Listeriolysin O Activates Listeria Monocytogenes Internalization Into Human Hepatocytes

Total Page:16

File Type:pdf, Size:1020Kb

Listeriolysin O Activates Listeria Monocytogenes Internalization Into Human Hepatocytes Listeriolysin O activates Listeria monocytogenes internalization into human hepatocytes through a novel pore-dependent mechanism Dissertation Presented in partial fulfillment of the requirements for the degree doctor of philosophy in the Graduate School of The Ohio State University By Stephen Vadia, M.S. Graduate Program in Microbiology The Ohio State University 2014 Dissertation Committee: Dr. Stephanie Seveau, Advisor Dr. Robert Munson Dr. Larry Schlesinger Dr. Susheela Tridandapani Copyright by Stephen Vadia 2014 Abstract The causative agent of listeriosis, Listeria monocytogenes, is a frequent contaminant of fruits, vegetables, cheeses, and processed foods. In certain high risk groups, L. monocytogenes can cause serious and potentially fatal infections. The bacterium can traverse the intestinal epithelial barrier and spread throughout the body via the bloodstream and lymphatic system. From there, it can infect the liver, cross the blood- brain barrier, and in pregnant women, the placental barrier. L. monocytogenes is able to cross these biological barriers due to its ability to proliferate within certain phagocytic and nonphagocytic cells. Bacterial invasins, most notably internalin (InlA) and InlB, bind to receptors on the surface of nonphagocytic cells to induce endocytosis of the bacterium through a zipper-like mechanism. L. monocytogenes can then escape from the endocytic vacuole and enter the cytosol through the activity of the pore-forming toxin listeriolysin O (LLO). In the cytosol, the bacterium can replicate and disseminate to adjacent cells by cell-to-cell spreading. LLO belongs to the cholesterol-dependent cytolysin (CDC) family of bacterial pore-forming toxins. These toxins are secreted as monomers, oligomerize on cholesterol- rich membranes, and form large transmembrane pores. In addition to mediating vacuolar escape, LLO stimulates a number of signaling pathways in host cells. We hypothesized ii that the signaling activity of extracellular LLO affects the intracellular lifecycle of L. monocytogenes. Using quantitative immunofluorescence microscopy to assess the importance of LLO for bacterial association to and internalization into epithelial cells, we found that LLO is required for efficient L. monocytogenes internalization into hepatocytes, and is sufficient to induce internalization of noninvasive bacteria and polystyrene beads. Using novel LLO variants that bind to host cells but are unable to form the pore complex, we demonstrated that pore formation was required for LLO- mediated internalization. The CDC streptolysin O is known to stimulate a Ca2+-dependent membrane repair response that involves endocytosis of the toxin from the perforated plasma membrane. We found that LLO stimulates a similar Ca2+-dependent membrane repair response, but that this response is not sufficient to account for L. monocytogenes internalization. LLO- mediated internalization and membrane repair share the requirement for the influx of extracellular Ca2+, but differ in their requirement for F-actin and K+ efflux. Surprisingly, using ionophores to stimulate Ca2+ and K+ fluxes, as happens when the plasma membrane is perforated by LLO, was sufficient to induce internalization of large particles. LLO mediates bacterial internalization in all human hepatocytes we tested and in additional epithelial cell lines. However, LLO does not induce bacterial internalization in all epithelial cells that it can perforate. In light of this data, LLO emerges as a significant invasion factor expressed by L. monocytogenes, which is coexpressed with InlA and InlB during infection. With the same approaches used to assess the role of LLO, we also determined the contribution of InlA and InlB to bacterial association, internalization, and intracellular viability in iii nonphagocytic cells that express the InlA and InlB receptors. We found significant variability in the involvement of each of these invasins in bacterial association, internalization, and intracellular viability, demonstrating that the activity of invasins is not governed solely by the presence or absence of their receptors. iv Dedication This dissertation is dedicated to my mom for her neverending support and her encouragement to pursue a career in science. I would never have started or finished this journey without her there to help me along the way. And to my Grandma and Grandpa Iacobucci, for believing in me at times when I did not believe in myself. v Acknowledgements First and foremost, I would like to thank my advisor, Dr. Stephanie Seveau, for her guidance, mentorship, and patience with me during my graduate career. I would also like to acknowledge my committee members, Dr. Robert Munson, Dr. Susheela Tridandapani, and Dr. Larry Schlesinger, for their comments and insights during committee meetings, and for recommendations which have supported me greatly in securing funding while at Ohio State and during my job search. Former lab members have helped immensely with this project. Anne-Cecile Haghighat began this work before I joined the lab, trained me as an incoming graduate student, and with the help of Andrew Bruggeman, constructed LLO variants used in this project. Dr. Eusondia Arnett performed invaluable experimental work for these studies during particularly busy times. This work also benefitted greatly from the help of many collaborators here at Ohio State University. I would like to thank Dr. Prosper Boyaka for his immunological expertise and for performing mouse immunizations. From the Boyaka lab, Astrid Bonnegarde-Bernard, and Mike Fial, provided critical hands on assistance with mouse infections. We were also greatly assisted in these experiments by Dr. Abhay Satoskar, as well as Dr. Steve Oghumu and Sanjay Varikuti from the Satoskar lab. Dr. John Robinson vi and Dr. William Ackerman provided protocols, advice, cell lines, and placental villi. Brian Kemmenoe at the OSU Campus Microscopy and Imaging Facility provided precious help with scanning electron microscopy. Dr. Elizabeth Wilson-Kubalek (The Scripps Research Institute, La Jolla, CA) performed transmission electron microscopy and provided us with wonderful images. I also wish to thank Dr. Daniel Portnoy (University of California, Berkeley, CA), Dr. Pascale Cossart (Pasteur Institute, Paris, France), Dr. Rodney Tweten (University of Oklahoma Health Sciences Center, Oklahoma City, OK), and Dr. Nancy Freitag (University of Illinois at Chicago, USA) for generously providing us with bacterial strains and plasmids. I also must thank Dr. Chad Rappleye and members of his lab, especially Dr. Eric Holbrook and Dr. Jessica Edwards, for all of their advice over the years, as well as Dr. Mary Anne Rubio and Dr. Juan Alfonzo for support, recommendations, and the occasional pep talk. vii Vita 2003.........................................................................................................B.A. Anthropology Case Western Reserve University 2007 to 2008.......................................................................................University Fellowship The Ohio State University 2008 to 2012...........................................................................Graduate Teaching Associate Department of Microbiology The Ohio State University 2010.........................................................................................................M.S. Microbiology The Ohio State University 2012 to 2013.....................................................................................Presidential Fellowship The Ohio State University 2013 to present........................................................................Graduate Teaching Associate Department of Microbiology The Ohio State University viii Publications Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, and Seveau S. 2011. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathogens, 7:e1002356. Chapter 2. Vadia S, Boyaka PN, Arnett E, Satoskar AR, Tweten RK, and Seveau S. 2013. Immunization with a listeriolysin O toxoid protects mice against Listeria monocytogenes. (Manuscript submitted for publication). Chapter 3. Vadia, S and Seveau, S. 2013. Fluxes of Ca2+ and K+ are required for the LLO-dependent internalization pathway of Listeria monocytogenes. (Manuscript submitted for publication). Chapter 4. Arnett E, Vadia S, Nackerman CC, Oghumu S, Satoskar A, McLeish KR, Uriarte SM, and Seveau S. 2013. The pore-forming toxin listeriolysin O is degraded by neutrophil proteases and fails to protect L. monocytogenes against intracellular killing. (The Journal of Immunology. In press). ix Vadia S, Arnett E, and Seveau S. Assessing the roles of LLO, InlA, and InlB during the L. monocytogenes intracellular lifecycle in hepatocytes and placental cells (Manuscript in preparation). Chapter 5. Fields of Study Major Field: Microbiology x Table of Contents Abstract...............................................................................................................................ii Dedication........................................................................................................................... v Acknowledgements........................................................................................................... vi Vita................................................................................................................................... viii Table of Contents.............................................................................................................
Recommended publications
  • The Food Poisoning Toxins of Bacillus Cereus
    toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
    [Show full text]
  • From Phagosome Into the Cytoplasm on Cytolysin, Listeriolysin O, After Evasion Listeria Monocytogenes in Macrophages by Dependen
    Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm This information is current as of September 23, 2021. Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma and Masao Mitsuyama J Immunol 2008; 180:7859-7868; ; doi: 10.4049/jimmunol.180.12.7859 http://www.jimmunol.org/content/180/12/7859 Downloaded from References This article cites 50 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/180/12/7859.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm1 Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma, and Masao Mitsuyama2 Listeriolysin O (LLO), an hly-encoded cytolysin from Listeria monocytogenes, plays an essential role in the entry of this pathogen into the macrophage cytoplasm and is also a key factor in inducing the production of IFN-␥ during the innate immune stage of infection.
    [Show full text]
  • Introduction to Bacteriology and Bacterial Structure/Function
    INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century.
    [Show full text]
  • Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
    Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear.
    [Show full text]
  • Impact of Bacterial Toxins in the Lungs
    toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333
    [Show full text]
  • Potential Roles and Functions of Listerial Virulence Factors During Brain Entry
    toxins Review Potential Roles and Functions of Listerial Virulence Factors during Brain Entry Franjo Banovi´c,Horst Schroten and Christian Schwerk * Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; [email protected] (F.B.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +49-621-383-346 Received: 17 March 2020; Accepted: 30 April 2020; Published: 5 May 2020 Abstract: Although it rarely induces disease in humans, Listeria monocytogenes (Lm) is important due to the frequency of serious pathological conditions—such as sepsis and meningitis—it causes in those few people that do get infected. Virulence factors (VF) of Lm—especially those involved in the passage through multiple cellular barriers of the body, including internalin (Inl) family members and listeriolysin O (LLO)—have been investigated both in vitro and in vivo, but the majority of work was focused on the mechanisms utilized during penetration of the gut and fetoplacental barriers. The role of listerial VF during entry into other organs remain as only partially solved puzzles. Here, we review the current knowledge on the entry of Lm into one of its more significant destinations, the brain, with a specific focus on the role of various VF in cellular adhesion and invasion. Keywords: Listeria monocytogenes; virulence factors; internalin; autolysin; listeriolysin; brain invasion Key Contribution: In this review we assemble the current knowledge of the entry of Listeria monocytogenes into the brain, which presents a significant destination for the bacteria. A specific focus is given to the role of various virulence factors in cellular adhesion and invasion.
    [Show full text]
  • Role of Hemolysin for the Intracellular Growth of Listeria Monocytogenes
    ROLE OF HEMOLYSIN FOR THE INTRACELLULAR GROWTH OF LISTERIA MONOCYTOGENES BY DANIEL A. PORTNOY,* P. SUZANNE JACKS,* AND DAVID J. HINRICHS* From *The Department of Microbiology and Immunology, School ofMedicine, Washington University, St. Louis, Missouri 63110; and the *Immunology Research Unit, Chiles Research Institute, Providence Medical Center and Veteran's Administration Medical Center, Portland, Oregon 97207 Listeria monocytogenes is a Gram-positive bacterial pathogen that occurs free- living in nature as well as in association with a variety of warm-blooded animals (1-4) . The oral route is likely the natural mode of transmission and two recent outbreaks were traced to contaminated milk products (5-7) . In most human cases, severe disease occurs in pregnant women or in individuals whose immune system has been compromised. L. monocytogenes is a facultative intracellular pathogen that has been exten- sively used in a murine model for the study of cell-mediated immunity (8-12). The host cells most generally considered to support the growth of L. monocyto- genes during infection are of the mononuclear phagocyte lineage (8, 9). Resident macrophages present in the liver and spleen may provide a conducive environ- ment for listerial intracellular growth while activated or elicited macrophages which migrate from the blood are listericidal (10, 12). However, there is evi- dence that L. monocytogenes is also capable of proliferation in nonprofessional phagocytes. For example, histological studies of infected tissues reveal that L. monocytogenes is present within liver parenchymal cells (10, 11) . Also, after oral challenge, L. monocytogenes has been observed within epithelial cells lining the small intestine (13). Finally, L.
    [Show full text]
  • Neutrophil Products Inhibit LLO Secretion and Activity, and Listeria Monocytogenes Intracellular Growth
    Neutrophil products inhibit LLO secretion and activity, and Listeria monocytogenes intracellular growth Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Eusondia Arnett Graduate Program in Microbiology The Ohio State University 2013 Dissertation Committee: Dr. Stephanie Seveau, Advisor Dr. John Gunn Dr. Mike Ibba Dr. Larry Schlesinger Copyright by Eusondia Arnett 2013 Abstract Listeria monocytogenes is a facultative intracellular pathogen that infects a large variety of host cells, including macrophages and diverse non-phagocytic cells. To avoid the phagosome microbicidal environment, L. monocytogenes secretes a pore-forming toxin (listeriolysin O; LLO) that releases the bacterium into the cytoplasm. Once in the cytosol, L. monocytogenes proliferates and infects adjacent cells through cell-to-cell spreading. Innate immune cells like neutrophils play an important role in the control of infection, yet the interaction between neutrophils, other host cells, and L. monocytogenes is not well understood. Neutrophils produce a high concentration and variety of antimicrobial molecules, including defensins and proteases; thus it is likely that these cells enhance the anti-listerial response of other host cells. This dissertation addresses if: i) human defensins, which can be released into the extracellular milieu by neutrophils, enable macrophages to control intracellular replication of L. monocytogenes; ii) L. monocytogenes is able to replicate in human neutrophils in a LLO-dependent manner as observed in macrophages; and iii) human neutrophils cooperate with macrophages to prevent L. monocytogenes replication in human macrophages. Addressing i), we found that the α-defensin HNP-1 (one of the most abundant proteins in neutrophil primary granules) cooperates with macrophages to inhibit L.
    [Show full text]
  • Functional Consequences of Calcium Influx Promoted by Bacterial Pore
    toxins Review Functional Consequences of Calcium Influx Promoted by Bacterial Pore-Forming Toxins Stéphanie Bouillot, Emeline Reboud and Philippe Huber * Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France; [email protected] (S.B.); [email protected] (E.R.) * Correspondence: [email protected] Received: 3 September 2018; Accepted: 20 September 2018; Published: 25 September 2018 Abstract: Bacterial pore-forming toxins induce a rapid and massive increase in cytosolic Ca2+ concentration due to the formation of pores in the plasma membrane and/or activation of Ca2+-channels. As Ca2+ is an essential messenger in cellular signaling, a sustained increase in Ca2+ concentration has dramatic consequences on cellular behavior, eventually leading to cell death. However, host cells have adapted mechanisms to protect against Ca2+ intoxication, such as Ca2+ efflux and membrane repair. The final outcome depends upon the nature and concentration of the toxin and on the cell type. This review highlights the repercussions of Ca2+ overload on the induction of cell death, repair mechanisms, cellular adhesive properties, and the inflammatory response. Keywords: host–pathogen interaction; bacterial virulence factor; cell death; signal transduction; ion flux Key Contribution: This review summarizes the numerous host cell alterations induced by Ca2+ overload triggered by bacterial pore-forming toxins, as well as the defense mechanisms implemented by the host to limit Ca2+ intoxication and plasma membrane perforation. 1. Introduction Bacterial pore-forming toxins (PFTs) are the most frequently encountered virulence factors among bacterial pathogens [1–4]. They are secreted in the extracellular milieu from Gram-negative and Gram-positive bacteria by various bacterial secretion systems.
    [Show full text]
  • Superantigen Responsive T Cells Are Required for Nasopharyngeal Infection by Streptococcus Pyogenes
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-22-2017 12:00 AM Superantigen responsive T cells are required for nasopharyngeal infection by Streptococcus pyogenes Joseph J. Zeppa The University of Western Ontario Supervisor Dr. John McCormick The University of Western Ontario Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Joseph J. Zeppa 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Immunology of Infectious Disease Commons Recommended Citation Zeppa, Joseph J., "Superantigen responsive T cells are required for nasopharyngeal infection by Streptococcus pyogenes" (2017). Electronic Thesis and Dissertation Repository. 4435. https://ir.lib.uwo.ca/etd/4435 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i Abstract Streptococcus pyogenes is a human-specific pathogen that is responsible for serious morbidity and mortality worldwide despite being susceptible to common antibiotics. Furthermore, there is currently no licensed vaccine available against this organism. Previous research from our laboratory implicated a critical role for superantigens in a transgenic mouse model of acute nasopharyngeal infection by S. pyogenes. Herein, we are able to detect superantigen production in vivo and establish that anti-superantigen antibodies generated by either passive immunization or active vaccination with a major histocompatibility complex II-binding interface superantigen toxoid reduces S. pyogenes nasopharyngeal burden.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0204873 A1 Ervin Et Al
    US 20150204873A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0204873 A1 Ervin et al. (43) Pub. Date: Jul. 23, 2015 (54) CELL-FREE ASSAY DEVICE AND METHODS Publication Classification OF USE (51) Int. C. (71) Applicant: ELECTONIC BIOSCIENCES, INC., San Diego, CA (US) GOIN 33/573 (2006.01) (52) U.S. C. (72) Inventors: Eric Ervin, Park City, UT (US); Anna CPC ........ G0IN33/573 (2013.01); G0IN 2333/952 E.P. Schibel, Salt Lake City, UT (US) (2013.01) (21) Appl. No.: 14/408,936 (22) PCT Fled: Jun. 18, 2013 (57) ABSTRACT (86) PCT NO.: PCT/US13A46318 Provided herein is a cell-free assay device, sometimes com S371 (c)(1), prising a lipid bilayer and an endopeptidase assay component, (2) Date: Dec. 17, 2014 for characterizing a pore forming protein. In some embodi Related U.S. Application Data ments provided herein is an apparatus comprising a pressure (60) Provisional application No. 61/661,318, filed on Jun. system for characterizing an interaction. Also, provided 18, 2012, provisional application No. 61/775,163, herein are methods for using a cell-free assay device to char filed on Mar. 8, 2013. acterize a pore forming protein and/or a test Substance. Patent Application Publication Jul. 23, 2015 Sheet 1 of 11 US 2015/0204873 A1 23 34 s a 35 22 23 Patent Application Publication Jul. 23, 2015 Sheet 2 of 11 US 2015/0204873 A1 10 12 FIG. 2A 37 . S SS 23 20 34 35 22 Patent Application Publication Jul. 23, 2015 Sheet 3 of 11 US 2015/0204873 A1 Patent Application Publication Jul.
    [Show full text]
  • Microbial Communication Leading to the Activation of Silent Fungal Secondary Metabolite Gene Clusters
    REVIEW published: 20 April 2015 doi: 10.3389/fmicb.2015.00299 Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters Tina Netzker 1,2, Juliane Fischer 1,2, Jakob Weber 1,2, Derek J. Mattern 1,2, Claudia C. König 1,2, Vito Valiante 1, Volker Schroeckh 1* and Axel A. Brakhage 1,2* 1 Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany, 2 Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific Edited by: Nancy Keller, communication between the microorganisms. A key role in this communication is played University of Wisconsin-Madison, by secondary metabolites (SMs), which are also called natural products. Recently, USA it was shown that interspecies “talk” between microorganisms represents a physio- Reviewed by: Mikael R. Andersen, logical trigger to activate silent gene clusters leading to the formation of novel SMs Technical University of Denmark, by the involved species. This review focuses on mixed microbial cultivation, mainly Denmark Christopher L. Schardl, between bacteria and fungi, with a special emphasis on the induced formation of University of Kentucky, USA fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction
    [Show full text]