Multiple Imprinted and Stemness Genes Provide a Link Between Normal and Tumor Progenitor Cells of the Developing Human Kidney

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Imprinted and Stemness Genes Provide a Link Between Normal and Tumor Progenitor Cells of the Developing Human Kidney Research Article Multiple Imprinted and Stemness Genes Provide a Link between Normal and Tumor Progenitor Cells of the Developing Human Kidney Benjamin Dekel,1 Sally Metsuyanim,1 Kai M. Schmidt-Ott,5 Edi Fridman,2 Jasmin Jacob-Hirsch,3 Amos Simon,3 Jehonathan Pinthus,4 Yoram Mor,4 Jonathan Barasch,5 Ninette Amariglio,3 Yair Reisner,6 Naftali Kaminski,7 and Gideon Rechavi3 Departments of 1Pediatrics, 2Pathology, 3Pediatric Hemato-Oncology, and 4Urology, Chaim Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 5Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; 6Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; and 7Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania Abstract Introduction Wilms’ tumor (WT), the embryonic kidney malignancy, is Metanephroi are the primordia of adult mammalian kidneys (1). suggested to evolve from a progenitor cell population of The metanephric blastema contains multipotential precursors uninduced metanephric blastema, which typically gives rise that give rise to all cell types of the nephron (2). Errors in to nephrons. However, apart from blastema, WT specimens nephrogenesis that lead to human disease are common (1). They frequently contain cells that have differentiated into renal include congenital abnormalities (e.g., renal dysplasia) and cancer. tubular or stromal phenotypes, complicating their analysis. Wilms’ tumor (WT) or nephroblastoma is a pediatric kidney cancer We aimed to define tumor-progenitor genes that function believed to arise from multipotent embryonic renal precursors of in normal kidney development using WT xenografts (WISH- the metanephric blastema (3), which fail to terminally differentiate WT), in which the blastema accumulates with serial pas- into epithelium and continue to proliferate, thus forming blastemal sages at the expense of differentiated cells. Herein, we did elements in the tumor. Nevertheless, WTs contain structures at transcriptional profiling using oligonucleotide microarrays different stages of maturation that mimic those present in the of WISH-WT, WT source, human fetal and adult kidneys, nephrogenic zone of the growing fetal kidney (tubular epithelia and and primary and metastatic renal cell carcinoma. Among stromal elements in addition to uninduced blastema), and also the most significantly up-regulated genes in WISH-WT, other mesoderm elements (rhabdomyoblats, cartilage), suggesting we identified a surprising number of paternally expressed that blastemal cells have differentiated at least in part (3). Derived genes (PEG1/MEST, PEG3, PEG5/NNAT, PEG10, IGF2,and from primitive embryonic tissue and being strongly associated with DLK1), as well as Meis homeobox genes [myeloid ecotropic various congenital syndromes, WT is an attractive model to study viral integration site 1 homologue 1 (MEIS1) and MEIS2], which developmental pathways leading to cancer. In fact, WT had already suppress cell differentiation and maintain self-renewal. A provided significant information regarding the genetic and comparison between independent WISH-WT and WT sam- epigenetic events leading to the development of cancer in general ples by real-time PCR showed most of these genes to be (4–7). Global gene profiling during kidney development has highly overexpressed in the xenografts. Concomitantly, provided novel insights into the genetic program that control they were significantly induced in human fetal kidneys, murine and human nephrogenesis (8–11). Furthermore, molecular strictly developmentally regulated throughout mouse nephro- signatures of normal human kidney development set a reference genesis and overexpressed in the normal rat metanephric for abnormal one (12). Accordingly, we could also show that the blastema. Furthermore, in vitro differentiation of the unin- overall gene expression profile of a WT specimen was most similar duced blastema leads to rapid down-regulation of PEG3, to that observed for an 8-week human gestation kidney (11). DLK1,andMEIS1. Interestingly, ischemic/reperfusion in- Li et al. (13) have recently done more detailed experiments jury to adult mouse kidneys reinduced the expression of involving gene expression profiling in WT. They identified 357 PEG3, PEG10, DLK1, and MEIS1, hence simulating embryo- genes as differentially expressed between favorable histology WTs genesis. Thus, multiple imprinted and stemness genes that and fetal kidneys (16-22 weeks of gestation). To determine stage- function to expand the renal progenitor cell population specific expression of these genes, they compared their data set may lead to evolution and maintenance of WT. (Cancer Res to that previously obtained for normal rat nephrogenesis (8). One 2006; 66(12): 6040-9) hundred twenty-four matches to genes on the microarray used by Stuart et al. (8) were found. Mapping between the two data sets showed that WTs systematically overexpressed genes corres- ponding to the earliest stage of metanephric development. Never- theless, profiling gene expression in whole heterogeneous tissues, Note: Supplementary data for this article are available at Cancer Research Online such as WT, is complicated by mixed populations of cells and is (http://cancerres.aacrjournals.org/). Requests for reprints: Benjamin Dekel, Laboratory for Developmental and therefore less powerful for discovering genes involved in specific Regenerative Nephrology, Department of Pediatrics, Safra Children’s Hospital, Sheba developmental processes. In addition, it is becoming clear that Medical Center, 52621 Tel Hashomer, Israel. Phone: 972-3-5302517; Fax: 972-3-5305787; many, if not most, malignancies arise from a rare population of E-mail: [email protected]. I2006 American Association for Cancer Research. cells that exclusively maintain the ability to self-renew and sustain doi:10.1158/0008-5472.CAN-05-4528 the tumor via the expression of tumor-progenitor genes (14, 15). Cancer Res 2006; 66: (12). June 15, 2006 6040 www.aacrjournals.org Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2006 American Association for Cancer Research. Imprinted Genes in Wilms’ Tumor Xenografts Moreover, these ‘‘cancer stem cells’’ are often biologically distinct Ischemia/reflow experiments. For unilateral ischemia/reflow, a flank from the bulk of differentiated cancer cells that characterize the incision was made and the left renal pedicle was clamped for 40 minutes disease. In that regard, the analysis of WT xenografts established using a vascular clamp (Fine Science Tools, Inc., Foster City, CA). The and propagated in immunodeficient mice, which pressure for meta- abdomen was covered with gauze moistened in PBS, and the mice were j nephric blastemal maintenance/proliferation and the disappearance maintained at 37 C using a warming pad. After 40 minutes, the clamp was removed and reperfusion was confirmed visually. To determine the extent of of differentiated tubular and stromal structures, is advantageous. acute injury, control mice were sacrificed 24 hours after ischemia/reflow, The selection of a more homogenous subset of early metanephric and kidneys were collected and processed for histology using H&E and cancer cells is of paramount importance as these are the cellular sirius red staining. characteristics that might be clinically linked to morbidity. RNA isolation. Total RNA from human and mouse samples was isolated Here, we present molecular analysis of these authentic WT xeno- from each sample using TRIZOL (Life Technologies, Invitrogen, Carlsbad, grafts, concomitant with fetal and adult kidneys, and renal cell carcino- CA).8 Total RNA from rat metanephric mesenchymes was extracted using ma. By comparing the gene expression profiles and analyzing models RNeasy mini kit (Qiagen, Valencia, CA) with on-column DNase digestion of murine kidney development and regeneration, we have identified according to the instructions of the manufacturer. An Agilent Bioanalyzer multiple imprinted and stemness-related genes that participate in early was used to confirm RNA integrity. nephrogenesis and also signify maintenance and expansion of WT Microarray analysis. Malignant adult and fetal kidney specimens were obtained from kidneys removed for stage I clear cell carcinoma or WT. blastema. Thus, epigenetic changes, which regulate imprinted genes, Adult kidney specimens were obtained from the normal kidneys removed may serve as a driving force for the human renal progenitor cell for stage I clear cell carcinoma. Metastatic renal cell carcinoma was population affecting both organogenesis and tumorigenesis. obtained from surgical remnants of biopsies. Fetal kidney tissue was obtained following curettage. Studies with human embryonic kidney tissue were approved by the Helsinki Ethical Committee. Total RNA was extracted Materials and Methods and used as a template to generate double-stranded cDNA and biotin- Animals and surgical procedures. Severe combined immunodeficient labeled cRNA, as recommended by the manufacturer of the arrays and as (SCID) (c.b-17/Icr beige or nonobese diabetic), nude (BALB/c nu/nu), and previously described (17). Hybridization to a Genechip Human Genome C57BL/6 mouse strains were obtained from the Weizmann Institute Animal HU95A oligonucleotide arrays containing 9,632 probe sets was done Breeding Center (Rehovot, Israel). Animals used were 6- to 10-week-old. as described in the Affymetrix human_datasheet.pdf 9 (Affymetrix,
Recommended publications
  • Kinesin Family Member 18B Regulates the Proliferation and Invasion Of
    Wu et al. Cell Death and Disease (2021) 12:302 https://doi.org/10.1038/s41419-021-03582-2 Cell Death & Disease ARTICLE Open Access Kinesin family member 18B regulates the proliferation and invasion of human prostate cancer cells Yu-Peng Wu 1,Zhi-BinKe 1, Wen-Cai Zheng 1, Ye-Hui Chen 1,Jun-MingZhu 1,FeiLin 1,Xiao-DongLi 1, Shao-Hao Chen 1,HaiCai 1, Qing-Shui Zheng 1, Yong Wei 1, Xue-Yi Xue 1 and Ning Xu 1 Abstract Expression of kinesin family member 18B (KIF18B), an ATPase with key roles in cell division, is deregulated in many cancers, but its involvement in prostate cancer (PCa) is unclear. Here, we investigated the expression and function of KIF18B in human PCa specimens and cell lines using bioinformatics analyses, immunohistochemical and immunofluorescence microscopy, and RT-qPCR and western blot analyses. KIF18B was overexpressed in PCa specimens compared with paracancerous tissues and was associated with poorer disease-free survival. In vitro, KIF18B knockdown in PCa cell lines promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, while KIF18B overexpression had the opposite effects. In a mouse xenograft model, KIF18B overexpression accelerated and promoted the growth of PCa tumors. Bioinformatics analysis of control and KIF18B-overexpressing PCa cells showed that genes involved in the PI3K–AKT–mTOR signaling pathway were significantly enriched among the differentially expressed genes. Consistent with this observation, we found that KIF18B overexpression activates the PI3K–AKT–mTOR signaling pathway in PCa cells both in vitro and in vivo. Collectively, our results suggest that KIF18B plays a crucial role – – 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in PCa via activation of the PI3K AKT mTOR signaling pathway, and raise the possibility that KIF18B could have utility as a novel biomarker for PCa.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • 0.5) in Stat3∆/∆ Compared with Stat3flox/Flox
    Supplemental Table 2 Genes down-regulated (<0.5) in Stat3∆/∆ compared with Stat3flox/flox Probe ID Gene Symbol Gene Description Entrez gene ID 1460599_at Ermp1 endoplasmic reticulum metallopeptidase 1 226090 1460463_at H60c histocompatibility 60c 670558 1460431_at Gcnt1 glucosaminyl (N-acetyl) transferase 1, core 2 14537 1459979_x_at Zfp68 zinc finger protein 68 24135 1459747_at --- --- --- 1459608_at --- --- --- 1459168_at --- --- --- 1458718_at --- --- --- 1458618_at --- --- --- 1458466_at Ctsa cathepsin A 19025 1458345_s_at Colec11 collectin sub-family member 11 71693 1458046_at --- --- --- 1457769_at H60a histocompatibility 60a 15101 1457680_a_at Tmem69 transmembrane protein 69 230657 1457644_s_at Cxcl1 chemokine (C-X-C motif) ligand 1 14825 1457639_at Atp6v1h ATPase, H+ transporting, lysosomal V1 subunit H 108664 1457260_at 5730409E04Rik RIKEN cDNA 5730409E04Rik gene 230757 1457070_at --- --- --- 1456893_at --- --- --- 1456823_at Gm70 predicted gene 70 210762 1456671_at Tbrg3 transforming growth factor beta regulated gene 3 21378 1456211_at Nlrp10 NLR family, pyrin domain containing 10 244202 1455881_at Ier5l immediate early response 5-like 72500 1455576_at Rinl Ras and Rab interactor-like 320435 1455304_at Unc13c unc-13 homolog C (C. elegans) 208898 1455241_at BC037703 cDNA sequence BC037703 242125 1454866_s_at Clic6 chloride intracellular channel 6 209195 1453906_at Med13l mediator complex subunit 13-like 76199 1453522_at 6530401N04Rik RIKEN cDNA 6530401N04 gene 328092 1453354_at Gm11602 predicted gene 11602 100380944 1453234_at
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Microrna-7-5P Mediates the Signaling of Hepatocyte Growth
    www.nature.com/scientificreports OPEN MicroRNA-7-5p mediates the signaling of hepatocyte growth factor to suppress oncogenes in the Received: 30 August 2017 Accepted: 2 November 2017 MCF-10A mammary epithelial cell Published: xx xx xxxx Dawoon Jeong1, Juyeon Ham1, Sungbin Park1, Seungyeon Lee 1, Hyunkyung Lee1, Han-Sung Kang2 & Sun Jung Kim1 MicroRNA-7 (miR-7) is a non-coding RNA of 23-nucleotides that has been shown to act as a tumor suppressor in various cancers including breast cancer. Although there have been copious studies on the action mechanisms of miR-7, little is known about how the miR is controlled in the mammary cell. In this study, we performed a genome-wide expression analysis in miR-7-transfected MCF-10A breast cell line to explore the upstream regulators of miR-7. Analysis of the dysregulated target gene pool predicted hepatocyte growth factor (HGF) as the most plausible upstream regulator of miR-7. MiR-7 was upregulated in MCF-10A cells by HGF, and subsequently downregulated upon treatment with siRNA against HGF. However, the expression of HGF did not signifcantly change through either an upregulation or downregulation of miR-7 expression, suggesting that HGF acts upstream of miR-7. In addition, the target genes of miR-7, such as EGFR, KLF4, FAK, PAK1 and SET8, which are all known oncogenes, were downregulated in HGF-treated MCF-10A; in contrast, knocking down HGF recovered their expression. These results indicate that miR-7 mediates the activity of HGF to suppress oncogenic proteins, which inhibits the development of normal cells, at least MCF-10A, into cancerous cells.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Impaired Angiogenesis and Tumor Development by Inhibition of the Mitotic Kinesin Eg5
    Oncotarget, December, Vol.4, No 12 Impaired angiogenesis and tumor development by inhibition of the mitotic kinesin Eg5 Prisca Exertier1,2, Sophie Javerzat1,2, Baigang Wang3,8, Mélanie Franco1,2, John Herbert4, Natalia Platonova1,2, Marie Winandy5, Nadège Pujol1,2, Olivier Nivelles6, Sandra Ormenese7, Virginie Godard1,2, Jürgen Becker8, Roy Bicknell4, Raphael Pineau9, Jörg Wilting8*, Andreas Bikfalvi1,2*, Martin Hagedorn1,2* 1 Univ. Bordeaux, LAMC, UMR 1029, F-33405 Talence, France 2 INSERM, LAMC, UMR 1029, F-33405 Talence, France 3 Ruhr-Universität Bochum, Medizinische Fakultät; Abt. f. Anatomie und Embryologie, D-44780 Bochum, Germany 4 Molecular Angiogenesis Group, Institute of Biomedical Research, Univ Birmingham, Medical School, Edgbaston, Birmingham, UK 5 GIGA, Zebrafish Facility, Tour B34, Université de Liège, Belgium 6 GIGA, Unité de Biologie Moléculaire et Génie Génétique, Tour B34, Université de Liège, Belgium 7 GIGA, Imaging and Flow Cytometry Facility, Tour B34, Université de Liege, Belgium 8 Zentrum Anatomie, Abteilung Anatomie und Zellbiologie, Georg-August-Universität Goettingen, Germany 9 Animalerie mutualisée, University of Bordeaux I, Talence, France * Co-PIs Correspondence to: Martin Hagedorn, email: [email protected] Keywords: Angiogenesis, Eg5 kinesin, Mklp2 kinesin, VEGF, ispinesib Received: October 11, 2013 Accepted: October 24, 2013 Published: October 26, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Kinesin motor proteins exert essential cellular functions in all eukaryotes. They control mitosis, migration and intracellular transport through interaction with microtubules. Small molecule inhibitors of the mitotic kinesin KiF11/Eg5 are a promising new class of anti-neoplastic agents currently evaluated in clinical cancer trials for solid tumors and hematological malignancies.
    [Show full text]
  • Molecular Features of Triple Negative Breast Cancer Cells by Genome-Wide Gene Expression Profiling Analysis
    478 INTERNATIONAL JOURNAL OF ONCOLOGY 42: 478-506, 2013 Molecular features of triple negative breast cancer cells by genome-wide gene expression profiling analysis MASATO KOMATSU1,2*, TETSURO YOSHIMARU1*, TAISUKE MATSUO1, KAZUMA KIYOTANI1, YASUO MIYOSHI3, TOSHIHITO TANAHASHI4, KAZUHITO ROKUTAN4, RUI YAMAGUCHI5, AYUMU SAITO6, SEIYA IMOTO6, SATORU MIYANO6, YUSUKE NAKAMURA7, MITSUNORI SASA8, MITSUO SHIMADA2 and TOYOMASA KATAGIRI1 1Division of Genome Medicine, Institute for Genome Research, The University of Tokushima; 2Department of Digestive and Transplantation Surgery, The University of Tokushima Graduate School; 3Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Hyogo 663-8501; 4Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503; Laboratories of 5Sequence Analysis, 6DNA Information Analysis and 7Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639; 8Tokushima Breast Care Clinic, Tokushima 770-0052, Japan Received September 22, 2012; Accepted November 6, 2012 DOI: 10.3892/ijo.2012.1744 Abstract. Triple negative breast cancer (TNBC) has a poor carcinogenesis of TNBC and could contribute to the develop- outcome due to the lack of beneficial therapeutic targets. To ment of molecular targets as a treatment for TNBC patients. clarify the molecular mechanisms involved in the carcino- genesis of TNBC and to identify target molecules for novel Introduction anticancer drugs, we analyzed the gene expression profiles of 30 TNBCs as well as 13 normal epithelial ductal cells that were Breast cancer is one of the most common solid malignant purified by laser-microbeam microdissection. We identified tumors among women worldwide. Breast cancer is a heteroge- 301 and 321 transcripts that were significantly upregulated neous disease that is currently classified based on the expression and downregulated in TNBC, respectively.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Mechanisms of Cytoprotection Mediated by G-Protein Coupled Receptor GPR39
    Mechanisms of Cytoprotection Mediated by G-Protein Coupled Receptor GPR39 Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Sonja Dittmer aus Hamburg Düsseldorf, Oktober 2008 aus dem Institut für Neurologie der Heinrich-Heine Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: PD Dr. Axel Methner Koreferent: Frau Prof. Christine Rose Tag der mündlichen Prüfung: 30.10.2008 Dissertation Sonja Dittmer 1. INTRODUCTION 4 1.1 CELL DEATH IN HEALTH AND DISEASE 4 1.1.1 APOPTOSIS 4 1.1.2 NECROSIS 5 1.1.3 AUTOPHAGY 5 1.2 CELL DEATH STIMULI 5 1.2.1 UNFOLDED PROTEIN RESPONSE 5 1.2.2 OXIDATIVE STRESS 8 1.3 G-PROTEIN COUPLED RECEPTORS 10 1.3.1 STRUCTURE AND FUNCTION 10 1.3.2 GPCRS AS DRUG TARGETS 14 1.3.3 PROTECTIVE ACTION OF GPCRS IN THE NERVOUS SYSTEM 15 1.3.4 EFFECTS OF GPCRS IN CANCER 15 1.3.5 G-PROTEIN COUPLED RECEPTOR 39 16 2. AIM OF THIS STUDY 17 3. MATERIALS 18 3.1 CHEMICALS 18 3.2 ENZYMES 18 3.2.1 RESTRICTION ENDONUCLEASES 18 3.2.2 MISCELLANEOUS ENZYMES 18 3.3 KITS 18 3.4 ANTIBODIES 18 3.4.1 PRIMARY ANTIBODIES 18 3.4.2 SECONDARY ANTIBODIES 19 3.5 MEDIA 20 3.5.1 BACTERIAL MEDIA 20 3.5.2 CELL CULTURE MEDIA 20 3.6 BUFFERS AND SOLUTIONS 21 3.7 BACTERIA 22 3.7.1 ESCHERICHIA COLI DH5 22 3.7.2 ONE SHOT® CCDB SURVIVAL™ 22 3.8 CELL LINES 22 3.8.1 NEURO-2A (N2A) 22 3.8.2 HUMAN EMBRYONIC KIDNEY CELLS (HEK 293) 22 3.8.3 HT22 CELLS 22 3.8.4 CHINESE HAMSTER OVARY CELLS (CHO) 23 3.8.5 MOUSE EMBRYONIC FIBROBLASTS (MEF) 23 3.8.6 SH-SY5Y CELLS 23 3.8.7 COS7 CELLS 23 3.9 PLASMIDS 23 3.9.1 EXPRESSION PLASMIDS 23 3.9.2 REPORTER PLASMIDS 25 3.9.3 MICRORNA (MIRNA) PLASMIDS 25 3.9.4 ENTR™ PLASMIDS 26 3.10 OLIGONUKLEOTIDES 27 3.10.1 QPCR PRIMERS AND PROBES 27 3.10.2 MIRNA-OLIGONUKLEOTIDES 28 3.10.2 SMALL INTERFERING RNA (SIRNA) 28 3.11 INSTRUMENTS 29 1 Dissertation Sonja Dittmer 4.
    [Show full text]
  • 1 Supplemental Material Maresin 1 Activates LGR6 Receptor
    Supplemental Material Maresin 1 Activates LGR6 Receptor Promoting Phagocyte Immunoresolvent Functions Nan Chiang, Stephania Libreros, Paul C. Norris, Xavier de la Rosa, Charles N. Serhan Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 1 Supplemental Table 1. Screening of orphan GPCRs with MaR1 Vehicle Vehicle MaR1 MaR1 mean RLU > GPCR ID SD % Activity Mean RLU Mean RLU + 2 SD Mean RLU Vehicle mean RLU+2 SD? ADMR 930920 33283 997486.5381 863760 -7% BAI1 172580 18362 209304.1828 176160 2% BAI2 26390 1354 29097.71737 26240 -1% BAI3 18040 758 19555.07976 18460 2% CCRL2 15090 402 15893.6583 13840 -8% CMKLR2 30080 1744 33568.954 28240 -6% DARC 119110 4817 128743.8016 126260 6% EBI2 101200 6004 113207.8197 105640 4% GHSR1B 3940 203 4345.298244 3700 -6% GPR101 41740 1593 44926.97349 41580 0% GPR103 21413 1484 24381.25067 23920 12% NO GPR107 366800 11007 388814.4922 360020 -2% GPR12 77980 1563 81105.4653 76260 -2% GPR123 1485190 46446 1578081.986 1342640 -10% GPR132 860940 17473 895885.901 826560 -4% GPR135 18720 1656 22032.6827 17540 -6% GPR137 40973 2285 45544.0809 39140 -4% GPR139 438280 16736 471751.0542 413120 -6% GPR141 30180 2080 34339.2307 29020 -4% GPR142 105250 12089 129427.069 101020 -4% GPR143 89390 5260 99910.40557 89380 0% GPR146 16860 551 17961.75617 16240 -4% GPR148 6160 484 7128.848113 7520 22% YES GPR149 50140 934 52008.76073 49720 -1% GPR15 10110 1086 12282.67884
    [Show full text]
  • Downregulation of KIF21B by Mir-132-3P Suppresses Cellular Functions in Gastric Cancer Via Regulating Wnt/Β-Catenin Signaling Pathway
    Downregulation of KIF21B by miR-132-3p suppresses cellular functions in gastric cancer via regulating Wnt/β-catenin signaling pathway Bingtian Liu Shandong University Cheeloo College of Medicine Ling Qiang Shandong Cancer Hospital: Shandong Cancer Hospital and Institute Bingxin Guan Shandong University Cheeloo College of Medicine Zhipeng Ji ( [email protected] ) Shandong University Cheeloo College of Medicine https://orcid.org/0000-0002-6052-0679 Research Article Keywords: Gastric cancer, KIF21B, miR-132-3p, Wnt/β-catenin signaling Posted Date: September 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-850811/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Recently, kinesin family member 21B (KIF21B) has been reported to be an oncogene in non-small cell lung cancer and hepatocellular carcinoma. However, the functional role and related mechanisms underlying gastric cancer (GC) pathogenesis remain largely uncovered. Here, we rst found that the expression of KIF21B was upregulated in GC tissues compared with adjunct normal tissues by analysis of Oncomine microarray gene expression datasets and clinical specimens. Knockdown of KIF21B signicantly suppressed the proliferation, migration and invasion in GC cell lines using CCK-8 assay and transwell assay. By luciferase reporter assay, KIF21B was conrmed as the target of miR-132-3p in GC cells and suppressed after miR-132-3p overexpression. Moreover, miR-132-3p was down-regulated and inversely correlated with KIF21B expression in GC tissues. Further functional experiments demonstrated that overexpression of KIF21B remarkedly reversed the suppressive effects of miR-132-3p overexpression on GC cell proliferation, migration and invasion.
    [Show full text]