Classical and Quantum Gravity Highlights of 2010–2011

Total Page:16

File Type:pdf, Size:1020Kb

Classical and Quantum Gravity Highlights of 2010–2011 iopscience.org/cqg Classical and Quantum Gravity Highlights of 2010–2011 Read about selected research including: Cosmology Quantum gravity Numerical relativity …and read about thesis prizes sponsored by Classical and Quantum Gravity Classical and Quantum Gravity Highlights of 2010–2011 All of the articles featured in this brochure are free to read online until 31 December 2012 at iopscience.org/cqg. Front cover image: An artistic interpretation of the boundary of a 3-vertex foam obtained by merging three graphs Marcin Kisielowski, Jerzy Lewandowski and Jacek Puchta 2012 Class. Quantum Grav. 29 015009. Classical and Quantum Gravity ISSN 0264-9381 Classical and Quantum Gravity Gravity Quantum and Classical Classicaland Dear colleagues, Volume 28 Number 21 7 November 2011 TOPICAL REVIEW QuantumGravity 213001 Loop quantum cosmology: a status report Abhay Ashtekar and Parampreet Singh Throughout 2011, the quality of Classical and Quantum Gravity (CQG) has PAPERS 215001 Finsler branes and quantum gravity phenomenology with Lorentz symmetry violations SergiuIVacaru 215002 Boundary state stability under spinfoam evolution for the quantum 4-simplex Ma¨ıte´ Dupuis and EteraRLivine Vol 28, No 21 213001–215023 21 No 28, Vol continued to rise. The journal’s focus issue programme has built considerable 215003 Puncture black hole initial data in the conformal thin-sandwich formalism ThomasWBaumgarte Volume 28 Number 21 7 November 2011 215004 Correspondence between the contracted BTZ solution of cosmological topological massive gravity and two-dimensional Galilean conformal algebra MRSetare andVKamali An international journal of gravitational physics, 215005 The vanishing volume of D =4superspace cosmology, geometry and field theory momentum, publishing an increasing volume of highly interesting work selected Guillaume Bossard,PSHowe,KSStelle and Pierre Vanhove 215006 An all-sky search algorithm for continuous gravitational wavesfrom spinning neutron stars in binary systems Topical review E Goetz andKRiles Loop quantum cosmology: a status report 215007 Quintessence interacting dark energy andascalar dark fluid from 5D vacuum Abhay Ashtekar and Parampreet Singh by the Editorial Board and other top researchers. The average number of LMReyes and Jose´ Edgar Madriz Aguilar 215008 Regular hyperbolicity, dominant energy condition and causality for Lagrangian theories of maps Willie Wai-Yeung Wong 215009 A spacetime not characterized by its invariants is of aligned type II Sigbjørn Hervik downloads per CQG article is greater than ever and CQG’s current impact factor is 215010 Cosmological perturbation analysis inascale invariant model of gravity Pankaj Jain, Purnendu Karmakar, Subhadip Mitra, Sukanta Panda and NaveenKSingh 215011 Matter bounce cosmology with the f(T ) gravity Yi-Fu Cai, Shih-Hung Chen, JamesBDent, Sourish Dutta and EmmanuelNSaridakis 215012 Bertotti–Robinson and Melvin spacetimes at an all-time high of 3.099. D Garfinkle andENGlass 215013 Schrodinger¨ –Newton ‘collapse’ of the wavefunction JRvan Meter 215014 The thermodynamic limit and black hole entropy in the area ensemble J Fernando BarberoGand EduardoJSVillasenor˜ 215015 Entanglement entropy for non-coplanar regions in quantum field theory DavidDBlanco and Horacio Casini 215016 Charge mitigation techniques using glow and corona discharges for advanced We were delighted to see the IOP Gravitational Physics Group’s Thesis gravitational wave detectors P Campsie,LCunningham,MHendry,JHough,SReid,SRowan andGDHammond 7 November 2011 November 7 (Continued on inside backcover) iopscience.org/cqg Prize, which is sponsored by CQG, awarded to Barry Wardell in 2011 for the Bibliographic codes CODEN: CQGRDG 28 (21) 213001–215023 (2011) ISSN: 0264-9381 development of groundbreaking computational techniques for obtaining highly CQG28-21cover-UK.indd 2-4 18/10/2011 13:41 accurate expressions for Green functions on curved spacetime. Dr Wardell IMPACT FACTOR completed his PhD at University College Dublin under the supervision of * Prof. Adrian C Ottewill. An interview with Dr Wardell can be found on p12. 3.099 CQG maintains a rigorous and fair peer review process that is second to none *As listed in ISI®’s 2010 Science Citation Index Journal citation reports in the field. The quality of the peer review continues to improve as the journal develops its advisory panel of senior referees, the list of whom can be found on p5. Regular paper submissions Never one to shy away from the limelight, the journal even made a brief cameo 900 appearance in CBS’s excellent multi-award-winning sitcom The Big Bang Theory 880 in early 2012 (see p22 for more details). 860 840 submissions 820 Editor-in-Chief 800 Clifford M Will 2008 2009 2010 2011 year Average full-text downloads per Paper acceptance by region in 2011 Articles published in 2011 by subject area article in year of publication 110 100 90 80 downloads 70 Africa 1% Asia 9% Black holes 17% Numerical relativity Central/ North Cosmology 22% (and other approximation 0 South America 8% America 23% methods) 4% 2011 Experimental 2008 2009 2010 Western year Australasia 2% studies of gravity 1% Quantum fields in a Eastern Europe 10% Europe 42% General relativity 28% curved spacetime 2% Quantum gravity 9% Middle East 5% Gravitational wave detectors 7% String theory and Higher-dimensional supergravity 7% gravity and other theories of gravity 3% Highlights of 2010–2011 3 Classical and Quantum Gravity Contents page Regular papers 6 •Cosmology 6 •Strings, branes, supergravity and gauge theory 7 •Bergmann Wheeler Thesis Prize 8 •Quantum gravity 10 •Numerical relativity 11 •IOP Gravitational Physics Group Thesis Prize 12 •Mathematical relativity 13 •Geometry and topology 14 •Black holes 14 •Experimental gravity 16 Top 20 most downloaded articles published in 2011 20 Top 20 most cited articles published in 2011 21 Reasons to publish with Classical and Quantum Gravity 22 Journal scope Published twice monthly (24 issues per year), Classical and Quantum Gravity publishes original research articles on the subjects of gravitational physics and the theory of spacetime. The readership comprises gravitational theorists and experimentalists in physics, mathematics and cosmology. Papers are published under the following areas: •Classical general relativity •Applications of relativity •Experimental gravitation •Cosmology and the early universe Colour-coded TM reflectivity of a waveguide Quantum gravity structure versus groove depth and waveguide • thickness O Burmeister, D Friedrich, •Supergravity, superstrings and supersymmetry K Danzmann and R Schnabel 2006 Class. •Mathematical physics relevant to gravitation Quantum Grav. 23 7297 The journal publishes the following types of articles: • Research papers. Reports of novel and interesting research work; not normally more than 8500 words (14 journal pages). • Fast Track Communications. Short, timely papers presenting important new developments. Fast Track Communications (FTCs) have a strict length limit of eight journal pages (5000 words). FTCs are given prime importance in the journal. Authors submitting an FTC should accompany their manuscript with a short statement outlining why they believe the work merits high-priority publication. •Special issue articles. Invited papers of high interest, which are included in special issues of the journal. •Topical reviews. Comprehensive review articles commissioned by the Editorial Board. •Brief reviews. Short review articles reviewing rapid, recent progress commissioned by the Editorial Board. • Comments. Brief articles that comment on a previously published Classical and Quantum Gravity article. The authors of the criticized paper may be invited to submit a Reply in response. Comments and Replies are not normally longer than 2500 words each. • Notes. Brief articles that make a short, interesting point, which would not normally merit publication as a full paper but still make a useful and novel addition to the literature. They may highlight an interesting point, clarify a common misunderstanding or confusion, or present a short new result. Unlike Comments, they do not relate to a specific published article. Notes are not normally longer than 2500 words. More information on each of these areas can be found at iopscience.org/cqg. 4 Highlights of 2010–2011 Classical and Quantum Gravity Editorial Board Editor-in-Chief C M Will Washington University, St Louis, USA Editorial Board L Andersson Max-Planck-Institut für Gravitationsphysik, Golm, Germany S Mukohyama IPMU, University of Tokyo, Japan M-A Bizouard IN2P3-CNRS et Université de Paris-Sud, France N Ó Murchadha University College Cork, Ireland M Campanelli Rochester Institute of Technology, USA E Poisson University of Guelph, Ontario, Canada (Book Reviews Editor) A A Coley Dalhousie University, Halifax, NS, Canada L Rezzolla Max-Planck-Institut für Gravitationsphysik, Golm, Germany A Corichi Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico V O Rivelles Universidade de Sao Paulo (USP), Sao Paulo, Brazil S Dhurandhar Inter-University Centre for Astronomy and Astrophysics, Pune, S F Ross Durham University, Durham, UK India C Rovelli Université de la Mediterranée–Aix-Marseille II, France D Garfinkle Oakland University, Rochester, MI, USA J Samuel Raman Research Institute, Bangalore, India J Isenberg University of Oregon, Eugene, USA M Sasaki Kyoto University, Japan K Kuroda University of Tokyo, Japan J M M Senovilla Universidad del País Vasco, Bilbao, Spain D Langlois Université Paris 7 – Denis Diderot, Paris, France C C Speake University
Recommended publications
  • Modified Theories of Relativistic Gravity
    Modified Theories of Relativistic Gravity: Theoretical Foundations, Phenomenology, and Applications in Physical Cosmology by c David Wenjie Tian A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Theoretical Physics (Interdisciplinary Program) Faculty of Science Date of graduation: October 2016 Memorial University of Newfoundland March 2016 St. John’s Newfoundland and Labrador Abstract This thesis studies the theories and phenomenology of modified gravity, along with their applications in cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship 2 2 Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R; Rc; Rm; Lm) class of modified gravity 2 µν 2 µανβ that allows for nonminimal matter-curvature couplings (Rc B RµνR , Rm B RµανβR ), derives the “co- herence condition” f 2 = f 2 = − f 2 =4 for the smooth limit to f (R; G; ) generalized Gauss-Bonnet R Rm Rc Lm gravity, and examines stress-energy-momentum conservation in more generic f (R; R1;:::; Rn; Lm) grav- ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium (eff) thermodynamics for modified gravities Rµν − Rgµν=2 = 8πGeffTµν , and applies this formulation to the Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R; G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati- cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com- patibility with the holographic-style gravitational equations, where possible solutions to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the failure of the second law of thermodynamics are proposed.
    [Show full text]
  • New Class of Exact Solutions to Einstein-Maxwell-Dilaton Theory on Four-Dimensional Bianchi Type IX Geometry
    New Class of Exact Solutions to Einstein-Maxwell-dilaton Theory on Four-dimensional Bianchi Type IX Geometry A Thesis Submitted to the College of Graduate and Postdoctoral Studies in Partial Fulfillment of the Requirements for the degree of Master of Science in the Department of Physics & Engineering Physics University of Saskatchewan Saskatoon By Bardia Hosseinzadeh Fahim c Bardia Hosseinzadeh Fahim, August 2020. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics & Engineering Physics 163 Physics Building 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 Or Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan S7N 5C9 Canada i Abstract We construct new classes of cosmological solution to the five dimensional Einstein-Maxwell-dilaton theory, that are non-stationary and almost conformally regular everywhere.
    [Show full text]
  • Mathematics of General Relativity - Wikipedia, the Free Encyclopedia Page 1 of 11
    Mathematics of general relativity - Wikipedia, the free encyclopedia Page 1 of 11 Mathematics of general relativity From Wikipedia, the free encyclopedia The mathematics of general relativity refers to various mathematical structures and General relativity techniques that are used in studying and formulating Albert Einstein's theory of general Introduction relativity. The main tools used in this geometrical theory of gravitation are tensor fields Mathematical formulation defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity. Resources Fundamental concepts Note: General relativity articles using tensors will use the abstract index Special relativity notation . Equivalence principle World line · Riemannian Contents geometry Phenomena 1 Why tensors? 2 Spacetime as a manifold Kepler problem · Lenses · 2.1 Local versus global structure Waves 3 Tensors in GR Frame-dragging · Geodetic 3.1 Symmetric and antisymmetric tensors effect 3.2 The metric tensor Event horizon · Singularity 3.3 Invariants Black hole 3.4 Tensor classifications Equations 4 Tensor fields in GR 5 Tensorial derivatives Linearized Gravity 5.1 Affine connections Post-Newtonian formalism 5.2 The covariant derivative Einstein field equations 5.3 The Lie derivative Friedmann equations 6 The Riemann curvature tensor ADM formalism 7 The energy-momentum tensor BSSN formalism 7.1 Energy conservation Advanced theories 8 The Einstein field equations 9 The geodesic equations Kaluza–Klein
    [Show full text]
  • Sieving the Landscape of Gravity Theories
    SISSA — Scuola Internazionale Superiore di Studi Avanzati Ph.D. Curriculum in Astrophysics Academic year 2013/2014 Sieving the Landscape of Gravity Theories From the Equivalence Principles to the Near-Planck Regime Thesis submitted for the degree of Doctor Philosophiæ Advisors: Candidate: Prof. Stefano Liberati Eolo Di Casola Prof. Sebastiano Sonego 22nd October 2014 Abstract This thesis focusses on three main aspects of the foundations of any theory of gravity where the gravitational field admits a geometric interpretation: (a) the principles of equivalence; (b) their role as selection rules in the landscape of extended theories of gravity; and (c) the possible modifications of the spacetime structure at a “mesoscopic” scale, due to underlying, microscopic-level, quantum- gravitational effects. The first result of the work is the introduction of a formal definition of the Gravitational Weak Equivalence Principle, which expresses the universality of free fall of test objects with non-negligible self-gravity, in a matter-free environ- ment. This principle extends the Galilean universality of free-fall world-lines for test bodies with negligible self-gravity (Weak Equivalence Principle). Second, we use the Gravitational Weak Equivalence Principle to build a sieve for some classes of extended theories of gravity, to rule out all models yielding non-universal free-fall motion for self-gravitating test bodies. When applied to metric theories of gravity in four spacetime dimensions, the method singles out General Relativity (both with and without the cosmological constant term), whereas in higher-dimensional scenarios the whole class of Lanczos–Lovelock gravity theories also passes the test. Finally, we focus on the traditional, manifold-based model of spacetime, and on how it could be modified, at a “mesoscopic” (experimentally attainable) level, by the presence of an underlying, sub-Planckian quantum regime.
    [Show full text]
  • Nonsingular Schwarzschild-De Sitter Black Hole
    Nonsingular Schwarzschild-de Sitter Black Hole Damien A. Easson Department of Physics, Arizona State University, Tempe, AZ 85287-1504 Abstract We combine notions of a maximal curvature scale in nature with that of a minimal curvature scale to construct a non-singular Schwarzschild-de Sitter black hole. We present an exact solution within the context of two-dimensional dilaton gravity. For a range of parameters the solution approaches Schwarzschild-de Sitter at large values of the radial coordinate, asymptotically approaching a de Sitter metric with constant minimal curvature, while approaching a maximal constant curvature smooth spacetime as the radial coordinate approaches zero. The spacetime is geodesically complete and generically has both a black hole horizon and a cosmological horizon. arXiv:1712.09455v2 [hep-th] 7 Nov 2018 [email protected] Contents 1 Introduction 1 2 Two Dimensional Gravity 2 3 Nonsingular SdS Black Hole Solution 3 3.1 Extrema Curvature Conjecture . 3 3.2 Interpolating potential construction . 5 3.3 Solving the equations of motion . 5 4 Conclusions 7 A Coordinates 8 1 Introduction There are few puzzles in theoretical physics more vexing than the enigmatic singularity on the interior of a black hole. This physical impossibility, is assumed to be conveniently hidden from the distant observer by an event horizon. According to Einstein's theory of General Relativity (GR), an observer falling into the black hole will inevitably encounter ever-increasing destructive tidal forces on his way towards the singularity, a fate guaranteed by the singularity theorems of Hawking and Penrose [1]. The singularity event occurs at extremely high curvatures, near the Planck scale.
    [Show full text]
  • Curvature Invariants for Charged and Rotating Black Holes
    universe Article Curvature Invariants for Charged and Rotating Black Holes James Overduin 1,2,* , Max Coplan 1, Kielan Wilcomb 3 and Richard Conn Henry 2 1 Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252, USA; [email protected] 2 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] 3 Department of Physics, University of California, San Diego, CA 92093, USA; [email protected] * Correspondence: [email protected] Received: 25 October 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: Riemann curvature invariants are important in general relativity because they encode the geometrical properties of spacetime in a manifestly coordinate-invariant way. Fourteen such invariants are required to characterize four-dimensional spacetime in general, and Zakhary and McIntosh showed that as many as seventeen can be required in certain degenerate cases. We calculate explicit expressions for all seventeen of these Zakhary–McIntosh curvature invariants for the Kerr–Newman metric that describes spacetime around black holes of the most general kind (those with mass, charge, and spin), and confirm that they are related by eight algebraic conditions (dubbed syzygies by Zakhary and McIntosh), which serve as a useful check on our results. Plots of these invariants show richer structure than is suggested by traditional (coordinate-dependent) textbook depictions, and may repay further investigation. Keywords: black holes; curvature invariants; general relativity PACS: 04.20.Jb; 04.70.Bw; 95.30.Sf 1. Introduction Quantities whose value is manifestly independent of coordinates are particularly useful in general relativity [1]. Riemann or curvature invariants, formed from the Riemann tensor and derivatives of the metric, are one example.
    [Show full text]
  • Algebraic Structures
    Appendix A Algebraic Structures An algebraic structure is a set X with one or more operations satisfying certain axioms. In this appendix, we will briefly review groups and vector spaces. A.1 Groups Group.Agroup is a set G equipped with an operation m : G × G → G such that: 1. ∀x, y, z ∈ G, m(x, m(y, z)) = m(m(x, y), z) (associativity); 2. ∀x ∈ G, there exists an element u ∈ G such that m(u, x) = m(x, u) = x (existence of the identity element); 3. ∀x ∈ G, there exists x−1 such that m(x, x−1) = m(x−1, x) = u (existence of the inverse element). If m(x, y) = m(y, x) ∀x, y ∈ G then G is an abelian group. Note that in every group the identity element is unique. If we assume there are two identity elements, say u and u, we should have m(u, u) = u and m(u, u) = u, and therefore u = u. Even the inverse element must be unique. If x had two inverse elements, say x−1 and x−1, then x−1 = m(u, x−1) = m(m(x−1, x), x−1) = m(x−1, m(x, x−1)) = m(x−1, u) = x−1 . (A.1) The set of real numbers R with the common operation of sum is an abelian group with the identity element 0; the inverse of the element x is denoted −x.ThesetR/{0} with the common operation of product is an abelian group with the identity element 1; the inverse of the element x is denoted 1/x.
    [Show full text]
  • Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
    Archive of SID Int. J. Nonlinear Anal. Appl. 10 (2019) Special Issue (Nonlinear Analysis in Engineering and Sciences), 97-114 ISSN: 2008-6822 (electronic) https://dx.doi.org/10.22075/IJNAA.2019.4403 Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar M. Farahmandy Motlagh∗, A. Behzadi Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran. Abstract The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric uni- verse filled with freely falling dust like matter without pressure. First, we have considered a Finslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have ob- tained the R(t; r) and S(t; r) with considering establish a new solution of Rµν = 0. Moreover, we attempt to use Finsler geometry as the geometry of spacetime which compute the Kretschmann scalar. An important problem in General Relativity is singularities. The curvature singularities is a point when the scalar curvature blows up diverges. Thus we have determined Ks singularity is at R = 0. Our result is the same as Reimannian geometry. We have completed with a brief example of how these solutions can be applied. Second, we have some notes about anstaz of the Schwarzschild and Friedmann- Robertson- Walker (F RW ) metrics. We have supposed condition d log(F ) = d log(F¯) and we have obtained F¯ is constant along its geodesic and geodesic of F . Moreover we have com- 2 puted Weyl and Douglas tensors for F and have concluded that Rijk = 0 and this conclude that 2 2 Wijk = 0, thus F is the Ads Schwarzschild Finsler metric and therefore F is conformally flat.
    [Show full text]
  • Cosmological Models, Nonideal Fluids and Viscous Forces in General Relativity
    Cosmological models, nonideal fluids and viscous forces in general relativity Daniele Gregoris Daniele Gregoris is an Erasmus Mundus Joint Doctorate IRAP PhD student and is supported by the Erasmus Mundus Joint Doctorate Program by Grant Number 2011-1640 from the EACEA of the European Commission. Doctoral Thesis in Theoretical Physics at Stockholm University, Sweden 2014 Abstract This thesis addresses the open questions of providing a cosmological model describing an accelerated expanding Universe without violating the energy conditions or a model that contributes to the physical interpretation of the dark energy. The former case is analyzed considering a closed model based on a regular lattice of black holes using the Einstein equation in vacuum. In the latter case I will connect the dark energy to the Shan-Chen equation of state. A comparison between these two proposals is then discussed. As a complementary topic I will discuss the motion of test particles in a general relativistic spacetime undergoing friction effects. This is modeled following the formalism of Poynting-Robertson whose link with the Stokes’ formula is presented. The cases of geodesic and non-geodesic motion are compared and contrasted for Schwarzschild, Tolman, Pant-Sah and Friedmann metrics respectively. c Daniele Gregoris, Stockholm 2014 Public defense day: 7th November 2014, room FP41 AlbaNova University Center ISBN 978-91-7447-982-9 Typeset in LATEX Printed in Sweden by Universitetsservice US AB, Stockholm 2014 Distributor: Department of Physics, Stockholm University List of Papers The following papers, referred to in the text by their Roman numerals, are included in this thesis. PAPER I: Radiation pressure vs.
    [Show full text]
  • The Most Beautiful Thing We Can Experience Is the Mysterious. It Is the Source of All True Art and Science
    The most beautiful thing we can experience is the mysterious. It is the source of all true art and science. He to whom this emotion is stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed. Albert Einstein (1879-1955) University of Alberta Higher-Dimensional Gravitational Objects with External Fields by Shohreh Abdolrahimi A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics c Shohreh Abdolrahimi Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author’s prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-67601-1 Our file Notre
    [Show full text]
  • Geodesic Structure in Schwarzschild Geometry with Extensions in Higher Dimensional Spacetimes
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2018 GEODESIC STRUCTURE IN SCHWARZSCHILD GEOMETRY WITH EXTENSIONS IN HIGHER DIMENSIONAL SPACETIMES Ian M. Newsome Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Elementary Particles and Fields and String Theory Commons, and the Other Physics Commons © Ian M Newsome Downloaded from https://scholarscompass.vcu.edu/etd/5414 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. c Ian Marshall Newsome, May 2018 All Rights Reserved. GEODESIC STRUCTURE IN SCHWARZSCHILD GEOMETRY WITH EXTENSIONS IN HIGHER DIMENSIONAL SPACETIMES A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by IAN MARSHALL NEWSOME August 2016 to May 2018 Director: Robert H. Gowdy, Associate Professor, Associate Chair, Department of Physics Virginia Commonwewalth University Richmond, Virginia May, 2018 i Acknowledgements I would like to thank Dr. Robert Gowdy for his guidance during the creation of this thesis. His patience and assistance have been paramount to my understanding of the fields of differential geometry and the theory of relativity. I would also like to thank my mother and father for their continuing support during my higher education, without which I may have faltered long ago. ii TABLE OF CONTENTS Chapter Page Acknowledgements :::::::::::::::::::::::::::::::: ii Table of Contents :::::::::::::::::::::::::::::::: iii List of Tables ::::::::::::::::::::::::::::::::::: iv List of Figures :::::::::::::::::::::::::::::::::: v Abstract ::::::::::::::::::::::::::::::::::::: ix 1 Introduction ::::::::::::::::::::::::::::::::: 1 1.1 Background .
    [Show full text]
  • A Mathematical Introduction to Kerr Black Holes
    Alma Mater Studiorum · Universita` di Bologna SCUOLA DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica A mathematical introduction to Kerr black holes Tesi di Laurea in Matematica Relatore: Presentata da: Prof. Roberto Casadio Marco Bernagozzi Correlatore: Prof. Maximiliano Sioli III Sessione Anno Accademico 2012-2013 Introduzione La relativit`agenerale `euna teoria fisica formulata da Albert Einstein. Questa teo- ria `estata pubblicata nel 1916. Essa cambia profondamente il concetto di interazione gravitazionale rispetto a come era stato formulato da Newton. Se prima era descritta come azione a distanza tra corpi massivi, ora viene descritta tramite la curvatura dello spaziotempo (in particolare, ogni corpo massivo curva lo spaziotempo). La relativit`agen- erale `eriuscita a conciliare il principio di relativit`agalileiana con le equazioni di Maxwell. Il principio di relativit`agalileiana asserisce che le leggi della fisica sono le stesse per tutti i sistemi inerziali che equivale matematicamente a dire che tutte le leggi della fisica sono simmetriche rispetto alle trasformazioni galileiane. Il punto cruciale delle equazioni di Maxwell risiede nell'implicazione che la luce viaggi costantemente a velocit`ac, indipen- dentemente dal sistema di riferimento. La teoria della relativit`agenerale `efondata su un concetto di spaziotempo, descritto come uno spazio pseudo-riemanniano a quattro dimensioni (la quarta dimensione `eil tempo). Le equazioni di campo di Einstein, per ogni punto dello spaziotempo, legano la curvatura al tensore energia-momento T, che de- scrive la quantit`adi materia ed energia nel punto. Di queste equazioni `estata dimostrata l’unicit`a,sotto l'ipotesi di co-varianza generale. Posti a zero la costante cosmologica e il tensore energia-momento, queste equazioni hanno delle soluzioni utilizzate per lo studio dei buchi neri.
    [Show full text]