Mastering the Game of Go with Deep Neural Networks and Tree Search
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Rules of Go It Would Be Suicidal (And Hence Illegal) for White to Play at E, the Board Is Initially Because the Block of Four White Empty
Scoring Example another liberty at D. Rules of Go It would be suicidal (and hence illegal) for white to play at E, The board is initially because the block of four white empty. stones would have no liberties. Could black play at E? It looks like a suicidal move, because Black plays first. the black stone would have no liberties, but it would occupy On a turn, either place a the white block’s last liberty at stone on a vacant inter- the same time; the move is legal and the white stones are section or pass (giving a captured. stone to the opponent to The black block F can never be keep as a prisoner). In the diagram above, white captured. It has two internal has 8 points in the center and liberties (eyes) at the points Stones may be captured 7 points at the upper right. marked G. To capture the by tightly surrounding Two white stones (shown be- block, white would have to oc- low the board) are prisoners. cupy both of them, but either them. Captured stones White’s score is 8 + 7 − 2 = 13. move would be suicidal and are taken off the board Black has 3 points at the up- therefore illegal. and kept as prisoners. per left and 9 at the lower Suppose white plays at H, cap- right. One black stone is a turing the black stone at I. prisoner. Black’s score is (Notice that H is not an eye.) It is illegal to make a − 3 + 9 1 = 11. White wins. -
How to Play Go Lesson 1: Introduction to Go
How To Play Go Lesson 1: Introduction To Go 1.1 About The Game Of Go Go is an ancient game originated from China, with a definite history of over 3000 years, although there are historians who say that the game was invented more than 4000 years ago. The Chinese call the game Weiqi. Other names for Go include Baduk (Korean), Igo (Japanese) and Goe (Taiwanese). This game is getting increasingly popular around the world, especially in Asian, European and American countries, with many worldwide competitions being held. Diagram 1-1 The game of Go is played on a board as shown in Diagram 1-1. The Go set comprises of the board, together with 180 black and white stones each. Diagram 1-1 shows the standard 19x19 board (i.e. the board has 19 lines by 19 lines), but there are 13x13 and 9x9 boards in play. However, the 9x9 and 13x13 boards are usually for beginners; more advanced players would prefer the traditional 19x19 board. Compared to International Chess and Chinese Chess, Go has far fewer rules. Yet this allowed for all sorts of moves to be played, so Go can be a more intellectually challenging game than the other two types of Chess. Nonetheless, Go is not a difficult game to learn, so have a fun time playing the game with your friends. Several rule sets exist and are commonly used throughout the world. Two of the most common ones are Chinese rules and Japanese rules. Another is Ing's rules. All the rules are basically the same, the only significant difference is in the way counting of territories is done when the game ends. -
Chinese Health App Arrives Access to a Large Population Used to Sharing Data Could Give Icarbonx an Edge Over Rivals
NEWS IN FOCUS ASTROPHYSICS Legendary CHEMISTRY Deceptive spice POLITICS Scientists spy ECOLOGY New Zealand Arecibo telescope faces molecule offers cautionary chance to green UK plans to kill off all uncertain future p.143 tale p.144 after Brexit p.145 invasive predators p.148 ICARBONX Jun Wang, founder of digital biotechnology firm iCarbonX, showcases the Meum app that will use reams of health data to provide customized medical advice. BIOTECHNOLOGY Chinese health app arrives Access to a large population used to sharing data could give iCarbonX an edge over rivals. BY DAVID CYRANOSKI, SHENZHEN medical advice directly to consumers through another $400 million had been invested in the an app. alliance members, but he declined to name the ne of China’s most intriguing biotech- The announcement was a long-anticipated source. Wang also demonstrated the smart- nology companies has fleshed out an debut for iCarbonX, which Wang founded phone app, called Meum after the Latin for earlier quixotic promise to use artificial in October 2015 shortly after he left his lead- ‘my’, that customers would use to enter data Ointelligence (AI) to revolutionize health care. ership position at China’s genomics pow- and receive advice. The Shenzhen firm iCarbonX has formed erhouse, BGI, also in Shenzhen. The firm As well as Google, IBM and various smaller an ambitious alliance with seven technology has now raised more than US$600 million in companies, such as Arivale of Seattle, Wash- companies from around the world that special- investment — this contrasts with the tens of ington, are working on similar technology. But ize in gathering different types of health-care millions that most of its rivals are thought Wang says that the iCarbonX alliance will be data, said the company’s founder, Jun Wang, to have invested (although several big play- able to collect data more cheaply and quickly. -
CSC321 Lecture 23: Go
CSC321 Lecture 23: Go Roger Grosse Roger Grosse CSC321 Lecture 23: Go 1 / 22 Final Exam Monday, April 24, 7-10pm A-O: NR 25 P-Z: ZZ VLAD Covers all lectures, tutorials, homeworks, and programming assignments 1/3 from the first half, 2/3 from the second half If there's a question on this lecture, it will be easy Emphasis on concepts covered in multiple of the above Similar in format and difficulty to the midterm, but about 3x longer Practice exams will be posted Roger Grosse CSC321 Lecture 23: Go 2 / 22 Overview Most of the problem domains we've discussed so far were natural application areas for deep learning (e.g. vision, language) We know they can be done on a neural architecture (i.e. the human brain) The predictions are inherently ambiguous, so we need to find statistical structure Board games are a classic AI domain which relied heavily on sophisticated search techniques with a little bit of machine learning Full observations, deterministic environment | why would we need uncertainty? This lecture is about AlphaGo, DeepMind's Go playing system which took the world by storm in 2016 by defeating the human Go champion Lee Sedol Roger Grosse CSC321 Lecture 23: Go 3 / 22 Overview Some milestones in computer game playing: 1949 | Claude Shannon proposes the idea of game tree search, explaining how games could be solved algorithmically in principle 1951 | Alan Turing writes a chess program that he executes by hand 1956 | Arthur Samuel writes a program that plays checkers better than he does 1968 | An algorithm defeats human novices at Go 1992 -
Fml-Based Dynamic Assessment Agent for Human-Machine Cooperative System on Game of Go
Accepted for publication in International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems in July, 2017 FML-BASED DYNAMIC ASSESSMENT AGENT FOR HUMAN-MACHINE COOPERATIVE SYSTEM ON GAME OF GO CHANG-SHING LEE* MEI-HUI WANG, SHENG-CHI YANG Department of Computer Science and Information Engineering, National University of Tainan, Tainan, Taiwan *[email protected], [email protected], [email protected] PI-HSIA HUNG, SU-WEI LIN Department of Education, National University of Tainan, Tainan, Taiwan [email protected], [email protected] NAN SHUO, NAOYUKI KUBOTA Dept. of System Design, Tokyo Metropolitan University, Japan [email protected], [email protected] CHUN-HSUN CHOU, PING-CHIANG CHOU Haifong Weiqi Academy, Taiwan [email protected], [email protected] CHIA-HSIU KAO Department of Computer Science and Information Engineering, National University of Tainan, Tainan, Taiwan [email protected] Received (received date) Revised (revised date) Accepted (accepted date) In this paper, we demonstrate the application of Fuzzy Markup Language (FML) to construct an FML- based Dynamic Assessment Agent (FDAA), and we present an FML-based Human–Machine Cooperative System (FHMCS) for the game of Go. The proposed FDAA comprises an intelligent decision-making and learning mechanism, an intelligent game bot, a proximal development agent, and an intelligent agent. The intelligent game bot is based on the open-source code of Facebook’s Darkforest, and it features a representational state transfer application programming interface mechanism. The proximal development agent contains a dynamic assessment mechanism, a GoSocket mechanism, and an FML engine with a fuzzy knowledge base and rule base. -
Residual Networks for Computer Go Tristan Cazenave
Residual Networks for Computer Go Tristan Cazenave To cite this version: Tristan Cazenave. Residual Networks for Computer Go. IEEE Transactions on Games, Institute of Electrical and Electronics Engineers, 2018, 10 (1), 10.1109/TCIAIG.2017.2681042. hal-02098330 HAL Id: hal-02098330 https://hal.archives-ouvertes.fr/hal-02098330 Submitted on 12 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TCIAIG 1 Residual Networks for Computer Go Tristan Cazenave Universite´ Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 PARIS, FRANCE Deep Learning for the game of Go recently had a tremendous success with the victory of AlphaGo against Lee Sedol in March 2016. We propose to use residual networks so as to improve the training of a policy network for computer Go. Training is faster than with usual convolutional networks and residual networks achieve high accuracy on our test set and a 4 dan level. Index Terms—Deep Learning, Computer Go, Residual Networks. I. INTRODUCTION Input EEP Learning for the game of Go with convolutional D neural networks has been addressed by Clark and Storkey [1]. It has been further improved by using larger networks [2]. -
Quantum Reinforcement Learning During Human Decision-Making
ARTICLES https://doi.org/10.1038/s41562-019-0804-2 Quantum reinforcement learning during human decision-making Ji-An Li 1,2, Daoyi Dong 3, Zhengde Wei1,4, Ying Liu5, Yu Pan6, Franco Nori 7,8 and Xiaochu Zhang 1,9,10,11* Classical reinforcement learning (CRL) has been widely applied in neuroscience and psychology; however, quantum reinforce- ment learning (QRL), which shows superior performance in computer simulations, has never been empirically tested on human decision-making. Moreover, all current successful quantum models for human cognition lack connections to neuroscience. Here we studied whether QRL can properly explain value-based decision-making. We compared 2 QRL and 12 CRL models by using behavioural and functional magnetic resonance imaging data from healthy and cigarette-smoking subjects performing the Iowa Gambling Task. In all groups, the QRL models performed well when compared with the best CRL models and further revealed the representation of quantum-like internal-state-related variables in the medial frontal gyrus in both healthy subjects and smok- ers, suggesting that value-based decision-making can be illustrated by QRL at both the behavioural and neural levels. riginating from early behavioural psychology, reinforce- explained well by quantum probability theory9–16. For example, one ment learning is now a widely used approach in the fields work showed the superiority of a quantum random walk model over Oof machine learning1 and decision psychology2. It typi- classical Markov random walk models for a modified random-dot cally formalizes how one agent (a computer or animal) should take motion direction discrimination task and revealed quantum-like actions in unknown probabilistic environments to maximize its aspects of perceptual decisions12. -
Spy on Me #2 – Artistic Manoevres for the Digital Present
Spy on Me Artistic Manoeuvres for the Digital Present #2 19. –29.3.2020 Spy on Me #2 – Artistic Manoeuvres for the Digital Present 19.–29.3.2020 / HAU1, HAU2, HAU3 We have arrived in the reality of digital transformation. Life with screens, apps and algorithms influences our behaviour, our atten - tion and desires. Meanwhile the idea of the public space and of democracy is being reorganized by digital means. The festival “Spy on Me” goes into its second round after 2018, searching for manoeuvres for the digital present together with Berlin-based and international artists. Performances, interactive spatial installati - ons and discursive events examine the complex effects of the digi - tal transformation of society. In theatre, where live encounters are the focus, we come close to the intermediate spaces of digital life, searching for ways out of feeling powerless and overwhelmed, as currently experienced by many users of internet-based technolo - gies. For it is not just in some future digital utopia, but here, in the midst of this present, that we have to deal with the basic conditi - ons of living together as a society and of planetary survival. Are we at the edge of a great digital darkness or at the decisive tur - ning point of perspective? A Festival by HAU Hebbel am Ufer. Funded by: Hauptstadtkulturfonds. What is our rela - tionship with alien conscious - nesses? As we build rivals to human intelligence, James Bridle looks at our relationship with the planet’s other alien consciousnesses. 5 On 27 June 1835, two masters of the ancient DeepBlue defeated Garry Kasparov at chess, prise, strangeness and even horror that Chinese game of Go faced off in a match up to that point a game with Go-like status as AlphaGo evokes will become a feature of more which was the culmination of a years-long a bastion of human imagination and mental and more areas of our lives. -
Move Prediction in Gomoku Using Deep Learning
VW<RXWK$FDGHPLF$QQXDO&RQIHUHQFHRI&KLQHVH$VVRFLDWLRQRI$XWRPDWLRQ :XKDQ&KLQD1RYHPEHU Move Prediction in Gomoku Using Deep Learning Kun Shao, Dongbin Zhao, Zhentao Tang, and Yuanheng Zhu The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences Beijing 100190, China Emails: [email protected]; [email protected]; [email protected]; [email protected] Abstract—The Gomoku board game is a longstanding chal- lenge for artificial intelligence research. With the development of deep learning, move prediction can help to promote the intelli- gence of board game agents as proven in AlphaGo. Following this idea, we train deep convolutional neural networks by supervised learning to predict the moves made by expert Gomoku players from RenjuNet dataset. We put forward a number of deep neural networks with different architectures and different hyper- parameters to solve this problem. With only the board state as the input, the proposed deep convolutional neural networks are able to recognize some special features of Gomoku and select the most likely next move. The final neural network achieves the accuracy of move prediction of about 42% on the RenjuNet dataset, which reaches the level of expert Gomoku players. In addition, it is promising to generate strong Gomoku agents of human-level with the move prediction as a guide. Keywords—Gomoku; move prediction; deep learning; deep convo- lutional network Fig. 1. Example of positions from a game of Gomoku after 58 moves have passed. It can be seen that the white win the game at last. I. -
Achieving Master Level Play in 9X9 Computer Go
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Achieving Master Level Play in 9 9 Computer Go × Sylvain Gelly∗ David Silver† Univ. Paris Sud, LRI, CNRS, INRIA, France University of Alberta, Edmonton, Alberta, Canada Abstract simulated, using self-play, starting from the current position. Each position in the search tree is evaluated by the average The UCT algorithm uses Monte-Carlo simulation to estimate outcome of all simulated games that pass through that po- the value of states in a search tree from the current state. However, the first time a state is encountered, UCT has no sition. The search tree is used to guide simulations along knowledge, and is unable to generalise from previous expe- promising paths. This results in a highly selective search rience. We describe two extensions that address these weak- that is grounded in simulated experience, rather than an ex- nesses. Our first algorithm, heuristic UCT, incorporates prior ternal heuristic. Programs using UCT search have outper- knowledge in the form of a value function. The value function formed all previous Computer Go programs (Coulom 2006; can be learned offline, using a linear combination of a million Gelly et al. 2006). binary features, with weights trained by temporal-difference Monte-Carlo tree search algorithms suffer from two learning. Our second algorithm, UCT–RAVE, forms a rapid sources of inefficiency. First, when a position is encoun- online generalisation based on the value of moves. We ap- tered for the first time, no knowledge is available to guide plied our algorithms to the domain of 9 9 Computer Go, the search. -
Computer Go: from the Beginnings to Alphago Martin Müller, University of Alberta
Computer Go: from the Beginnings to AlphaGo Martin Müller, University of Alberta 2017 Outline of the Talk ✤ Game of Go ✤ Short history - Computer Go from the beginnings to AlphaGo ✤ The science behind AlphaGo ✤ The legacy of AlphaGo The Game of Go Go ✤ Classic two-player board game ✤ Invented in China thousands of years ago ✤ Simple rules, complex strategy ✤ Played by millions ✤ Hundreds of top experts - professional players ✤ Until 2016, computers weaker than humans Go Rules ✤ Start with empty board ✤ Place stone of your own color ✤ Goal: surround empty points or opponent - capture ✤ Win: control more than half the board Final score, 9x9 board ✤ Komi: first player advantage Measuring Go Strength ✤ People in Europe and America use the traditional Japanese ranking system ✤ Kyu (student) and Dan (master) levels ✤ Separate Dan ranks for professional players ✤ Kyu grades go down from 30 (absolute beginner) to 1 (best) ✤ Dan grades go up from 1 (weakest) to about 6 ✤ There is also a numerical (Elo) system, e.g. 2500 = 5 Dan Short History of Computer Go Computer Go History - Beginnings ✤ 1960’s: initial ideas, designs on paper ✤ 1970’s: first serious program - Reitman & Wilcox ✤ Interviews with strong human players ✤ Try to build a model of human decision-making ✤ Level: “advanced beginner”, 15-20 kyu ✤ One game costs thousands of dollars in computer time 1980-89 The Arrival of PC ✤ From 1980: PC (personal computers) arrive ✤ Many people get cheap access to computers ✤ Many start writing Go programs ✤ First competitions, Computer Olympiad, Ing Cup ✤ Level 10-15 kyu 1990-2005: Slow Progress ✤ Slow progress, commercial successes ✤ 1990 Ing Cup in Beijing ✤ 1993 Ing Cup in Chengdu ✤ Top programs Handtalk (Prof. -
Latest Snapshot.” to Modify an Algo So It Does Produce Multiple Snapshots, find the Following Line (Which Is Present in All of the Algorithms)
Spinning Up Documentation Release Joshua Achiam Feb 07, 2020 User Documentation 1 Introduction 3 1.1 What This Is...............................................3 1.2 Why We Built This............................................4 1.3 How This Serves Our Mission......................................4 1.4 Code Design Philosophy.........................................5 1.5 Long-Term Support and Support History................................5 2 Installation 7 2.1 Installing Python.............................................8 2.2 Installing OpenMPI...........................................8 2.3 Installing Spinning Up..........................................8 2.4 Check Your Install............................................9 2.5 Installing MuJoCo (Optional)......................................9 3 Algorithms 11 3.1 What’s Included............................................. 11 3.2 Why These Algorithms?......................................... 12 3.3 Code Format............................................... 12 4 Running Experiments 15 4.1 Launching from the Command Line................................... 16 4.2 Launching from Scripts......................................... 20 5 Experiment Outputs 23 5.1 Algorithm Outputs............................................ 24 5.2 Save Directory Location......................................... 26 5.3 Loading and Running Trained Policies................................. 26 6 Plotting Results 29 7 Part 1: Key Concepts in RL 31 7.1 What Can RL Do?............................................ 31 7.2