r>k where S−mT is the m-th left satellite of a functor T .
    [Show full text]
  • The Geometry of Syzygies
    The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points .
    [Show full text]
  • How to Make Free Resolutions with Macaulay2
    How to make free resolutions with Macaulay2 Chris Peterson and Hirotachi Abo 1. What are syzygies? Let k be a field, let R = k[x0, . , xn] be the homogeneous coordinate ring of Pn and let X be a projective variety in Pn. Consider the ideal I(X) of X. Assume that {f0, . , ft} is a generating set of I(X) and that each polynomial fi has degree di. We can express this by saying that we have a surjective homogenous map of graded S-modules: t M R(−di) → I(X), i=0 where R(−di) is a graded R-module with grading shifted by −di, that is, R(−di)k = Rk−di . In other words, we have an exact sequence of graded R-modules: Lt F i=0 R(−di) / R / Γ(X) / 0, M |> MM || MMM || MMM || M& || I(X) 7 D ppp DD pp DD ppp DD ppp DD 0 pp " 0 where F = (f0, . , ft). Example 1. Let R = k[x0, x1, x2]. Consider the union P of three points [0 : 0 : 1], [1 : 0 : 0] and [0 : 1 : 0]. The corresponding ideals are (x0, x1), (x1, x2) and (x2, x0). The intersection of these ideals are (x1x2, x0x2, x0x1). Let I(P ) be the ideal of P . In Macaulay2, the generating set {x1x2, x0x2, x0x1} for I(P ) is described as a 1 × 3 matrix with gens: i1 : KK=QQ o1 = QQ o1 : Ring 1 -- the class of all rational numbers i2 : ringP2=KK[x_0,x_1,x_2] o2 = ringP2 o2 : PolynomialRing i3 : P1=ideal(x_0,x_1); P2=ideal(x_1,x_2); P3=ideal(x_2,x_0); o3 : Ideal of ringP2 o4 : Ideal of ringP2 o5 : Ideal of ringP2 i6 : P=intersect(P1,P2,P3) o6 = ideal (x x , x x , x x ) 1 2 0 2 0 1 o6 : Ideal of ringP2 i7 : gens P o7 = | x_1x_2 x_0x_2 x_0x_1 | 1 3 o7 : Matrix ringP2 <--- ringP2 Definition.
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • Depth, Dimension and Resolutions in Commutative Algebra
    Depth, Dimension and Resolutions in Commutative Algebra Claire Tête PhD student in Poitiers MAP, May 2014 Claire Tête Commutative Algebra This morning: the Koszul complex, regular sequence, depth Tomorrow: the Buchsbaum & Eisenbud criterion and the equality of Aulsander & Buchsbaum through examples. Wednesday: some elementary results about the homology of a bicomplex Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. We say that F· is a resolution of the A-module A/a Claire Tête Commutative Algebra I will begin with a little example.
    [Show full text]
  • Computations in Algebraic Geometry with Macaulay 2
    Computations in algebraic geometry with Macaulay 2 Editors: D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels Preface Systems of polynomial equations arise throughout mathematics, science, and engineering. Algebraic geometry provides powerful theoretical techniques for studying the qualitative and quantitative features of their solution sets. Re- cently developed algorithms have made theoretical aspects of the subject accessible to a broad range of mathematicians and scientists. The algorith- mic approach to the subject has two principal aims: developing new tools for research within mathematics, and providing new tools for modeling and solv- ing problems that arise in the sciences and engineering. A healthy synergy emerges, as new theorems yield new algorithms and emerging applications lead to new theoretical questions. This book presents algorithmic tools for algebraic geometry and experi- mental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out. Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geometry, commutative algebra, and their applications. The reader of this book will encounter Macaulay 2 in the context of concrete applications and practical computations in algebraic geometry. The expositions of the algorithmic tools presented here are designed to serve as a useful guide for those wishing to bring such tools to bear on their own problems. A wide range of mathematical scientists should find these expositions valuable. This includes both the users of other programs similar to Macaulay 2 (for example, Singular and CoCoA) and those who are not interested in explicit machine computations at all.
    [Show full text]
  • Linear Resolutions Over Koszul Complexes and Koszul Homology
    LINEAR RESOLUTIONS OVER KOSZUL COMPLEXES AND KOSZUL HOMOLOGY ALGEBRAS JOHN MYERS Abstract. Let R be a standard graded commutative algebra over a field k, let K be its Koszul complex viewed as a differential graded k-algebra, and let H be the homology algebra of K. This paper studies the interplay between homological properties of the three algebras R, K, and H. In particular, we introduce two definitions of Koszulness that extend the familiar property originally introduced by Priddy: one which applies to K (and, more generally, to any connected differential graded k-algebra) and the other, called strand- Koszulness, which applies to H. The main theoretical result is a complete description of how these Koszul properties of R, K, and H are related to each other. This result shows that strand-Koszulness of H is stronger than Koszulness of R, and we include examples of classes of algebras which have Koszul homology algebras that are strand-Koszul. Introduction Koszul complexes are classical objects of study in commutative algebra. Their structure reflects many important properties of the rings over which they are de- fined, and these reflections are often encoded in the product structure of their homology. Indeed, Koszul complexes are more than just complexes — they are, in fact, the prototypical examples of differential graded (= DG) algebras in commu- tative ring theory, and thus the homology of a Koszul complex carries an algebra structure. These homology algebras encode (among other things) the Gorenstein condition [5], the Golod condition [15], and whether or not the ring is a complete intersection [1].
    [Show full text]
  • The Yoneda Ext and Arbitrary Coproducts in Abelian Categories
    THE YONEDA EXT AND ARBITRARY COPRODUCTS IN ABELIAN CATEGORIES ALEJANDRO ARGUD´IN MONROY Abstract. There are well known identities involving the Ext bifunctor, co- products, and products in Ab4 abelian categories with enough projectives. Namely, for every such category A, given an object X and a set of ob- n ∼ jects {Ai}i∈I , the following isomorphism can be built ExtA i∈I Ai,X = n n L i∈I ExtA (Ai,X), where Ext is the n-th derived functor of the Hom func- tor.Q The goal of this paper is to show a similar isomorphism for the n-th Yoneda Ext, which is a functor equivalent to Extn that can be defined in more general contexts. The desired isomorphism is constructed explicitly by using colimits, in Ab4 abelian categories with not necessarily enough projec- tives nor injectives, answering a question made by R. Colpi and K R. Fuller in [8]. Furthermore, the isomorphisms constructed are used to characterize Ab4 categories. A dual result is also stated. 1. Introduction The study of extensions is a theory that has developed from multiplicative groups [21, 15], with applications ranging from representations of central simple algebras [4, 13] to topology [10]. In this article we will focus on extensions in an abelian category C. In this context, an extension of an object A by an object C is a short exact sequence 0 → A → M → C → 0 up to equivalence, where two exact sequences are equivalent if there is a morphism arXiv:1904.12182v2 [math.CT] 8 Sep 2020 from one to another with identity morphisms at the ends.
    [Show full text]
  • THAN YOU NEED to KNOW ABOUT EXT GROUPS If a and G Are
    MORE THAN YOU NEED TO KNOW ABOUT EXT GROUPS If A and G are abelian groups, then Ext(A; G) is an abelian group. Like Hom(A; G), it is a covariant functor of G and a contravariant functor of A. If we generalize our point of view a little so that now A and G are R-modules for some ring R, then n 0 we get not two functors but a whole sequence, ExtR(A; G), with ExtR(A; G) = HomR(A; G). In 1 n the special case R = Z, module means abelian group and ExtR is called Ext and ExtR is trivial for n > 1. I will explain the definition and some key properties in the case of general R. To be definite, let's suppose that R is an associative ring with 1, and that module means left module. If A and G are two modules, then the set HomR(A; G) of homomorphisms (or R-linear maps) A ! G has an abelian group structure. (If R is commutative then HomR(A; G) can itself be viewed as an R-module, but that's not the main point.) We fix G and note that A 7! HomR(A; G) is a contravariant functor of A, a functor from R-modules ∗ to abelian groups. As long as G is fixed, we sometimes denote HomR(A; G) by A . The functor also takes sums of morphisms to sums of morphisms, and (therefore) takes the zero map to the zero map and (therefore) takes trivial object to trivial object.
    [Show full text]
  • Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel
    Koszul Cohomology and Algebraic Geometry Marian Aprodu Jan Nagel Institute of Mathematics “Simion Stoilow” of the Romanian Acad- emy, P.O. Box 1-764, 014700 Bucharest, ROMANIA & S¸coala Normala˘ Superioara˘ Bucures¸ti, 21, Calea Grivit¸ei, 010702 Bucharest, Sector 1 ROMANIA E-mail address: [email protected] Universite´ Lille 1, Mathematiques´ – Bat.ˆ M2, 59655 Villeneuve dAscq Cedex, FRANCE E-mail address: [email protected] 2000 Mathematics Subject Classification. Primary 14H51, 14C20, 14F99, 13D02 Contents Introduction vii Chapter 1. Basic definitions 1 1.1. The Koszul complex 1 1.2. Definitions in the algebraic context 2 1.3. Minimal resolutions 3 1.4. Definitions in the geometric context 5 1.5. Functorial properties 6 1.6. Notes and comments 10 Chapter 2. Basic results 11 2.1. Kernel bundles 11 2.2. Projections and linear sections 12 2.3. Duality 17 2.4. Koszul cohomology versus usual cohomology 19 2.5. Sheaf regularity. 21 2.6. Vanishing theorems 22 Chapter 3. Syzygy schemes 25 3.1. Basic definitions 25 3.2. Koszul classes of low rank 32 3.3. The Kp,1 theorem 34 3.4. Rank-2 bundles and Koszul classes 38 3.5. The curve case 41 3.6. Notes and comments 45 Chapter 4. The conjectures of Green and Green–Lazarsfeld 47 4.1. Brill-Noether theory 47 4.2. Numerical invariants of curves 49 4.3. Statement of the conjectures 51 4.4. Generalizations of the Green conjecture. 54 4.5. Notes and comments 57 Chapter 5. Koszul cohomology and the Hilbert scheme 59 5.1.
    [Show full text]
  • Arxiv:1710.09830V1 [Math.AC] 26 Oct 2017
    COMPUTATIONS OVER LOCAL RINGS IN MACAULAY2 MAHRUD SAYRAFI Thesis Advisor: David Eisenbud Abstract. Local rings are ubiquitous in algebraic geometry. Not only are they naturally meaningful in a geometric sense, but also they are extremely useful as many problems can be attacked by first reducing to the local case and taking advantage of their nice properties. Any localization of a ring R, for instance, is flat over R. Similarly, when studying finitely generated modules over local rings, projectivity, flatness, and freeness are all equivalent. We introduce the packages PruneComplex, Localization and LocalRings for Macaulay2. The first package consists of methods for pruning chain complexes over polynomial rings and their localization at prime ideals. The second package contains the implementation of such local rings. Lastly, the third package implements various computations for local rings, including syzygies, minimal free resolutions, length, minimal generators and presentation, and the Hilbert–Samuel function. The main tools and procedures in this paper involve homological methods. In particular, many results depend on computing the minimal free resolution of modules over local rings. Contents I. Introduction 2 I.1. Definitions 2 I.2. Preliminaries 4 I.3. Artinian Local Rings 6 II. Elementary Computations 7 II.1. Is the Smooth Rational Quartic a Cohen-Macaulay Curve? 12 III. Other Computations 13 III.1. Computing Syzygy Modules 13 arXiv:1710.09830v1 [math.AC] 26 Oct 2017 III.2. Computing Minimal Generators and Minimal Presentation 16 III.3. Computing Length and the Hilbert-Samuel Function 18 IV. Examples and Applications in Intersection Theory 20 V. Other Examples from Literature 22 VI.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]