REST API Guidance - Version 1.1
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Architecture of the World Wide Web, First Edition Editor's Draft 14 October 2004
Architecture of the World Wide Web, First Edition Editor's Draft 14 October 2004 This version: http://www.w3.org/2001/tag/2004/webarch-20041014/ Latest editor's draft: http://www.w3.org/2001/tag/webarch/ Previous version: http://www.w3.org/2001/tag/2004/webarch-20040928/ Latest TR version: http://www.w3.org/TR/webarch/ Editors: Ian Jacobs, W3C Norman Walsh, Sun Microsystems, Inc. Authors: See acknowledgments (§8, pg. 42). Copyright © 2002-2004 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Your interactions with this site are in accordance with our public and Member privacy statements. Abstract The World Wide Web is an information space of interrelated resources. This information space is the basis of, and is shared by, a number of information systems. In each of these systems, people and software retrieve, create, display, analyze, relate, and reason about resources. The World Wide Web uses relatively simple technologies with sufficient scalability, efficiency and utility that they have resulted in a remarkable information space of interrelated resources, growing across languages, cultures, and media. In an effort to preserve these properties of the information space as the technologies evolve, this architecture document discusses the core design components of the Web. They are identification of resources, representation of resource state, and the protocols that support the interaction between agents and resources in the space. We relate core design components, constraints, and good practices to the principles and properties they support. Status of this document This section describes the status of this document at the time of its publication. -
Supplement 211: Dicomweb Support for the Application/Zip Payload
5 Digital Imaging and Communications in Medicine (DICOM) Supplement 211: 10 DICOMweb Support for the application/zip Payload 15 20 Prepared by: Bill Wallace, Brad Genereaux DICOM Standards Committee, Working Group 27 1300 N. 17th Street Rosslyn, Virginia 22209 USA 25 Developed in accordance with work item WI 2018 -09 -C VERSION: 19 January 16, 2020 Table of Contents Scope and Field of Application ........................................................................................................................................ iii 30 Open Questions ....................................................................................................................................................... iii Closed Questions .................................................................................................................................................... iiii 8.6.1.3.1 File Extensions ................................................................................................................................. viv 8.6.1.3.2 BulkData URI ................................................................................................................................... viv 8.6.1.3.3 Logical Format ........................................................................................................................................ viv 35 8.6.1.3.4 Metadata Representations ...................................................................................................................... viv Scope and Field of Application -
Semantic FAIR Data Web Me
SNOMED CT Research Webinar Today’ Presenter WELCOME! *We will begin shortly* Dr. Ronald Cornet UPCOMING WEBINARS: RESEARCH WEB SERIES CLINICAL WEB SERIES Save the Date! August TBA soon! August 19, 2020 Time: TBA https://www.snomed.org/news-and-events/events/web-series Dr Hyeoun-Ae Park Emeritus Dean & Professor Seoul National University Past President International Medical Informatics Association Research Reference Group Join our SNOMED Research Reference Group! Be notified of upcoming Research Webinars and other SNOMED CT research-related news. Email Suzy ([email protected]) to Join. SNOMED CT Research Webinar: SNOMED CT – OWL in a FAIR web of data Dr. Ronald Cornet SNOMED CT – OWL in a FAIR web of data Ronald Cornet Me SNOMED Use case CT Semantic FAIR data web Me • Associate professor at Amsterdam UMC, Amsterdam Public Health Research Institute, department of Medical Informatics • Research on knowledge representation; ontology auditing; SNOMED CT; reusable healthcare data; FAIR data Conflicts of Interest • 10+ years involvement with SNOMED International (Quality Assurance Committee, Technical Committee, Implementation SIG, Modeling Advisory Group) • Chair of the GO-FAIR Executive board • Funding from European Union (Horizon 2020) Me SNOMED Use case CT Semantic FAIR data web FAIR Guiding Principles https://go-fair.org/ FAIR Principles – concise • Findable • Metadata and data should be easy to find for both humans and computers • Accessible • The user needs to know how data can be accessed, possibly including authentication and authorization -
Fast and Scalable Pattern Mining for Media-Type Focused Crawling
Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Fast and Scalable Pattern Mining for Media-Type Focused Crawling Author(s) Umbrich, Jürgen; Karnstedt, Marcel; Harth, Andreas Publication Date 2009 Jürgen Umbrich, Marcel Karnstedt, Andreas Harth "Fast and Publication Scalable Pattern Mining for Media-Type Focused Crawling", Information KDML 2009: Knowledge Discovery, Data Mining, and Machine Learning, in conjunction with LWA 2009, 2009. Item record http://hdl.handle.net/10379/1121 Downloaded 2021-09-27T17:53:57Z Some rights reserved. For more information, please see the item record link above. Fast and Scalable Pattern Mining for Media-Type Focused Crawling∗ [experience paper] Jurgen¨ Umbrich and Marcel Karnstedt and Andreas Harthy Digital Enterprise Research Institute (DERI) National University of Ireland, Galway, Ireland fi[email protected] Abstract 1999]) wants to infer the topic of a target page before de- voting bandwidth to download it. Further, a page’s content Search engines targeting content other than hy- may be hidden in images. pertext documents require a crawler that discov- ers resources identifying files of certain media types. Na¨ıve crawling approaches do not guaran- A crawler for media type targeted search engines is fo- tee a sufficient supply of new URIs (Uniform Re- cused on the document formats (such as audio and video) source Identifiers) to visit; effective and scalable instead of the topic covered by the documents. For a scal- mechanisms for discovering and crawling tar- able media type focused crawler it is absolutely essential geted resources are needed. -
Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005
Table of Contents Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005 This version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504 Latest version: http://www.w3.org/TR/xml-media-types Previous version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502 Editors: Anish Karmarkar, Oracle Ümit Yalçınalp, SAP Copyright © 2005 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. > >Abstract This document addresses the need to indicate the content-type associated with binary element content in an XML document and the need to specify, in XML Schema, the expected content-type(s) associated with binary element content. It is expected that the additional information about the content-type will be used for optimizing the handling of binary data that is part of a Web services message. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. This document is a W3C Working Group Note. This document includes the resolution of the comments received on the Last Call Working Draft previously published. The comments on this document and their resolution can be found in the Web Services Description Working Group’s issues list. There is no technical difference between this document and the 2 May 2005 version; the acknowledgement section has been updated to thank external contributors. -
2016 Technical Guidelines for Digitizing Cultural Heritage Materials
September 2016 Technical Guidelines for Digitizing Cultural Heritage Materials Creation of Raster Image Files i Document Information Title Editor Technical Guidelines for Digitizing Cultural Heritage Materials: Thomas Rieger Creation of Raster Image Files Document Type Technical Guidelines Publication Date September 2016 Source Documents Title Editors Technical Guidelines for Digitizing Cultural Heritage Materials: Don Williams and Michael Creation of Raster Image Master Files Stelmach http://www.digitizationguidelines.gov/guidelines/FADGI_Still_Image- Tech_Guidelines_2010-08-24.pdf Document Type Technical Guidelines Publication Date August 2010 Title Author s Technical Guidelines for Digitizing Archival Records for Electronic Steven Puglia, Jeffrey Reed, and Access: Creation of Production Master Files – Raster Images Erin Rhodes http://www.archives.gov/preservation/technical/guidelines.pdf U.S. National Archives and Records Administration Document Type Technical Guidelines Publication Date June 2004 This work is available for worldwide use and reuse under CC0 1.0 Universal. ii Table of Contents INTRODUCTION ........................................................................................................................................... 7 SCOPE .......................................................................................................................................................... 7 THE FADGI STAR SYSTEM ....................................................................................................................... -
SHACL Satisfiability and Containment
SHACL Satisfiability and Containment Paolo Pareti1 , George Konstantinidis1 , Fabio Mogavero2 , and Timothy J. Norman1 1 University of Southampton, Southampton, United Kingdom {pp1v17,g.konstantinidis,t.j.norman}@soton.ac.uk 2 Università degli Studi di Napoli Federico II, Napoli, Italy [email protected] Abstract. The Shapes Constraint Language (SHACL) is a recent W3C recom- mendation language for validating RDF data. Specifically, SHACL documents are collections of constraints that enforce particular shapes on an RDF graph. Previous work on the topic has provided theoretical and practical results for the validation problem, but did not consider the standard decision problems of satisfiability and containment, which are crucial for verifying the feasibility of the constraints and important for design and optimization purposes. In this paper, we undertake a thorough study of different features of non-recursive SHACL by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL w.r.t. satisfiability and containment. We study the interaction of SHACL features in this logic and provide the detailed map of decidability and complexity results of the aforementioned decision problems for different SHACL sublanguages. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features. 1 Introduction The Shapes Constraint Language (SHACL) has been recently introduced as a W3C recommendation language for the validation of RDF graphs, and it has already been adopted by mainstream tools and triplestores. A SHACL document is a collection of shapes which define particular constraints and specify which nodes in a graph should be validated against these constraints. -
D2.2: Research Data Exchange Solution
H2020-ICT-2018-2 /ICT-28-2018-CSA SOMA: Social Observatory for Disinformation and Social Media Analysis D2.2: Research data exchange solution Project Reference No SOMA [825469] Deliverable D2.2: Research Data exchange (and transparency) solution with platforms Work package WP2: Methods and Analysis for disinformation modeling Type Report Dissemination Level Public Date 30/08/2019 Status Final Authors Lynge Asbjørn Møller, DATALAB, Aarhus University Anja Bechmann, DATALAB, Aarhus University Contributor(s) See fact-checking interviews and meetings in appendix 7.2 Reviewers Noemi Trino, LUISS Datalab, LUISS University Stefano Guarino, LUISS Datalab, LUISS University Document description This deliverable compiles the findings and recommended solutions and actions needed in order to construct a sustainable data exchange model for stakeholders, focusing on a differentiated perspective, one for journalists and the broader community, and one for university-based academic researchers. SOMA-825469 D2.2: Research data exchange solution Document Revision History Version Date Modifications Introduced Modification Reason Modified by v0.1 28/08/2019 Consolidation of first DATALAB, Aarhus draft University v0.2 29/08/2019 Review LUISS Datalab, LUISS University v0.3 30/08/2019 Proofread DATALAB, Aarhus University v1.0 30/08/2019 Final version DATALAB, Aarhus University 30/08/2019 Page | 1 SOMA-825469 D2.2: Research data exchange solution Executive Summary This report provides an evaluation of current solutions for data transparency and exchange with social media platforms, an account of the historic obstacles and developments within the subject and a prioritized list of future scenarios and solutions for data access with social media platforms. The evaluation of current solutions and the historic accounts are based primarily on a systematic review of academic literature on the subject, expanded by an account on the most recent developments and solutions. -
Media Type Application/Vnd.Oracle.Resource+Json
New Media Type for Oracle REST Services to Support Specialized Resource Types O R A C L E WHITEPAPER | M A R C H 2 0 1 5 Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Contents Introduction 3 Conventions and Terminology 3 Core terminology 3 Singular Resource 4 Collection Resource 8 Exception Detail Resource 13 Status Resource 14 Query Description Resource 15 create-form Resource 16 edit-form Resource 17 JSON Schema 18 IANA Considerations 28 References 28 Change Log 28 2 | ORACLE WHITEPAPER: NEW MEDIA TYPE FOR ORACLE REST SERVICES TO SUPPORT SPECIALIZED RESOURCE TYPES Introduction This document defines a new media type, application/vnd.oracle.resource+json, which can be used by REST services to support the specialized resource types defined in the following table. Resource Type Description Singular Single entity resource, such as an employee or a purchase order. For more information, see “Singular Resource.” Collection List of items, such as employees or purchase orders. See “Collection Resource.” Exception Detail Detailed information about a failed request. See “Exception Detail Resource.” Status Status of a long running job. See “Status Resource.” Query description Query syntax description used by client to build the "q" query parameter. -
Definition of Data Exchange Standard for Railway Applications
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 6/*!1 Uniwersytet Technologiczno-:]! w Radomiu, (,? DEFINITION OF DATA EXCHANGE STANDARD FOR RAILWAY APPLICATIONS The manuscript delivered: March 2016 Abstract: Railway similar to the other branches of economy commonly uses information technologies in its business. This includes, inter alia, issues such as railway traffic management, rolling stock management, stacking timetables, information for passengers, booking and selling tickets. Variety aspects of railway operations as well as a large number of companies operating in the railway market causes that currently we use a lot of independent systems that often should work together. The lack of standards for data structures and protocols causes the need to design and maintain multiple interfaces. This approach is inefficient, time consuming and expensive. Therefore, the initiative to develop an open standard for the exchange of data for railway application was established. This new standard was named railML. The railML is based on Extensible Markup Language (XML) and uses XML Schema to define a new data exchange format and structures for data interoperability of railway applications. In this paper the current state of railML specification and the trend of development were discussed. Keywords: railway traffic control systems, railML, XML 1. INTRODUCTION It is hard to imagine the functioning of the modern world without information technologies. It is a result of numerous advantages of the modern IT solutions. One of the most important arguments for using IT systems is cost optimisation [1, 3, 6]. Variety aspects of railway operations as well as a large number of companies operating in the railway market causes that currently we use a lot of independent systems that often should cooperate. -
Social Media Solution Guide
Social Media Solution Guide Deploy Social Messaging Server with an RSS Channel 9/30/2021 Deploy Social Messaging Server with an RSS Channel Deploy Social Messaging Server with an RSS Channel Contents • 1 Deploy Social Messaging Server with an RSS Channel • 1.1 Prepare the RSS Channel • 1.2 Configure the Options • 1.3 Interaction Attributes • 1.4 Next Steps Social Media Solution Guide 2 Deploy Social Messaging Server with an RSS Channel Warning The APIs and other features of social media sites may change with little warning. The information provided on this page was correct at the time of publication (22 February 2013). For an RSS channel, you need two installation packages: Social Messaging Server and Genesys Driver for Use with RSS. The Driver adds RSS-specific features to Social Messaging Server and does not require its own Application object in the Configuration Server database. You can also create a Custom Media Channel Driver. Important Unlike some other eServices components, Social Messaging Server does not require Java Environment and Libraries for eServices and UCS. Prepare the RSS Channel 1. Deploy Social Messaging Server. 2. Run the installation for Genesys Driver for Use with RSS, selecting the desired Social Messaging Server object: Social Media Solution Guide 3 Deploy Social Messaging Server with an RSS Channel Select your Social Messaging Server Object 3. Locate the driver-for-rss-options.cfg configuration file in the \<Social Messaging Server application>\media-channel-drivers\channel-rss directory. 4. In Configuration Manager, open your Social Messaging Server Application, go to the Options tab, and import driver-for-rss-options.cfg. -
JSON Application Programming Interface for Discrete Event Simulation Data Exchange
JSON Application Programming Interface for Discrete Event Simulation data exchange Ioannis Papagiannopoulos Enterprise Research Centre Faculty of Science and Engineering Design and Manufacturing Technology University of Limerick Submitted to the University of Limerick for the degree of Master of Engineering 2015 1. Supervisor: Prof. Cathal Heavey Enterprise Research Centre University of Limerick Ireland ii Abstract This research is conducted as part of a project that has the overall aim to develop an open source discrete event simulation (DES) platform that is expandable, and modular aiming to support the use of DES at multi-levels of manufacturing com- panies. The current work focuses on DES data exchange within this platform. The goal of this thesis is to develop a DES exchange interface between three different modules: (i) ManPy an open source discrete event simulation engine developed in Python on the SimPy library; (ii) A Knowledge Extraction (KE) tool used to populate the ManPy simulation engine from shop-floor data stored within an Enterprise Requirements Planning (ERP) or a Manufacturing Execution System (MES) to allow the potential for real-time simulation. The development of the tool is based on R scripting language, and different Python libraries; (iii) A Graphical User Interface (GUI) developed in JavaScript used to provide an interface in a similar manner to Commercial off-the-shelf (COTS) DES tools. In the literature review the main standards that could be used are reviewed. Based on this review and the requirements above, the data exchange format standard JavaScript Object Notation (JSON) was selected. The proposed solution accom- plishes interoperability between different modules using an open source, expand- able, and easy to adopt and maintain, in an all inclusive JSON file.