Hakea Undulata Wavy Leafed Hakea (H) Banksia Attenuate Slender Banksia (H) Banksia Ilicifolia Holly Banksia (H) Banksia Litt

Total Page:16

File Type:pdf, Size:1020Kb

Hakea Undulata Wavy Leafed Hakea (H) Banksia Attenuate Slender Banksia (H) Banksia Ilicifolia Holly Banksia (H) Banksia Litt (H) = High priority (M) = Medium priority Banksia attenuate Banksia ilicifolia Banksia littoralis Banksia menziesii Banksia nivea Banksia prionotes Slender Banksia (H) Holly Banksia (H) Swamp Banksia (H) Firewood Banksia (H) Honeypot Dryandra (H) Acorn Banksia (H) 0.4-1.5(-3) m high. Fl. white- Erect tree or shrub, to 12 m cream/yellow/pink, May to high, with epicormic buds. Fl. Tree or shrub, 1.3-7 m Shrub, 0.15-1.5 m high. Fl. Non-lignotuberous tree or Sep. White, grey or yellow red/orange/yellow/cream, Jan Tree or shrub, 1.5-12 m high, usually arising from cream-yellow-orange-pink/ shrub, to 10 m high. Fl. cream & sand, sandy loam, granitic to Dec. White or grey sand, high, with epicormic buds. lignotuber or epicormic red-brown, Apr or Jul to Nov. orange, Feb to Aug. White or soils, laterite. black sandy loam, limestone, Fl. yellow/orange-yellow, buds. Fl. pink/red/yellow, Sandy soils, gravel, laterite, grey/yellow sand, sandy loam, Feb to Oct. White, grey or brown clay, laterite, granite. granite, quartz. Consolidated Mar to Aug. Grey or black granite dunes or low-lying flats. peaty sand. Low-lying, sea- yellow sand. Sandplains, sand dunes, undu- sonally damp areas, along lating slopes watercourses Corymbia calophylla Eucalyptus gomphocephala Hakea lissocarpha Hakea prostrata Hakea trifurcata Hakea undulata Marri (H) Tuart (H) Honeybush (M) Harsh Hakea (H) Two leafed Hakea (H) Wavy Leafed Hakea (H) Tree (mallee, rarely), to 40(-60) m high, bark rough, tessellated. Fl. Erect to sprawling, pun- Tree, 10-40 m high, bark Erect to spreading or pros- white/pink, Dec or Jan to May. Red gent, ?lignotuberous shrub, Erect, often straggly, non- rough, box-type. Fl. white, trate, non-lignotuberous Rounded or open, non- -brown clay loam, orange-brown 0.4-1.5(-3) m high. Fl. white- lignotuberous shrub, 1-2 m Jan to Apr. Sand over lime- shrub, 1-3 m high. Fl. white- lignotuberous shrub, 1.5-3 sandy clay, gravel, grey sand over cream/yellow/pink, May to high. Fl. white, Jul to Oct. stone. Coastal plains. cream, Jul to Oct. Sandy m high, to 3.5 m wide. Fl. limestone, granite, laterite. Flats, Sep. White, grey or yellow White or grey sand, clay, soils, often over laterite, white/cream-pink, Apr to hills, slopes, breakaways, wet- sand, sandy loam, granitic loam, gravel, laterite loam, gravel. Hillslopes, Oct. White, grey/brown lands, fringing salt marches, beside soils, laterite. granite outcrops, coastal sand over limestone or drainage lines laterite, loam, gravel. dunes Info courtesy of DPAW’s Florabase .
Recommended publications
  • List of Plants Used by Carnaby's Black Cockatoo
    Plants Used by Carnaby's Black Cockatoo List prepared by Christine Groom, Department of Environment and Conservation 15 April 2011 For more information on plant selection or references used to produce this list please visit the Plants for Carnaby's Search Tool webpage at www.dec.wa.gov.au/plantsforcarnabys Used for Soil type Soil drainage Priority for planting Sun Species Growth form Flower colour Origin for exposure Carnaby's Feeding Nesting Roosting Clayey Gravelly Loamy Sandy drained Well drained Poorly Waterlogged affected Salt Acacia baileyana (Cootamundra wattle)* Low Tree Yellow Australian native Acacia pentadenia (Karri Wattle) Low Tree Cream WA native Acacia saligna (Orange Wattle) Low Tree Yellow WA native Agonis flexuosa (Peppermint Tree) Low Tree White WA native Araucaria heterophylla (Norfolk Island Pine) Low Tree Green Exotic to Australia Banksia ashbyi (Ashby's Banksia) Medium Tree or Tall shrub Yellow, Orange WA native Banksia attenuata (Slender Banksia) High Tree Yellow WA native Banksia baxteri (Baxter's Banksia) Medium Tall shrub Yellow WA native Banksia carlinoides (Pink Dryandra) Medium Medium or small shrub White, cream, pink WA native Banksia coccinea (Scarlet Banksia) Medium Tree Red WA native Banksia dallanneyi (Couch Honeypot Dryandra) Low Medium or small shrub Orange, brown WA native Banksia ericifolia (Heath-leaved Banksia) Medium Tall shrub Orange Australian native Banksia fraseri (Dryandra) Medium Medium or small shrub Orange WA native Banksia gardneri (Prostrate Banksia) Low Medium
    [Show full text]
  • Friends of the UC Davis Arboretum & Public Garden October 12, 2019
    Friends of the UC Davis Arboretum & Public Garden October 12, 2019 Second Fall Plant Sale (Public: 9 a.m. - 1 p.m.) Final Availability Availability subject to change Cate- Bed Botanical Name Qty Common Name Description Price Size gory # forms large clumps of 12" rosettes. Bronzy-pink foliage. Branched inflorescences up to 2' hold yellow flws with × Graptoveria 'Fred Ives' 11 graptoveria orange/red centers, summer. Good drainage. $7.50 4" P, + C12 × Heucherella 'Dayglow Pink' hybrid coral bells and foam to 16"; glowing pink flws on starry wands, spring. Purple foliar PP12164 34 flower color, winter. Bright shade, average water for best growth. $11.00 1G S C2 16"x 14"; spikes of pnk flws, lt sprng; heavy bloomer. Grn lvs × Heucherella 'Pink Revolution' Pink Revolution w/brgndy veins; pt shd; med wtr; well-drained soil; attracts PPAF 13 heucherella hmmngbrds. $11.00 1G S C2 Mounding perennial to 10", bronze lvs w/ reddish ceters, dk × Heucherella 'Pumpkin Spice' PPAF 2 Pumpkin Spice foamy bells red stems, white fls in spring $11.00 1G S C2 × Heucherella 'Solar Eclipse' Up to 16". Drk purple lvs w ring of chartreuse grn. White flws PP23647 21 foamy bells late spring. Pt sun to light shade. $11.00 1G S C2 7" x 16". Blue-green foliage turns darker as the weather cools hybrid coral bells and foam in fall; dark veins. Foamy pink flowers, spring. Shade. Deer × Heucherella 'Tapestry' PP21150 30 flower resistant. $11.00 1G S C2 × Mangave 'Bad Hair Day' PP30279 to 10"x20"; arching, narrow, flat, lime-green lvs w/red spots; (Mad About Mangave® Collection) 60 Bad Hair Day mangave full sun-bright shd; med-low wtr.
    [Show full text]
  • In This Issue in This Issue
    No. 14 Hakea IN THIS ISSUE DHakea The first collection of This issue of Seed Notes Hakea was made in 1770 will cover the genus by Joseph Banks and Daniel Hakea. Solander from the Endeavour D Description expedition. The genus was described in 1797 by Schrader D Geographic and Wendland, and named distribution and habitat after Baron von Hake, a 19th century patron of botany, D Reproductive biology in Hanover. Plants were D Seed collection introduced into cultivation in England before that time. D Seed quality D assessment Hakea neurophylla. Photo – Sue Patrick D Seed germination D Recommended reading Description DMost hakeas are shrubs, woody and persistent; whereas ranging from small to low Grevillea has non-woody and medium height. They can non-persistent fruits. Most be useful for screening or as Hakea species have tough, groundcovers. Without fruits, pungent foliage that may be Hakea and Grevillea can be terete (needle-like), flat or confused. Both have flowers divided into segments. The with four tepals (petals and leaves are generally a similar sepals combined), an erect colour on both sides. Plants or recurved limb in bud and are usually single or multi- a similar range of leaf and stemmed shrubs, with smooth pollen presenter shapes. But bark, although there are the fruits are very different. ‘corkwood‘ hakeas with thick, Hakea fruits are generally deeply furrowed bark. Many Hakea can resprout after fire or disturbance, and these tend to be the species exhibiting multiple stems. The flowers are generally bisexual and range in colour from cream to green to pink, red, orange and mauve.
    [Show full text]
  • Australian Native Plants Society Australia Hakea
    AUSTRALIAN NATIVE PLANTS SOCIETY AUSTRALIA HAKEA STUDY GROUP NEWSLETTER No. 59 OCTOBER 2015 ISSN0727-7008 Leader Paul Kennedy OAM 210 Aireys St. Elliminyt 3250 Tel. 03-52315569 Internet [email protected] Dear members, I apologise for being late with this newsletter, however, my modem ceased operating and it took six weeks to fix. Two of the new modems they sent out did not work and each took eight days to arrive by post. It was very frustrating just when I needed the computer to be operational. The weather here has been very erratic. There was no rain in October until the last day when 18mm fell. There were numerous warm days well above the average and I had to water the smaller plants that had just gone in the ground. Normally we would receive about 100mm for the month. The inland members gardens have been experiencing very dry conditions and the possibility of a very hot summer will see many plants needing the addition of moisture. Outback Queensland in particular is in the throes of a severe drought and the Hakeas from that region such as maconochieana, collina and ivoryi will be greatly stressed as well as being prone to damage from goats. Along the east coast from Gippsland to northern NSW there has been plenty of rain and gardens have been subject to very wet conditions. In Western Australia Jennifer Young has reported that good winter rains have transformed the northern sand plains into a blaze of flowering plants from Exmouth to Kalbarri. Our garden in Colac continues to thrive.
    [Show full text]
  • Western Australia's Journal of Systematic Botany Issn 0085–4417
    Nuytsia WESTERN AUSTRALIA'S JOURNAL OF SYSTEMATIC BOTANY ISSN 0085–4417 Shepherd, K.A. & Barker, R.M. A new species of Hakea (Proteaceae) from the Swan Coastal Plain, Western Australia Nuytsia 19(2): 253–258(2009) All enquiries and manuscripts should be directed to: The Managing Editor – NUYTSIA Western Australian Herbarium Telephone: +61 8 9334 0500 Dept of Environment and Conservation Facsimile: +61 8 9334 0515 Locked Bag 104 Bentley Delivery Centre Email: [email protected] Western Australia 6983 Web: science.dec.wa.gov.au/nuytsia AUSTRALIA All material in this journal is copyright and may not be reproduced except with the written permission of the publishers. © Copyright Department of Environment and Conservation 253-258.indd 1 9/11/2009 11:59:25 AM 253-258.indd 2 9/11/2009 11:59:25 AM K.A.Nuytsia Shepherd 19(2): 253–258& R.M. Barker,(2009) A new species of Hakea (Proteaceae) from the Swan Coastal Plain 253 A new species of Hakea (Proteaceae) from the Swan Coastal Plain, Western Australia Kelly A. Shepherd1 and Robyn M. Barker2 1Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983 2State Herbarium of South Australia, Department for Environment and Heritage, PO Box 2732, Kent Town, South Australia 5071 1Corresponding author. Email: [email protected] Abstract Shepherd, K.A. & Barker, R.M. A new species of Hakea (Proteaceae) from the Swan Coastal Plain, Western Australia. Nuytsia 19(2): 253 –258 (2009). Hakea oligoneura K.A.Sheph. & R.M.Barker, a new species described herein, is only known from a few populations less than 100 km from the Perth metropolitan area.
    [Show full text]
  • Native Revegetation Guide Moore River Catchment
    Native revegetation guide for the Moore River Catchment Native revegetation guide for the Moore River Catchment Native revegetation guide for the Moore River Catchment A practical guide to native revegetation by soil type in the Moore River catchment Researched and designed by the Moore Catchment Council Funded by the Western Australian Government's State Natural Resource Management Program, supported by Royalties for Regions Native revegetation guide for the Moore River Catchment Welcome Thinking of doing a native revegetation project in the Moore River catchment region but don’t know where to start? This booklet could be for you ! Simple hints and tips to get your native revegetation project off to a flying start. Inside are helpful planning tips, tools and ideas for native species to suit your soil type and location. What are you waiting for……..get planning, get planting ! a Take problem area... Page Content 3 Why revegetate with natives? 4 Planning your revegetation project 6 Moore Catchment soil types 7 Moore Catchment vegetation associations 8 Salmon & York Gum woodland andadvice ...seek help... 9 Wandoo & York Gum woodland 10 Marri & Wandoo woodland 11 Banksia sandplain shrubland & woodland 12 Acacia & York Gum woodland 13 Tamma shrubland ...add ...add some nativeplants... 14 Salt land & creek revegetation 15 Help & Resources 16 Tree nurseries ...equals revegetation...equals success !! 2 Native revegetation guide for the Moore River Catchment Native revegetation guide for the Moore River Catchment Why revegetate with natives? Widespread clearing for agriculture, horticulture and urbanisation has left the Moore’s remnant vegetation vulnerable, fragmented and in some cases critically endangered. East of Moora on the favourable farming soils, only 8-13% remnant vegetation remains.
    [Show full text]
  • Adenanthos Pungens Subsp. Effusus)
    SPRAWLING SPIKY ADENANTHOS (ADENANTHOS PUNGENS SUBSP. EFFUSUS) RECOVERY PLAN Department of Environment and Conservation Kensington Recovery Plan for Adenanthos pungens subsp. effusus FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in WA Department of Conservation and Land Management (CALM), now Department of Environment and Conservation (DEC) Policy Statements Nos. 44 and 50. Note: the Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. DEC will continue to adhere to these Policy Statements until they are revised and reissued. IRPs outline the recovery actions that are required to urgently address those threatening processes most affecting the ongoing survival of threatened taxa or ecological communities, and begin the recovery process. DEC is committed to ensuring that Threatened taxa are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of Critically Endangered (CR) taxa, always within one year of endorsement of that rank by the Minister. This IRP results from a review of, and replaces, IRP No. 78 Adenanthos pungens subsp. effusus (Evans, Stack, Loudon, Graham and Brown 2000). This Interim Recovery Plan will operate from May 2006 to April 2011 but will remain in force until withdrawn or replaced. It is intended that, if the taxon is still ranked as Critically Endangered (WA), this IRP will be reviewed after five years and the need for a full Recovery Plan will be assessed. This IRP was given regional approval on 13 February, 2006 and was approved by the Director of Nature Conservation on 22 February, 2006.
    [Show full text]
  • Chapter 19 Role of Root Clusters in Phosphorus
    CHAPTER 19 ROLE OF ROOT CLUSTERS IN PHOSPHORUS ACQUISITION AND INCREASING BIOLOGICAL DIVERSITY IN AGRICULTURE H. LAMBERS AND M.W. SHANE School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. E-mail: [email protected] Abstract. Soils in the south-west of Western Australia and South Africa are among the most phosphorus- impoverished in the world, and at the same time both of these regions are Global Biodiversity Hotspots. This unique combination offers an excellent opportunity to study root adaptations that are significant in phosphorus (P) acquisition. A large proportion of species from these P-poor environments cannot produce an association with mycorrhizal fungi, but, instead, produce ‘root clusters’. In Western Australia, root- cluster-bearing Proteaceae occur on the most P-impoverished soils, whereas the mycorrhizal Myrtaceae tend to inhabit the less P-impoverished soils in this region. Root clusters are an adaptation both in structure and in functioning; characterized by high densities of short lateral roots that release large amounts of exudates, in particular carboxylates (anions of di- and tri-carboxylic acids). The functioning of root clusters in Proteaceae (’proteoid’ roots) and Fabaceae (‘cluster’ roots) has received considerable attention, but that of ‘dauciform’ root clusters developed by species in Cyperaceae has barely been explored. Research on the physiology of ‘capillaroid’ root clusters formed by species in Restionaceae has yet to be published. Root-cluster initiation and growth in species of the Cyperaceae, Fabaceae and Proteaceae are systemically stimulated when plants are grown at a very low P supply, and are suppressed as leaf P concentrations increase.
    [Show full text]
  • The Value of Fringing Vegetation (Watercourse)
    TheThe ValueValue ofof FringingFringing VegetationVegetation UnaUna BellBell Dedicated to the memory of Dr Luke J. Pen An Inspiration to Us All Acknowledgements This booklet is the result of a request from the Jane Brook Catchment Group for a booklet that focuses on the local native plants along creeks in Perth Hills. Thank you to the Jane Brook Catchment Group, Shire of Kalamunda, Environmental Advisory Committee of the Shire of Mundaring, Eastern Metropolitan Regional Council, Eastern Hills Catchment Management Program and Mundaring Community Bank Branch, Bendigo Bank who have all provided funding for this project. Without their support this project would not have come to fruition. Over the course of working on this booklet many people have helped in various ways. I particularly wish to thank past and present Catchment Officers and staff from the Shire of Kalamunda, the Shire of Mundaring and the EMRC, especially Shenaye Hummerston, Kylie del Fante, Renee d’Herville, Craig Wansbrough, Toni Burbidge and Ryan Hepworth, as well as Graham Zemunik, and members of the Jane Brook Catchment Group. I also wish to thank the WA Herbarium staff, especially Louise Biggs, Mike Hislop, Karina Knight and Christine Hollister. Booklet design - Rita Riedel, Shire of Kalamunda About the Author Una Bell has a BA (Social Science) (Hons.) and a Graduate Diploma in Landcare. She is a Research Associate at the WA Herbarium with an interest in native grasses, Community Chairperson of the Eastern Hills Catchment Management Program, a member of the Jane Brook Catchment Group, and has been a bush care volunteer for over 20 years. Other publications include Common Native Grasses of South-West WA.
    [Show full text]
  • Low Flammability Local Native Species (Complete List)
    Indicative List of Low Flammability Plants – All local native species – Shire of Serpentine Jarrahdale – May 2010 Low flammability local native species (complete list) Location key – preferred soil types for local native species Location Soil type Comments P Pinjarra Plain Beermullah, Guildford and Serpentine River soils Alluvial soils, fertile clays and loams; usually flat deposits carried down from the scarp Natural vegetation is typical of wetlands, with sheoaks and paperbarks, or marri and flooded gum woodlands, or shrublands, herblands or sedgelands B Bassendean Dunes Bassendean sands, Southern River and Bassendean swamps Pale grey-yellow sand, infertile, often acidic, lacking in organic matter Natural vegetation is banksia woodland with woollybush, or woodlands of paperbarks, flooded gum, marri and banksia in swamps F Foothills Forrestfield soils (Ridge Hill Shelf) Sand and gravel Natural vegetation is woodland of jarrah and marri on gravel, with banksias, sheoaks and woody pear on sand S Darling Scarp Clay-gravels, compacted hard in summer, moist in winter, prone to erosion on steep slopes Natural vegetation on shallow soils is shrublands, on deeper soils is woodland of jarrah, marri, wandoo and flooded gum D Darling Plateau Clay-gravels, compacted hard in summer, moist in winter Natural vegetation on laterite (gravel) is woodland or forest of jarrah and marri with banksia and snottygobble, on granite outcrops is woodland, shrubland or herbs, in valleys is forests of jarrah, marri, yarri and flooded gum with banksia Flammability
    [Show full text]
  • Bush Tucker Plant Fact Sheets
    Traditional Bush Tucker Plant Fact Sheets Acknowledgements: We would like to acknowledge the traditional Noongar owners of this land and custodians of the knowledge used in these Fact Sheets. Illustrations and photos by Melinda Snowball, Deb Taborda, Amy Krupa, Pam Agar and Sian Mawson. ALGAE BUSTER Developed by SERCUL for use with the Bush Tucker Education Program. Used as food Used as medicine Used as resources Local to SW WA Caution: Do not prepare bush tucker food without having been shown by Indigenous or experienced persons. PHOSPHORUS www.sercul.org.au/our-projects/ AWARENESS PROJECT bushtucker/ Some bush tucker if eaten in large quantities or not prepared correctly can cause illness. Australian Bluebell Scientific name: Billardiera heterophylla Aboriginal name: Gumug (Noongar) Plant habit Leaf and stem Flower Fruit About ... Family PITTOSPORACEAE This plant relies on birds to eat the fruit and then Climate Temperate disperse the seeds. The seeds then germinate to produce a new plant. Habitat Open forest and woodland areas Australian bluebells are a common bushland plant Form Small shrub; twiner of the south west of Western Australia. This plant Height: up to 1.5 m has been introduced to the Eastern States, where it is considered a weed; as it forms a thick mat over the Foliage Long, leafy stems which twist around native vegetation. themselves or nearby plants Glossy green, leathery leaves The plant contains toxins which can cause nausea and Length: 50 mm skin irritation, so wear gloves if handling it. (Eurobodalla Shire Council) Flower Birak to Bunuru (Summer) but can flower all year around Intense blue Aboriginal Uses Bell-shaped Occur in clusters of two or more flowers • The fleshy blue berries can be eaten when ripe and Length: up to 10 mm are quite sweet with a soft texture Fruit Follow on from the flower Greenish-blue fruits Length: up to 20 mm Cylindrical in shape Contain many sticky seeds ALGAE BUSTER Developed by SERCUL for use with the Bush Tucker Education Program.
    [Show full text]
  • For Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft
    Elsevier Editorial System(tm) for Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft Manuscript Number: PPEES-D-15-00109R1 Title: Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea Article Type: Research paper Section/Category: Keywords: Black cockatoo; Crypsis; Fruit and seed size; Granivory; Resprouter; Spinescence Corresponding Author: Prof. Byron Lamont, Corresponding Author's Institution: Curtin University First Author: Byron Lamont Order of Authors: Byron Lamont; Byron Lamont; Mick Hanley; Philip Groom Abstract: Nutrient-impoverished soils with severe summer drought and frequent fire typify many Mediterranean-type regions of the world. Such conditions limit seed production and restrict opportunities for seedling recruitment making protection from granivores paramount. Our focus was on Hakea, a genus of shrubs widespread in southwestern Australia, whose nutritious seeds are targeted by strong-billed cockatoos. We assessed 56 Hakea species for cockatoo damage in 150 populations spread over 900 km in relation to traits expected to deter avian granivory: dense spiny foliage; large, woody fruits; fruit crypsis via leaf mimicry and shielding; low seed stores; and fruit clustering. We tested hypothesises centred on optimal seed defenses in relation to to a) pollination syndrome (bird vs insect), b) fire regeneration strategy (killed vs resprouting) and c) on-plant seed storage (transient vs prolonged). Twenty species in 50 populations showed substantial seed loss from cockatoo granivory. No subregional trends in granivore damage or protective traits were detected, though species in drier, hotter areas were spinier. Species lacking spiny foliage around the fruits (usually bird-pollinated) had much larger (4−5 times) fruits than those with spiny leaves and cryptic fruits (insect-pollinated).
    [Show full text]