Dr. Dave's Science Teaching Manuals

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Dave's Science Teaching Manuals Dr. Dave’s Science Teaching Manuals Hands-on, inquiry-based science How to teach, interest and excite elementary and middle school children in science. PRACTICAL INNOVATIVE CHILD-CENTERED Each unit has: • experiments, projects, and artwork to enable children to discover and construct knowledge for themselves • visual and eye-catching activities to impart simple scientific concepts • jokes that appeal to children and help them remember • safety, clean-up, and how-to-save-money tips • suggestions for further study for gifted or more advanced students • advice on how to deal with potential disruptions and diversions Each heavily illustrated, full-color manual comes with a CD with stunning pictures and diagrams to proj- ect for visual learners. Reproducible worksheets The activities are easily adaptable for homeschoolers, giving parents a practical guide and simple explanation of important scientific principles, and natural phenomena. These guides will enliven and clarify teaching and inspire students for real academic success. Royal Fireworks Press rfwp.com Dr. David Purvis “Teaching science to children can be the most wonderful and exciting experience. But having content knowledge is not enough for success at upper elementary-middle school level; what a teacher really needs to know is how-to-teach, how to engage students in hands-on, inquiry-based science.” —Dr. David Purvis, Assistant Professor of Education, Marist College, Poughkeepsie, New York ‘Dr. Dave’ is a university academic and a classroom teacher dedicated to improving and energiz- ing science teaching for children. After obtaining his doctorate in Microbiology and conducting post- doctoral research at the Roche Institute of Molecular Biology, Dr. Purvis decided to become certified to teach in the New Jersey public school system. During twenty years of teaching science at elementary, middle, secondary and college levels, he has developed the innovative activities and approach practiced in these books. Dr. Purvis has been Visiting Professor, Rutgers University New Brunswick, New Jersey, a consultant for the Columbia University School, and continues to volunteer as a guest teacher in the classrooms of local schools. As well as being the author of Dr. Dave’s Science Teaching Manuals , he gives workshops for teach- ers about Hands-on Science. To book Dr. Purvis for a workshop or seminar, contact: Dr. T. M. Kemnitz, Royal Fireworks Press Box 399 Unionville, NY 10988 tel: 845 726 4444 or email: [email protected] Based on his years of experience as a classroom science teacher and now as a men- tor and instructor to budding science teachers, Dr. Purvis has written one of the most comprehensive, creative and useful manuals for teaching science it has been my plea- sure to read. His devotion to constructivist pedagogies and love of science as a way of knowing and understanding the world is evinced on every page. All science teachers, whether just beginning their careers or seasoned educators, will derive great benefit from Dr. Purvis’s meticulous and innovative approach to a wide range of topics. —Marc A. Meyer, M.Phil., Ph.D, Associate Head of School, Brown School, Schenectady, New York rfwp.com The Digestive System Everything you need to teach a unit on the Digestive Systemem is here, with full-color illustrations, hints and tips and detailed activi-vi - ties. There are diagrams and colorful images for classroom presen-en - tations on the accompanying CD. The aim of the manual is to enable children to discover and construct knowledge for themselves and to give teachers the resources and information to make the learning exciting. There are dozens of activities and topics to choose from at various levels and a wonderful ‘end-of-it-all’ class demonstration to simulate how the digestive system works. The easy lesson demonstrations use basic materials such as crackers, constrconstruc-uc - tion paper, oil, and marshmallows. There are reproducible worksheetsrksheets to offeofferr as homework or in- class assignments; safety tips, advice on how to keep students focused; enrichment extensions, vocabulary word lists, and puzzles reinforce the learning of them. 7756 Dr. Dave’s Teaching Manual: Digestive System $40.00 Special Price $30.00 Topic: The Small Intestine and Lactase Extension: The small intestine is sub-divided into three sections: the duodenum, jejunum, and ileum. Think of a mnemonic for DJI to help your students remember this sequence. Project this image of the small intestine and reiterate how long the Topic Sequence pathway actually is. Point out how folded and Digestive System testines are. Observe the sharp turns in some parts of the pathway, and tell your class that food moves slowly through the intestine, Topic: Esophagus and the Stomach convoluted spending anywhere from two to six hours. Once again, don’t the hold in- your students accountable for this fact. Topic: The Small Intestine and Lactase Student Activity – The Human Digestive System • The assignment can be given at any grade level, and it can be made to any size. In general, stu- 2. EnzymeEnzym at Dierent Temperatures Page dents glue construction paper cutouts of the various organs onto a human body outline. The size of the human body outline can range from actual student size to a standard piece of construction Students can test the activity of the enzyme in an ice water-bath, at room temperature and in a paper. Older students are able to construct smaller, more precise models. If you have one, human models of the digestive system are excellent boiling water-bath.w Add the same amount of enzyme to each tube, and let them sit for 5 minutes Topic visuals to show to your class; these models help students visualize the at the temperaturete before dipping in the glucose test strip. Give directions to your class on how to cut out and glue the placement of the digestive organs within the scale of the whole human Digestion in the Mouth ...............................................................1 Materials: human body outline onto a black piece of construction paper. If body. You can use the model as you progress through the digestive sys- glue you use white glue, it’s handy to have small plates and tooth- tem, showing the respective organs as you cover them. While many of Materials: Esophagus and the Stomach .......................................................8 construction paper picks available. these models are very expensive, models that are more economical can Be sure students understand that the milk itself should be at test tubtubes, ice, hot water the correct temperatures before the enzyme is added. The scissors Teaching tip: It may be difficult for students with motor diffi - be purchased from some suppliers. milk The Small Intestine and Lactase ...............................................12 human body template Digestive Enzymes in the Small Intestine tubes of milk should already be in the ice and hot water-bath culties to cut out the outline. lactase when the enzyme is added. Otherwise, the enzyme will have markers The important point to teach about the small intestine is that the majority of chemical digestion oc- Proteases in the Small Intestine ................................................18 • pipettes a chance to work until the temperature is reached. curs in the small intestine. Tell your class that the small intestine secretes many glucose test strips The Digestion of Fats ...............................................................24 • Students draw and cut out the organs of the digestive system from dif- to finish the chemical digestion of the food slurry that comes from the stomach. Here in the small ferent colored construction paper. After gluing them on, the organs are intestine food is completely broken down into small molecules. The small intestine is also where The Large Intestine (or the end of it all!) .................................26 Safety tip:ti Keep the boiling water-bath secure and be sure stu- labeled to finish the assignment. Tell your students to be sure to leave the majority of nutrients from food are absorbed into the bloodstream. Project or write the notes below to introduce your class to these enzymes. Take this opportunity to review with your students dents use caution when removing the tubes. If you don’t have enough room for a title if desired. digestive enzymes the names of enzymes and their substrates. any test tube holders, use cups. Only one student per group should be at this station. Safety goggles are recommended. TEACHER RESOURCES .......................................................31 Teaching tip: Consider running this activity as an in-class assignment (instead of a homework assignment). For students who may not finish in one class—have small envelopes for them to store unglued pieces. 3. VaryingVaryi the Concentration of the Enzyme Most found in the small intestine Students prepare several cups, and vary the amount of enzyme added to each one. The materials Larger scale models can be made, although these are more cumbersome for classroom construc- used in thist variation are the same as those listed in the previous experiment. tion and storage. As before, construction paper can be used to cut out and labeled with the vari- Digestive Lactase – breaks down lactose in dairy products ous organs of the digestive system. The cutouts are then glued on. Students can also label the Enzymes lungs, heart, and brain to gain a more thorough perspective of the human body. 4. ComparingCompa Dierent Brands Proteases – break down proteins Teaching tip: Both diagrams are excellent examples of integrating art Students add the same amount of enzyme from different manufacturers, and test each sample at into your science curriculum. Students whose academic strength lies Lipases – break down lipids, fats, oils the same time. within the visual realm of multiple intelligence will enjoy completing this assignment and others like it. Fact: The human body produces over 20 different digestive enzymes. Some of these are sold as supplements by certain companies to treat digestive disorders. 5. What is the Eect of pH? • These projects are very large, so if you don’t have the wall space for This is simples to run if you already have bottles of the pH buffers available.
Recommended publications
  • A3 Lemon Batteries and Other Batteries – Electricity from Chemical Energy Answer Sheet
    A3 Lemon batteries and other batteries – Electricity from chemical energy Answer sheet A3 Lemon batteries and other batteries – Electricity from chemical energy Note: This answer sheet will go into the analyses for the individual subexperiments only if experi- ence shows that there could be particular difficulties. 1 How well does the “fruit and vegetable battery” work? 1.6 Questions What do you think: Does the electricity really come from the lemon, or what is the real source? Answer: A reasonable answer would be: I can decide that only if I test different fruits and vegetables. If the effect is the same for different fruits and vegetables, the electricity must come from the metals that are inserted into the fruit or vegetable as electrodes, or perhaps also from a common property of the fruits or vegetables. 2 The “lemon battery”: What role does each element play? 2.5 Analysis Check your results. List the three metals used in the experiment in a logical order according to the measured voltages. Start with copper at the left as the noble metal. What does the voltage value of a battery basically seem to depend on? Note: It depends on the different (!) metals that are used. 2.6 Questions a) What does the experiment have to do with the electrochemical voltage series of metals? Answer: The greater the difference between the two electrode metals in the electro- chemical voltage series, that is, the less noble the metal of the one electrode is com- pared to the other electrode, the better the corresponding battery will work.
    [Show full text]
  • Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity Thetech.Org
    201 S. Market St. San Jose CA. 95113 Lemon Battery 1-408-294-8324 Lab Related Activity: Simplicity of Electricity thetech.org This activity is meant to extend your students’ knowledge of the topics covered in our Simplicity of Electricity lab. Through this activity, your students will create a simplified version of the batteries used in everyday electronics. Grade Levels: 4-8 (this activity is meant to be done in groups of 4-5 students) Estimated Time: 30-45 minutes Student Outcomes: 1. Students will be able to create a simple battery to power a light bulb. Next Generation Science Standards Common Core ELA Standards Physical Sciences: Grades 4-5: Writing W.7; W.8 Grade 4: 4-PS3-2, 4-PS3-4; Grade 5: 5-PS1-3 Grade 4: Speaking and Listening 4.SL.1b-d Engineering and Design: Grade 5: Speaking and Listening 5.SL.1b-d Grades 3-5: 3-5-ETS1-3; Grades 6-8: MS-ETS1-1-4 Grades 6-8: Writing W.7; Speaking and Listening SL.1b-e California State Science Standards Physical Sciences: Grade 4: 4.1.g; Grade 5: 5.1.c; Grade 8: 8.7.c Investigation and Experimentation: Grade 4: 4.6.a, c, d; Grade 5: 5.6.b, c, i; Grade 6: 6.7.a, d, e; Grade 7: 7.7.c- e; Grade 8: 8.9.a Vocabulary: Familiarity with these terms and concepts will enhance students’ experience in the activity. Conductor: a material that allows electricity to flow through it easily. Insulator: a material that does not allow electricity to flow through it easily Electricity: (from Greek, meaning “amber”) phenomena resulting from the presence and flow of electric charge; includes: lightning, static electricity, electromagnetic field, and electromagnetic induction.
    [Show full text]
  • Electrical Energy
    142 7 Electrical energy By the end of this chapter you will be able to … Science Understanding ● investigate factors that affect the transfer of energy through an electric circuit ● describe the differences between series and parallel circuits in terms of voltage, current and resistance ● use laboratory equipment to investigate the relationship between current and voltage in an electric circuit Science as a Human Endeavour ● discuss Cathy Foley’s career with superconductors Science Inquiry Skills ● draw circuit diagrams using the correct symbols alternating current (AC) electrical resistance electromagnet short-circuit ammeter electric cell fuse solenoid circuit diagram electric circuit magnetic field voltage FOCUS direct current (DC) electric current parallel circuit voltmeter earth wire electric generator series circuit volts LITERACY 200717_SE9_07.indd 142 20/05/11 9:36 AM CHAPTER 7: Electrical Energy 143 Focus for learning You use electricity every day. It is supplied to your home, and you just have to flick a switch to turn on a light or an electrical appliance. You can even carry electricity with you in batteries to power watches, torches, CD players, mobile phones and laptops. Electricity is not just found in our homes and in batteries. It also occurs naturally. Electricity can build up in storm clouds and be released as a flash of lightning. Electric eels live in South American rivers. They grow up to 2 m long and can produce enough electricity to kill or stun any fish nearby. The dead or stunned fish are then easy to catch. Your brain and nerves produce electric signals which control your body and keep you alive.
    [Show full text]
  • Lemon Battery (Part 1)
    Remote HW #3 (Based on Video #3) Topic: Lemon Battery (Part 1) Name: Note: Data will be provided so that you don’t have to do the experiment. Pre Lab Questions: 1. What is the difference between simulation vs. hands on labs According to Steve, Simulation is for data and hands on for understanding. 2. Why did Sam and Derick fail to light up the LED? Because Sam and Derick did not do the simulation before hands on 3. Why was Steve successful lighting up the LED? Because he did PHET simulation before doing the hands on. ​ ​ 4. What is a battery? Who invented it? Battery is a device with two terminals, anode (+) and cathode (-) to create potential difference between these two terminals. 5. What is an electrolyte? A liquid that contains ions. Lemon is a good source of electrolyte 6. What is anode and cathode? Anode (+) and cathode (-) terminals 7. What are the differences between potatoes and lemons? According to the table below, more voltage produced by the lemon since the pH of a lemon (2) is lower than the potato (6) that means the lemon is more acidic which means a more acidic product is bound to produce more electricity and voltage. 8. How can we use lemons/potatoes to light up a LED? Electrons flow from the zinc electrode through the LED bulb to the copper electrode and the bulb lights up 9. What is pH? pH is a scale of acidity from 0 to 14. It tells how acidic or alkaline a substance is. More acidic solutions have lower pH.
    [Show full text]
  • Lemon Cell/Battery the Manoa Experience -11/15/2008 (Dept. Of
    Lemon cell/battery The Manoa Experience -11/15/2008 (Dept. of Physics and Astronomy) This document can be downloaded from http://www2.hawaii.edu/~plam/K-12-projects/) Materials: 1. Positive electrode – copper (e.g. a US penny before 1982 - 95% copper, or a US quarter - 92% copper) 2. Negative electrode – zinc (a piece of galvanize of nail – the coating is zinc) 3. An electrolyte – a lemon (or a potato or other fruits which has acidic or salt content) Setup: Make a slit on the lemon and insert penny, push nail into lemon about ~ 1 inch (2 -3 cm) away from the penny (if the lemon is not too ripe, you may want to squeeze the lemon slightly to mobilize the juice before you insert the electrodes). You have made a lemon cell. If you have a voltmeter (or multi-meter), you can measure the voltage across the two electrodes (copper is positive and zinc is negative); you should get around 0.9 volt. If you connect two of them in series, you will get two the voltage (~ 1.8 volt). When more than one cell is connected together, it is call a battery (or battery of cells). At this point, you may think that you can light up a flash light bulb with this lemon battery because a D- cell is 1.5 volt. But, you can’t; the lemon battery has too high an internal resistance (few thousand ohms); it can only supply a very small amount of current (~ few tenths of a mA). Light Emitting Diode (LED): A LED requires about 1.5 volt but a very small amount of current to light up; two lemon cells in series can light up a LED (very dimly).
    [Show full text]
  • How Does a Battery Work? 3/14/20, 1004 AM
    How does a battery work? 3/14/20, 1004 AM How does a battery work? Energy cannot be created or destroyed, but it can be saved in various forms. One way to store it is What were the 100 Greatest in the form of chemical energy in a battery. When connected in a circuit, a battery can produce Inventions? electricity. See the list--Greatest Inventions of all Time Batteries convert Chemical Energy into Electrical Energy (https://www.edinformatics.com/inventions_inventors/) A battery has two ends -- a positive terminal (cathode) and a negative terminal (anode). If you connect the two terminals with wire, a circuit is formed. Electrons will flow through the wire and a current of electricity is produced. Inside the battery, a reaction between chemicals take place. But the reaction takes place only if there is a flow of electrons. Batteries can be stored for a long time and still work because the chemical process doesn't start until the electrons flow from the negative to the positive terminals through a circuit. A Chemical Reaction Takes Place in a Battery A Simple example -- The lemon cell battery STEM Activies Let's start with a very simple battery that uses a lemon that has two different metallic objects Mass Volume Density inserted into it, for example a galvanized nail and a copper coin or wire. The copper serves as the (http://www.edinformatics.com/math_science/mass.htm) positive electrode or cathode and the galvanized (zinc coated) nail as the electron-producing Molecular Modeling-- An NGSS negative electrode or anode. These two objects work as electrodes, causing an electrochemical Activity reaction which generates a small potential difference.
    [Show full text]
  • 1 4.6 the Lemon Battery
    Last revised 30/03/2021 4.6 The lemon battery Curriculum links ACSSU155 Energy appears in different forms, including movement (kinetic energy), heat and potential energy, and energy transformations and transfers cause change within systems. KEY IDEAS • Energy is the capacity to do work. • Energy transfers involve change. • Energy looks different in different situations – it can be transferred from one object to another. ACSIS144 Construct and use a range of representations, including graphs, keys and models to represent and analyse patterns or relationships in data using digital technologies as appropriate. ACSIS145 Summarise data, from students’ own investigations and secondary sources, and use scientific understanding to identify relationships and draw conclusions based on evidence. Lesson outcomes At the end of this activity students will be able to: • construct a battery made of lemons and copper and zinc electrodes. • explain that the energy to power the battery ultimately comes from the chemical energy in the metal electrodes. What ideas might your students already have? • A very common misconception is that this battery is powered by the lemon. In fact the chemical energy comes from the pure metals. A large amount of chemical or electrical energy was put in to produce the pure metals from their ores. Key vocabulary Electrode, battery, LED (light emitting diode). Equipment list Each GROUP will require: • 4-6 lemons • 4-6 pieces of copper and zinc, approximately 1 cm x 3 cm • LED • electrical leads with alligator clips • tray for lemons. Things to consider A typical LED requires around 2.2 V to light. A copper/zinc electric cell (in any appropriate electrolyte) can produce up to around 0.8 V).
    [Show full text]
  • Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry
    Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry of Experienced Teachers A Dissertation Presented by Stephanie O’Brien to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science Education Stony Brook University August 2017 ProQuest Number:10619384 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 10619384 Published by ProQuest LLC ( 2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright by Stephanie O'Brien 2017 ii Stony Brook University The Graduate School Stephanie O’Brien We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Angela M. Kelly, Ph.D. Associate Professor, Department of Physics & Astronomy Keith Sheppard, Ed.D. Associate Professor, Department of Biochemistry & Cell Biology David Hanson, Ph.D. Professor Emeritus, Department of Chemistry Stephen A. Koch, Ph.D. Professor, Department of Chemistry This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School iii Abstract of the Dissertation Topic-Specific Pedagogical Content Knowledge (TSPCK) in Redox and Electrochemistry of Experienced Chemistry Teachers by Stephanie O’Brien Doctor of Philosophy in Science Education Stony Brook University 2017 Topic specific pedagogical content knowledge (TSPCK) is the basis by which knowledge of subject matter of a particular topic is conveyed to students.
    [Show full text]
  • Welcome to Your Digital Edition of Tech Briefs and Motion Design
    Welcome to your Digital Edition of Tech Briefs and Motion Design Included in This August 2018 Edition: Tech Briefs Motion Design August 2018 www.techbriefs.com Vol. 42 No. 87 August 2018 2D Material Enables On-Chip Optical Communication Machine Vision Can Do More Than You Think Drive Technology for Precise Actuator Control Testing Technologies for Mission-Critical IoT SPECIAL SECTION: Conical, Floating-Piston Isolation Valve Imager Tracks Cancer and Technology Leaders in Power/Power Management IMTS Show Preview Stem Cells Supplement to Tech Briefs Click Here Click Here How to Navigate the Magazines: At the bottom of each page, you will see a navigation bar with the following buttons: Arrows: Click on the right or left facing arrow to turn the page forward or backward. Introduction: Click on this icon to quickly turn to this page. Cover: Click on this icon to quickly turn to the front cover. Table of Contents: Click on this icon to quickly turn to the table of contents. Zoom In: Click on this magnifying glass icon to zoom in on the page. Zoom Out: Click on this magnifying glass icon to zoom out on the page. Find: Click on this icon to search the document. You can also use the standard Acrobat Reader tools to navigate through each magazine. Automation & Control Freak? Same here. We carry more automation & control brand names than any other distributor in North America. It’s true – we checked. © Allied Electronics & Automation, 2018 iÌÞÕÀƂE w>Ì alliedelec.com 1.800.433.5700 Free Info at http://info.hotims.com/69509-730 August 2018 www.techbriefs.com Vol.
    [Show full text]
  • Galvanic and Electrolytic Cells
    2014/01/01 Difference between galvanic & electrolytic cells Galvanic cells consist of self sustaining electrode reactions converting chemical energy into electrical Galvanic – no batteries energy. GALVANIC AND Galvanic & electrolytic cells They produce electricity ELECTROLYTIC CELLS Electrolytic cells are sustained by a supply of electrical energy from a current source, converting electrical energy into chemical energy. They are used to electroplate items. Electrolytic – batteries required Lemon battery ZnO - Redox reaction REDOX REACTIONS Mg → Mg2+ + 2e- oxidation reaction OXIDATION REDUCTION reducing agent (donates electrons and so can cause reduction) - - Cl2 + 2e → 2Cl reduction reaction A reaction in A reaction in which a which a oxidising agent (accepts electrons and substance substance gains so can cause oxidation) Redox agents loses electrons electrons Mg → Mg2+ + 2e- Mg is oxidised (1) - - Cl2 + 2e → 2Cl Cl2 is reduced (2) Mg + Cl2 → MgCl2 Redox reaction Mg in Cl2 The electrons cancel each other out. Redox reactions 2+ - MgCl2 is an ionic compound (Mg 2Cl ) Gain & loss of electrons The equation shows 2 half reactions (1 and Redox examples 2) that add to give the full redox reaction. 1 2014/01/01 DIRECT ELECTRON TRANSFER From the observations we can infer that: Cu in AgNO3 Cu → Cu2+ + 2e- A coil of copper was Ag+ + e- → Ag placed in a silver nitrate solution Electrons are transferred The solution became blue from the copper atoms on because copper ions the piece of copper, to the were formed. silver ions in the silver nitrate solution. Solid silver deposited on This is a redox reaction. Cu in AgNO3 the copper wire. This is a spontaneous reaction.
    [Show full text]
  • Energy Activity Energy Education Series
    ENERGY ACTIVITY ENERGY EDUCATION SERIES How to make a lemon battery Ages: 10+ You will need: 4 juicy lemons, 4 copper pennies, 4 large paperclips, 5 alligator clips, 1 red LED, small kitchen knife Introduction: In 1800, Alessandro Volta invented the “voltaic pile,” which was the �rst electric battery. This battery was made out of alternating plates of zinc and copper, with pieces of cardboard wetted in a saline (salt) solution. He showed that when metals and chemicals come into contact, they can produce electricity! Making a battery: Did you know you can get electricity out of a lemon, the same way Volta did? We can make a mini-battery out of a lemon, a copper penny and a paperclip. Make sure to check with a grown-up before you begin this experiment. Take a lemon, and roll it back and forth on a table. This will loosen the pulp inside and get the juices �owing inside of the lemon. With a kitchen knife, make two small cuts in the top of the lemon, about an inch or closer to each other. Be careful when cutting! Press the paperclip into one cut and the penny into the other. Make sure that the penny and the paperclip do not touch each other. Now you have created a single-cell battery! The paperclip and the penny are called electrodes, and the lemon juice is the electrolyte. The steel of the paperclip and the copper of the penny create di�erent chemical reactions with the acid in lemon juice. These two chemical reactions cause the electrons in the lemon juice to start �owing.
    [Show full text]
  • Ice-Tray Battery - STEAM Experiments - Page 1
    Ice-Tray Battery - STEAM Experiments - Page 1 http://steamexperiments.com Ice-Tray Battery WIP Keywords: 2017, Acid, Battery, Chemistry, Copper, Electrochemistry, Engineering, LED, Zinc Meta Description Build an actual, working battery, using simple materials commonly found at home. Learning Objectives Understanding how voltaic batteries works. Understanding how chemical energy can be turned into electrical energy. Key Terms Electrochemistry The study of the chemical processes and reactions that results in a movement of electrons. Electrode A conductor that allows electrons to enter or leave an object. Electrolytes A material (usually liquid) that contains ions and thus conducts electricity. Galvanization A process used to prevent rusting by adding a layer of zinc to a surface of iron or steel. Ion A particle with an electrical charge which can be positive or negative. Lead Leads are short metal wires extending out from electronic components which allow them to be plugged into a breadboard. Light Emitting Diode (LED) A polarized two-lead device which lights up. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Ice-Tray Battery - STEAM Experiments - Page 2 http://steamexperiments.com Oxidized The chemical process that results in the loss of electrons. Polarised Device An electrical device which only allows current flow in a single direction. Voltaic battery The first known battery, also known as the voltaic pile. It consists of several layers of copper and zinc, separated by a cloth soaked in salty water. Method Step 1 Wrap the bare copper wire 5 times around the upper part of one of the galvanised nails.
    [Show full text]