A Persistent Metopic Suture: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Role of Movements in the Development of Sutural
J. Anat. (1983), 137, 3, pp. 591-599 591 With 11 figures Printed in Great Britain The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos MAURITS PERSSON Department of Orthodontics, Faculty of Odontology, University of Umea, Norrlandsgatan 18 B, S-902 48 Umea, Sweden (Accepted 17 February 1983) INTRODUCTION The factors regulating the development of sutural fibrous joints are a subject of controversy. Movements of muscular origin (Pritchard, Scott & Girgis, 1956), an osteogenesis-inhibiting factor (Markens, 1975) and physiolQgical cell death (Ten Cate, Freeman & Dickinson, 1977) have been suggested. More recently, Smith & Tondury (1978) concluded that stretch-growth tensile forces in the dura mater are responsible for the development of the calvaria and its sutures, the primary deter- minant in their development being the form and growth of the early brain. A similar biomechanical explanation for the morphogenesis of sutures in areas of the skull where no dura mater exists was also given by Persson & Roy (1979). Based on studies of suture development and bony fusion in the rabbit palate, they con- cluded that the spatial separation of bones during growth is the factor regulating suture formation. Lack of such movements of developing bones results in bone fusion when the bones meet. Further, when cranial bones at suture sites are im- mobilised, fusion of the bones across the suture is produced (Persson et al. 1979). In the normal development of diarthrodial joints, skeletal muscle contractions are essential (Murray & Selby, 1930; Lelkes, 1958; Drachman & Coulombre, 1962; Murray & Drachman, 1969; Hall, 1975), and lack of muscular movements results in stiff, fused joints. -
Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis
International Journal of Environmental Research and Public Health Article Nasal Morphology and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis Agnieszka Jankowska 1 , Joanna Janiszewska-Olszowska 2,* and Katarzyna Grocholewicz 2 1 Private Practice “Dental Clinic Jankowscy”, 68-200 Zary,˙ Poland; [email protected] 2 Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-91-466-1690 Abstract: Nose shape, size, and inclination influence facial appearance, but few studies concern the relationship between the nasal profile and craniofacial structures. The objective of this study was to analyze association of nasal cephalometric variables with skeletal structures, age, and sex. Cephalometric and nasal analysis was performed in 386 Polish orthodontic patients (aged 9–25 years). Student t-test and Mann–Whitney test were used to compare quantitative variables and Pearson’s or Spearman’s correlation coefficients—to find correlations. Soft tissue facial convexity angle corre- lates to Holdaway ratio, ANB (A-Nasion-B), and Wits appraisal. Nasal dorsum axis, nose length, nose depth (1) and nose depth (2), nose hump, lower dorsum convexity, and columella convexity increase with age. Nasal base angle, nasolabial angle, nasomental angle, soft tissue facial convex- ity and nasal bone angle decrease with age. Nasal base angle and nasomental angle are smaller in females. Thus, a relationship exists between nasal morphology and sagittal jaw configuration. Nasal parameters significantly change with age. Sexual dimorphism characterizes nasal bone angle Citation: Jankowska, A.; and nasomental angle. Janiszewska-Olszowska, J.; Grocholewicz, K. Nasal Morphology Keywords: nose; nose profile; cephalometry; orthodontics and Its Correlation to Craniofacial Morphology in Lateral Cephalometric Analysis. -
Persistent Metopic Suture with Multiple Sutural Bones at Unusual Sites
CASE REPORT Persistent metopic suture with multiple sutural bones at unusual sites Ambade HV, Fulpatil MP, Kasote AP Ambade HV, Fulpatil MP, Kasote AP. Persistent metopic suture with multiple in a human skull at asterion, left pterion and right coronal suture apart from the sutural bones at unusual sites. Int J Anat Var. 2017;10(3):69-70. lambdoid suture. Moreover, there was a persistent metopic suture between bregma to nasion in the same skull. The metopic suture with multiple sutural bones SUMMARY spreading beyond lambdoid suture at unusual sites is not reported previously. The knowledge of such variation and combination is rare and very important Sutural bones are small irregular bones found in the sutures and fontanels of for forensic expert, radiologists, orthopedists, neurosurgeons and anthropologist the human skull. They are commonly found at lambda and lambdoid suture point of view. It is very important to know about such variation because they can followed by pterion; and rarely at other sites. They vary from person to person in mislead the diagnosis of fracture of skull bones. number and shape, hence not named. Usually, 1-3 sutural bones in one skull are present, but 8-10 sutural bones are also reported in the literature, all restricted in Key Words: Metopic suture; Sutural bones; Wormian bones; Skull; Unusual sites; the vicinity of lambdoid sutures. In the present case, 8 sutural bones were present Variations INTRODUCTION etopic suture is present in between two frontal bones during fetal Mlife and soon disappear after birth. The obliteration starts at the age of 2 years and completed at the age of 8 years from above downwards (1). -
Cranial Suture Mesenchymal Stem Cells: Insights and Advances
biomolecules Review Cranial Suture Mesenchymal Stem Cells: Insights and Advances Bo Li 1, Yigan Wang 1, Yi Fan 2, Takehito Ouchi 3 , Zhihe Zhao 1,* and Longjiang Li 4,* 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; [email protected] (B.L.); [email protected] (Y.W.) 2 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; [email protected] 3 Department of Physiology, Tokyo Dental College, Tokyo 1010061, Japan; [email protected] 4 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China * Correspondence: [email protected] (Z.Z.); [email protected] (L.L.) Abstract: The cranial bones constitute the protective structures of the skull, which surround and protect the brain. Due to the limited repair capacity, the reconstruction and regeneration of skull defects are considered as an unmet clinical need and challenge. Previously, it has been proposed that the periosteum and dura mater provide reparative progenitors for cranial bones homeostasis and injury repair. In addition, it has also been speculated that the cranial mesenchymal stem cells reside in the perivascular niche of the diploe, namely, the soft spongy cancellous bone between the interior and exterior layers of cortical bone of the skull, which resembles the skeletal stem cells’ distribution pattern of the long bone within the bone marrow. -
Ectocranial Suture Closure in Pan Troglodytes and Gorilla Gorilla: Pattern and Phylogeny James Cray Jr.,1* Richard S
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 136:394–399 (2008) Ectocranial Suture Closure in Pan troglodytes and Gorilla gorilla: Pattern and Phylogeny James Cray Jr.,1* Richard S. Meindl,2 Chet C. Sherwood,3 and C. Owen Lovejoy2 1Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260 2Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, OH 44242 3Department of Anthropology, The George Washington University, Washington, DC 20052 KEY WORDS cranial suture; synostosis; variation; phylogeny; Guttman analysis ABSTRACT The order in which ectocranial sutures than either does with G. gorilla, we hypothesized that this undergo fusion displays species-specific variation among phylogenetic relationship would be reflected in the suture primates. However, the precise relationship between suture closure patterns of these three taxa. Results indicated that closure and phylogenetic affinities is poorly understood. In while all three species do share a similar lateral-anterior this study, we used Guttman Scaling to determine if the closure pattern, G. gorilla exhibits a unique vault pattern, modal progression of suture closure differs among Homo which, unlike humans and P. troglodyte s, follows a strong sapiens, Pan troglodytes,andGorilla gorilla.BecauseDNA posterior-to-anterior gradient. P. troglodytes is therefore sequence homologies strongly suggest that P. tr og lodytes more like Homo sapiens in suture synostosis. Am J Phys and Homo sapiens share a more recent common ancestor Anthropol 136:394–399, 2008. VC 2008 Wiley-Liss, Inc. The biological basis of suture synostosis is currently Morriss-Kay et al. (2001) found that maintenance of pro- poorly understood, but appears to be influenced by a liferating osteogenic stem cells at the margins of mem- combination of vascular, hormonal, genetic, mechanical, brane bones forming the coronal suture requires FGF and local factors (see review in Cohen, 1993). -
Download Poster
Sutural Variability in the Hominoid Anterior Cranial Fossa Robert McCarthy, Monica Kunkel, Department of Biological Sciences, Benedictine University Email contact information: [email protected]; [email protected] SAMPLE ABSTRACT Table 2. Results split by age. Table 4. Specimens used in scaling analyses. Group Age A-M434; M555 This study Combined In anthropoids, the orbital plates of frontal bone meet at a “retro-ethmoid” Species Symbol FMNH CMNH USNM % Contact S-E S-E S-E % % % frontal suture in the midline anterior cranial fossa (ACF), separating the contact/n contact/n contact/n presphenoid and mesethmoid bones. Previous research indicates that this Hylobatid 0 0 23 13.0 Hylobatid Adult 0/6 0 4/13 30.8 4/19 21.1 configuration appears variably in chimpanzees and gorillas and infrequently in modern humans, with speculation that its incidence is related to differential Juvenile 0/2 0 3/10 30.0 3/12 25.0 Orangutan 6 0 37 100.0 growth of the brain and orbits, size of the brow ridges or face, or upper facial Combined 0/9 0 7/23 30.4 7/32 21.9 prognathism. We collected qualitative and quantitative data from 164 Gorilla 3 0 4 28.6 previously-opened cranial specimens from 15 hominoid species in addition to A Orangutan Adult 12/12 100.0 21/21 100.0 21/21 100.0 Chimpanzee 1 0 7 57.1 qualitative observations on non-hominoid and hominin specimens in order to Juvenile 13/13 100.0 13/13 100.0 13/13 100.0 (1) document sutural variability in the primate ACF, (2) rethink the evolutionary trajectory of frontal bone contribution to the midline ACF, and Combined 26/26 100.0 34/34 100.0 34/34 34/34 Human 0 83 0 91.8 (3) create a database of ACF observations and measurements which can be Gorilla Adult 3/7 42.9 1/2 50.0 3/7 42.9 used to test hypotheses about structural relationships in the hominoid ACF. -
Cranial-Base Morphology in Children with Class Iii Malocclusion
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cranial-base morphology in Class III malocclusion CRANIAL-BASE MORPHOLOGY IN CHILDREN WITH CLASS III MALOCCLUSION Hong-Po Chang, Shu-Hui Hsieh,1 Yu-Chuan Tseng,2 and Tsau-Mau Chou Faculty of Dentistry and 1Graduate Institute of Dental Sciences, Kaohsiung Medical University, and 2Department of Orthodontics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. The association between cranial-base morphology and Class III malocclusion is not fully understood. The purpose of this study was to investigate the morphologic characteristics of the cranial base in children with Class III malocclusion. Lateral cephalograms from 100 children with Class III malocclusion were compared with those from 100 subjects with normal occlusion. Ten landmarks on the cranial base were identified and digitized. Cephalometric assessment using seven angular and 18 linear measurements was performed by univariate and multivariate analyses. The results revealed that the greatest between-group differences occurred in the posterior cranial-base region. It was concluded that shortening and angular bending of the cranial base, and a diminished angle between the cranial base and mandibular ramus, may lead to Class III malocclusion associated with Class III facial morphology. The association between cranial- base morphology and other types of malocclusion needs clarification. Further study of regional changes in the cranial base, with geometric morphometric analysis, is warranted. Key Words: cephalometric analysis, children, Class III malocclusion, cranial base, morphology (Kaohsiung J Med Sci 2005;21:159–65) A Class III malocclusion, defined by the mandibular first attempts were made to characterize global craniofacial permanent molar being “mesial” (i.e. -
Identifying the Misshapen Head: Craniosynostosis and Related Disorders Mark S
CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care Identifying the Misshapen Head: Craniosynostosis and Related Disorders Mark S. Dias, MD, FAAP, FAANS,a Thomas Samson, MD, FAAP,b Elias B. Rizk, MD, FAAP, FAANS,a Lance S. Governale, MD, FAAP, FAANS,c Joan T. Richtsmeier, PhD,d SECTION ON NEUROLOGIC SURGERY, SECTION ON PLASTIC AND RECONSTRUCTIVE SURGERY Pediatric care providers, pediatricians, pediatric subspecialty physicians, and abstract other health care providers should be able to recognize children with abnormal head shapes that occur as a result of both synostotic and aSection of Pediatric Neurosurgery, Department of Neurosurgery and deformational processes. The purpose of this clinical report is to review the bDivision of Plastic Surgery, Department of Surgery, College of characteristic head shape changes, as well as secondary craniofacial Medicine and dDepartment of Anthropology, College of the Liberal Arts characteristics, that occur in the setting of the various primary and Huck Institutes of the Life Sciences, Pennsylvania State University, State College, Pennsylvania; and cLillian S. Wells Department of craniosynostoses and deformations. As an introduction, the physiology and Neurosurgery, College of Medicine, University of Florida, Gainesville, genetics of skull growth as well as the pathophysiology underlying Florida craniosynostosis are reviewed. This is followed by a description of each type of Clinical reports from the American Academy of Pediatrics benefit from primary craniosynostosis (metopic, unicoronal, bicoronal, sagittal, lambdoid, expertise and resources of liaisons and internal (AAP) and external reviewers. However, clinical reports from the American Academy of and frontosphenoidal) and their resultant head shape changes, with an Pediatrics may not reflect the views of the liaisons or the emphasis on differentiating conditions that require surgical correction from organizations or government agencies that they represent. -
Morphometry of the Midfacial Complex in Subjects with Class III Malocclusions: Procrustes, Euclidean, and Cephalometric Analyses
Clinical Anatomy 11:162–170 (1998) Morphometry of the Midfacial Complex in Subjects With Class III Malocclusions: Procrustes, Euclidean, and Cephalometric Analyses G.D. SINGH,1* J.A. MCNAMARA, JR.,2 AND S. LOZANOFF3 1Department of Dental Surgery and Periodontology, Dundee Dental Hospital and School, University of Dundee, Dundee, Scotland, UK 2Department of Orthodontics and Pediatric Dentistry, School of Dentistry and Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan 3Departments of Anatomy and Reproductive Biology and of Surgery, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii The purpose of this study was to determine whether the morphology of the midface differed in subjects with a retrognathic midfacial appearance (Class III malocclusions) using a combina- tion of morphometric and cephalometric analyses. After obtaining appropriate consent, lateral cephalographs of 133 children of European-American descent, ages 5–11 years, were compared: 73 had Class III malocclusion, 60 had normal (Class I) occlusion. The cephalo- graphs were traced and subdivided into seven age- and sex-matched groups. Average geometries based upon seven nodes (pterygoid point, PTS; rhinion, RO; posterior nasal spine, PNS; midpalatal point, MPP; anterior nasal spine, ANS; subspinale, A; prosthion, Pr), scaled to an equivalent size, were compared using a Procrustes routine. Euclidean distance matrix analysis (EDMA) was employed to localize differences in morphology. Bivariate analyses on unscaled data utilizing nine linear and six angular measurements were also undertaken. Results from Procrustes and EDMA analyses indicated that although the overall midfacial configura- tions differed statistically (P , 0.05), only about half of the seven age sub-groups maintained significance. -
Level I to III Craniofacial Approaches Based on Barrow Classification For
Neurosurg Focus 30 (5):E5, 2011 Level I to III craniofacial approaches based on Barrow classification for treatment of skull base meningiomas: surgical technique, microsurgical anatomy, and case illustrations EMEL AVCı, M.D.,1 ERINÇ AKTÜRE, M.D.,1 HAKAN SEÇKIN, M.D., PH.D.,1 KUTLUAY ULUÇ, M.D.,1 ANDREW M. BAUER, M.D.,1 YUSUF IZCI, M.D.,1 JACQUes J. MORCOS, M.D.,2 AND MUSTAFA K. BAşKAYA, M.D.1 1Department of Neurological Surgery, University of Wisconsin–Madison, Wisconsin; and 2Department of Neurological Surgery, University of Miami, Florida Object. Although craniofacial approaches to the midline skull base have been defined and surgical results have been published, clear descriptions of these complex approaches in a step-wise manner are lacking. The objective of this study is to demonstrate the surgical technique of craniofacial approaches based on Barrow classification (Levels I–III) and to study the microsurgical anatomy pertinent to these complex craniofacial approaches. Methods. Ten adult cadaveric heads perfused with colored silicone and 24 dry human skulls were used to study the microsurgical anatomy and to demonstrate craniofacial approaches in a step-wise manner. In addition to cadaveric studies, case illustrations of anterior skull base meningiomas were presented to demonstrate the clinical application of the first 3 (Levels I–III) approaches. Results. Cadaveric head dissection was performed in 10 heads using craniofacial approaches. Ethmoid and sphe- noid sinuses, cribriform plate, orbit, planum sphenoidale, clivus, sellar, and parasellar regions were shown at Levels I, II, and III. In 24 human dry skulls (48 sides), a supraorbital notch (85.4%) was observed more frequently than the supraorbital foramen (14.6%). -
1 TERMINOLOGIA ANTHROPOLOGICA Names of The
TERMINOLOGIA ANTHROPOLOGICA Names of the parts of the human body, terms of aspects and relationships, and osteological terminology are as in Terminologia Anatomica. GENERAL TERMS EXPLANANTION ADAPTATION Adjustment and change of an organism to a specific environment, due primarily to natural selection. ADAPTIVE RADIATION Divergence of an ancestral population through adaption and speciation into a number of ecological niches. ADULT Fully developed and mature individual ANAGENESIS The progressive adaption of a single evolutionary line, where the population becomes increasingly specialized to a niche that has remained fairly constant through time. ANCESTRY One’s family or ethnic descent, the evolutionary or genetic line of descent of an animal or plant / Ancestral descent or lineage ANTEMORTEM Biological processes that can result in skeletal modifications before death ANTHROPOCENTRICISM The belief that humans are the most important elements in the universe. ANTHROPOLOGY The study of human biology and behavior in the present and in the past ANTHROPOLOGIST BIOLOGICAL A specialist in the subfield of anthropology that studies humans as a biological species FORENSIC A specialist in the use of anatomical structures and physical characteristics to identify a subject for legal purposes PHYSICAL A specialist in the subfield of anthropology dealing with evolutionary changes in the human bodily structure and the classification of modern races 1 SOCIAL A specialist in the subfield of anthropology that deals with cultural and social phenomena such as kingship systems or beliefs ANTHROPOMETRY The study of human body measurement for use in anthropological classification and comparison ARCHETYPE That which is taken as the blueprint for a species or higher taxonomic category ARTIFACT remains of past human activity. -
Supernumerary Bones in the Walls of the Bony Orbit K.Y
Research Article Supernumerary Bones in the Walls of the Bony Orbit K.Y. Manjunath Department of Anatomy, Annapoorna Medical College, NH-47, Shankari Main Road, Periyaseeragapadi Post, Salem-636308 (Received July , 2012) (Accepted January, 2013) Abstract: Occurrence of supernumerary bones in the walls of the orbit especially in the medial wall and the roof has been described in the literature. Studies of the prevalence of supernumerary bones in the bony wall of the orbit are scarce in the literature. Present study was undertaken to find the prevalence of supernumerary bones in the walls of the orbit in a collection of adult Indian skulls. In the present study three hundred and twenty six orbital walls from one hundred and sixty three skulls were examined for the presence of the sutural bones. Their location with reference to the sutures in the walls of the orbit and their size was noted. The supernumerary bones were found in 25 skulls (15.34 %) mainly in the lateral wall (11.04 %) and the roof of the orbit (4.29 %). Prevalence of such supernumerary bones in the walls of the bony orbit is of anthropological interest. Many of the bony ossicles were of sufficiently large size, enough to be visualized on lateral skull X-ray and could easily be mistaken for fracture of the bony wall of the orbit. Key Words: Bony ossicles; Cranium; Orbit; Supernumerary bones; Wormian bones. Introduction: of adult Indian skulls available in the Department of Small islands of bones called the sutural bones Anatomy, St John’s Medical College, Bangalore. are known to occur along the cranial sutures or at the In each skull, the inner surface of the walls of junction of cranial sutures on the cranial vault (Inkster, the bony orbit were inspected carefully for the presence 1951; Black, 2008).