Pkce Contributes to Lipid-Induced Insulin Resistance Through Cross Talk with P70s6k and Through Previously Unknown Regulators of Insulin Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Pkce Contributes to Lipid-Induced Insulin Resistance Through Cross Talk with P70s6k and Through Previously Unknown Regulators of Insulin Signaling PKCe contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling Brandon M. Gassawaya,b, Max C. Petersena,c,d, Yulia V. Surovtsevae, Karl W. Barbera,b, Joshua B. Sheetza, Hans R. Aernia,b,1, Jane S. Merkele, Varman T. Samuelc,f, Gerald I. Shulmana,c,d, and Jesse Rineharta,b,2 aDepartment of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520; bSystems Biology Institute, Yale University, West Haven, CT 06516; cInternal Medicine, Yale University, New Haven, CT 06520; dHoward Hughes Medical Institute, Yale University, New Haven, CT 06519; eYale Center for Molecular Discovery, Yale University, West Haven, CT 06516; and fSection of Endocrinology, Veterans Affairs Medical Center, West Haven, CT 06516 Edited by Morris F. White, Howard Hughes Medical Institute and Children’s Hospital Boston, Boston, MA, and accepted by Editorial Board Member Barbara B. Kahn August 8, 2018 (received for review March 14, 2018) Insulin resistance drives the development of type 2 diabetes (T2D). For these reasons, we sought to describe the PKCe network in In liver, diacylglycerol (DAG) is a key mediator of lipid-induced HFD-induced hepatic insulin resistance. insulin resistance. DAG activates protein kinase C e (PKCe), which To date, PKCe substrates have been investigated in a limited phosphorylates and inhibits the insulin receptor. In rats, a 3-day number of settings, including the tumor-promoting effects of – – high-fat diet produces hepatic insulin resistance through this mecha- phorbol esters (9 13), in protection against cardiac ischemia – – nism, and knockdown of hepatic PKCe protects against high-fat diet- reperfusion injury (14 17), in regulating cell cell junctions (18, induced hepatic insulin resistance. Here, we employed a systems-level 19), in immune cell activation (20, 21), and in channel regulation approach to uncover additional signaling pathways involved in high- (22, 23). However, most of these studies have investigated indi- fat diet-induced hepatic insulin resistance. We used quantitative phos- vidual phosphosites or protein targets and have not evaluated the PKCe signaling network as a whole. In the two studies where phoproteomics to map global in vivo changes in hepatic protein phos- PKCe was investigated on a proteome level, PKCe was impli- phorylation in chow-fed, high-fat–fed, and high-fat–fedwithPKCe e cated in glucose metabolism through modulation of the glycolytic knockdown rats to distinguish theimpactoflipid-andPKC-induced enzymes pyruvate kinase, enolase, and lactate dehydrogenase protein phosphorylation. This was followed by a functional siRNA- (16) as well as in lipid metabolism through modulation of based screen to determine which dynamically regulated phosphopro- HTATIP2 (24) and the epoxyeicosatrienoic acid pathway (25). teins may be involved in canonical insulin signaling. Direct PKCe sub- Another study investigated the PKCe phosphoproteome using strates were identified by motif analysis of phosphoproteomics data 2D gel electrophoresis and Pro-Q Diamond phosphospecific and validated using a large-scale in vitro kinase assay. These substrates staining with a peptide activator of PKCe translocation in included the p70S6K substrates RPS6 and IRS1, which suggested cross e talk between PKC and p70S6K in high-fat diet-induced hepatic insulin Significance resistance. These results identify an expanded set of proteins through which PKCe may drive high-fat diet-induced hepatic insulin resistance We investigated the role of PKCe in driving lipid-induced he- that may direct new therapeutic approaches for T2D. patic insulin resistance beyond direct insulin receptor phos- phorylation/inhibition using an in vivo model of acute hepatic insulin resistance | phosphoproteomics | cross talk | systems biology | PKCe insulin resistance and phosphoproteomic analysis. Many of the phosphoproteins we uncovered have not been previously as- nsulin resistance, or a diminished tissue response to physiologic sociated with insulin signaling; to validate these connections, Iinsulin concentrations, is the primary driving force behind type we developed a functional siRNA-based screen, which con- 2 diabetes (T2D). In liver, insulin resistance impairs insulin- firmed a direct role in regulating insulin signaling. We validated mediated activation of hepatic glycogen synthesis and suppres- direct PKCe–substrate interactions using a recently developed sion of hepatic glucose production leading to increased fasting peptide substrate library, which confirmed the cross talk be- blood glucose (1, 2). Diacylglycerol (DAG) is a key mediator of tween PKCe and p70S6K that our proteomic analysis suggested lipid-induced hepatic insulin resistance; increased DAG content and which may result in aberrant negative feedback upon lipid- in human liver is strongly correlated with hepatic insulin re- induced PKCe activation. Taken together, we expand the poten- sistance (3–5). In rats, a 3-d high-fat diet (HFD) is sufficient to tial landscape of therapeutic targets for the treatment of insulin increase hepatic DAG, which activates protein kinase C e (PKCe) resistance and diabetes. e (6). PKC in turn impairs INSR tyrosine kinase activity, inducing Author contributions: B.M.G., M.C.P., Y.V.S., K.W.B., J.S.M., V.T.S., G.I.S., and J.R. designed hepatic insulin resistance (7). Rats treated with 2′-O-methoxyethyl research; B.M.G., M.C.P., Y.V.S., K.W.B., and J.B.S. performed research; K.W.B. and H.R.A. antisense oligonucleotides (ASOs) to knock down PKCe expres- contributed new reagents/analytic tools; B.M.G., M.C.P., Y.V.S., K.W.B., J.B.S., and J.R. sion were protected from HFD-induced hepatic insulin resistance analyzed data; and B.M.G. and J.R. wrote the paper. (7). Recently, we demonstrated that PKCe inhibits INSR tyrosine The authors declare no conflict of interest. This article is a PNAS Direct Submission. M.F.W. is a guest editor invited by the kinase activity directly through phosphorylation of INSR T1160 Editorial Board. (1150 in mouse, 1161 in rat); a T1150A mutation protected mice Published under the PNAS license. from HFD-induced hepatic insulin resistance (8). Data deposition: The mass spectrometry proteomics data have been deposited to the Although phosphorylation of INSR appears to be a key ProteomeXchange Consortium via the PRIDE partner repository, https://www.ebi.ac.uk/ mechanism for PKCe-induced hepatic insulin resistance, DAG- pride/archive/, (dataset indentifier PXD010209). activated PKCe might also act on additional substrates in an 1Present address: Department of Bioanalytics, Synthorx, Inc., La Jolla, CA 92037. extended network of proteins that may contribute to the insulin- 2To whom correspondence should be addressed. Email: [email protected]. resistant phenotype. Furthermore, identifying PKCe targets in This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. the HFD-fed liver could shed light not only on the molecular 1073/pnas.1804379115/-/DCSupplemental. basis of insulin resistance but also on PKCe signaling in general. Published online September 4, 2018. E8996–E9005 | PNAS | vol. 115 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1804379115 Downloaded by guest on October 2, 2021 cardiomyocytes (17). While this study did identify several addi- Quantitative phosphoproteomic analysis was carried out with tional PKCe targets involved in glucose and lipid metabolism and an established dimethyl labeling strategy to enable direct pair- oxidative phosphorylation that may be relevant to insulin re- wise comparisons between experimental groups (28). We com- sistance, the difference in cell type (cardiac myocytes versus pared control ASO-treated, chow-fed rats to control ASO-treated, liver) and model (peptide activator versus DAG) may have im- HFD-fed rats to determine which phosphorylation events or portant implications for the relevant PKCe network and targets. pathways are altered in the setting of acute hepatic HFD-induced Furthermore, phosphosite localization information was not insulin resistance (Fig. 1D, comparison 1). We also compared obtained for most of these substrates, and candidate site-specific control ASO-treated, HFD-fed rats to PKCe ASO-treated, HFD- kinase–substrate relationships were not directly tested. fed rats to determine which phosphorylation events and signaling To overcome these limitations, we investigated the PKCe networks are affected by PKCe knockdown (Fig. 1D, comparison signaling network using quantitative phosphoproteomics in a 2). Following labeling, phosphopeptides were enriched with TiO2 physiologically relevant model of HFD-induced hepatic insulin and fractionated using electrostatic repulsion liquid chromatography resistance with knockdown of PKCe, evaluated the role of our (ERLIC) into 32 fractions to improve phosphoproteome coverage PKCe network in insulin signaling using an siRNA-based func- (Fig. 1D). In total, 11,224 sites of protein phosphorylation (phos- tional screen, and evaluated direct site-specific kinase–substrate phosites) were reproducibly quantified across all experimental relationships using a recently developed substrate peptide display conditions. In total, 779 phosphosites from 560 distinct proteins library, which were further validated in cells. Our phosphopro- showed a greater than twofold change (Fig. 1E). teomics and kinase–substrate validation suggest that PKCe-mediated HFD-induced hepatic insulin resistance may, in part, be the re- Mapping Phosphorylation
Recommended publications
  • AMPK Exerts Dual Regulatory Effects on the PI3K Pathway Rong Tao1, Jun Gong2, Xixi Luo3, Mengwei Zang4, Wen Guo4, Rong Wen5, Zhijun Luo2,4*
    Tao et al. Journal of Molecular Signaling 2010, 5:1 http://www.jmolecularsignaling.com/content/5/1/1 RESEARCH ARTICLE Open Access AMPK exerts dual regulatory effects on the PI3K pathway Rong Tao1, Jun Gong2, Xixi Luo3, Mengwei Zang4, Wen Guo4, Rong Wen5, Zhijun Luo2,4* Abstract Background: AMP-activated protein kinase (AMPK) is a fuel-sensing enzyme that is activated when cells experience energy deficiency and conversely suppressed in surfeit of energy supply. AMPK activation improves insulin sensitivity via multiple mechanisms, among which AMPK suppresses mTOR/S6K-mediated negative feedback regulation of insulin signaling. Results: In the present study we further investigated the mechanism of AMPK-regulated insulin signaling. Our results showed that 5-aminoimidazole-4-carboxamide-1 ribonucleoside (AICAR) greatly enhanced the ability of insulin to stimulate the insulin receptor substrate-1 (IRS1)-associated PI3K activity in differentiated 3T3-F442a adipocytes, leading to increased Akt phosphorylation at S473, whereas insulin-stimulated activation of mTOR was diminished. In 3T3-F442a preadipocytes, these effects were attenuated by expression of a dominant negative mutant of AMPK a1 subunit. The enhancing effect of ACIAR on Akt phosphorylation was also observed when the cells were treated with EGF, suggesting that it is regulated at a step beyond IR/IRS1. Indeed, when the cells were chronically treated with AICAR in the absence of insulin, Akt phosphorylation was progressively increased. This event was associated with an increase in levels of phosphatidylinositol -3,4,5-trisphosphate (PIP3) and blocked by Wortmannin. We then expressed the dominant negative mutant of PTEN (C124S) and found that the inhibition of endogenous PTEN per se did not affect phosphorylation of Akt at basal levels or upon treatment with AICAR or insulin.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Inhibition of Insulin Receptor Gene Expression and Insulin Signaling by Fatty Acid: Interplay of PKC Isoforms Therein
    Original Paper Cellular Physiology Cell Physiol Biochem 2005;16:217-228 Accepted: July 27, 2005 and Biochemistry Inhibition of Insulin Receptor Gene Expression and Insulin Signaling by Fatty Acid: Interplay of PKC Isoforms Therein Debleena Dey, Mohua Mukherjee, Dipanjan Basu1, Malabika Datta, Sib Sankar Roy, Arun Bandyopadhyay and Samir Bhattacharya1 Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 1Cellular and Molecular Endocrinology Laboratory, Department of Zoology, School of Life Science, Visva-Bharati University, Santiniketan Key Words dependent, palmitate effected its constitutive Insulin resistance • Type 2 diabetes • Insulin receptor phosphorylation independent of PDK1. Time kinetics • Insulin signaling • PKC isoforms • Free fatty acids • study showed translocation of palmitate induced HMG phosphorylated PKCε from cell membrane to nuclear region and its possible association with the inhibition Abstract of IR gene transcription. Our study suggests one of Fatty acids are known to play a key role in promoting the pathways through which fatty acid can induce the loss of insulin sensitivity causing insulin resistance insulin resistance in skeletal muscle cell. and type 2 diabetes. However, underlying mechanism involved here is still unclear. Incubation of rat skeletal muscle cells with palmitate followed by I125- insulin Copyright © 2005 S. Karger AG, Basel binding to the plasma membrane receptor preparation demonstrated a two-fold decrease in receptor occupation. In searching the cause for this reduction, Introduction we found that palmitate inhibition of insulin receptor (IR) gene expression effecting reduced amount of IR Insulin resistance and type 2 diabetes mellitus is an protein in skeletal muscle cells. This was followed by insidious disease that accounts for more than 95% of the inhibition of insulin-stimulated IRβ tyrosine diabetic cases.
    [Show full text]
  • NIH Public Access Author Manuscript Cancer J
    NIH Public Access Author Manuscript Cancer J. Author manuscript; available in PMC 2013 March 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Cancer J. 2012 March ; 18(2): 124±131. doi:10.1097/PPO.0b013e31824b436e. Targeting Mutant BRAF in Melanoma: Current Status and Future Development of Combination Therapy Strategies Ragini Kudchadkar, MD1, Kim H. T. Paraiso, MS2,3, and Keiran S. M. Smalley, PhD1,2,3,* 1Department of Cutaneous Oncology The Moffitt Cancer Center 12902 Magnolia Drive Tampa, FL, 33612, USA 2Department of Molecular Oncology The Moffitt Cancer Center 12902 Magnolia Drive Tampa, FL, 33612, USA 3The Comprehensive Melanoma Research Center The Moffitt Cancer Center 12902 Magnolia Drive Tampa, FL, 33612, USA Abstract The discovery of activating BRAF mutations in ~50% of all melanomas has proved to be a turning point in the therapeutic management of the disseminated disease. In this commentary we review the latest research delineating the role of mutant BRAF in melanoma initiation and progression and discuss the remarkable 10-year journey leading up to the recent FDA-approval of the small molecule BRAF inhibitor vemurafenib. We further outline the most recent findings on the mechanisms that underlie intrinsic and acquired BRAF inhibitor resistance and describe ongoing preclinical and clinical studies designed to delay or abrogate the onset of therapeutic escape. It is hoped that our evolving understanding of melanoma genetics and intracellular signaling coupled with a growing armamentarium of signal transduction inhibitors will lead to significant improvements in the level and durability of therapeutic response in metastatic melanoma.
    [Show full text]
  • PTPN11 Is the First Identified Proto-Oncogene That Encodes a Tyrosine Phosphatase
    From www.bloodjournal.org by guest on July 4, 2016. For personal use only. Review article PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase Rebecca J. Chan1 and Gen-Sheng Feng2,3 1Department of Pediatrics, the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis; 2Programs in Signal Transduction and Stem Cells & Regeneration, Burnham Institute for Medical Research, La Jolla, CA; 3Institute for Biomedical Research, Xiamen University, Xiamen, China Elucidation of the molecular mechanisms 2 Src-homology 2 (SH2) domains (Shp2). vation of the Ras-Erk pathway. This underlying carcinogenesis has benefited This tyrosine phosphatase was previ- progress represents another milestone in tremendously from the identification and ously shown to play an essential role in the leukemia/cancer research field and characterization of oncogenes and tumor normal hematopoiesis. More recently, so- provides a fresh view on the molecular suppressor genes. One new advance in matic missense PTPN11 gain-of-function mechanisms underlying cell transforma- this field is the identification of PTPN11 mutations have been detected in leuke- tion. (Blood. 2007;109:862-867) as the first proto-oncogene that encodes mias and rarely in solid tumors, and have a cytoplasmic tyrosine phosphatase with been found to induce aberrant hyperacti- © 2007 by The American Society of Hematology Introduction Leukemia and other types of cancer continue to be a leading cause tumor suppressor activity when overexpressed in vitro, and Ptprj of death in the United States, and biomedical scientists sorely note maps to the mouse colon cancer susceptibility locus,3 implicating that victories against cancer remain unacceptably rare.
    [Show full text]
  • Protein Kinase D3 Sensitizes RAF Inhibitor RAF265 in Melanoma Cells by Preventing Reactivation of MAPK Signaling
    Published OnlineFirst April 28, 2011; DOI: 10.1158/0008-5472.CAN-10-3761 Cancer Tumor and Stem Cell Biology Research Protein Kinase D3 Sensitizes RAF Inhibitor RAF265 in Melanoma Cells by Preventing Reactivation of MAPK Signaling Jian Chen, Qiong Shen, Mark Labow, and L. Alex Gaither Abstract RAS mutations occur in more than 30% of all human cancers but efforts to directly target mutant RAS signaling as a cancer therapy have yet to succeed. As alternative strategies, RAF and MEK inhibitors have been developed to block oncogenic signaling downstream of RAS. As might be expected, studies of these inhibitors have indicated that tumors with RAS or BRAF mutations display resistance RAF or MEK inhibitors. In order to better understand the mechanistic basis for this resistance, we conducted a RNAi-based screen to identify genes that mediated chemoresistance to the RAF kinase inhibitor RAF265 in a BRAF (V600E) mutant melanoma cell line that is resistant to this drug. In this way, we found that knockdown of protein kinase D3 (PRKD3) could enhance cell killing of RAF and MEK inhibitors across multiple melanoma cell lines of various genotypes and sensitivities to RAF265. PRKD3 blockade cooperated with RAF265 to prevent reactivation of the MAPK signaling pathway, interrupt cell cycle progression, trigger apoptosis, and inhibit colony formation growth. Our findings offer initial proof-of-concept that PRKD3 is a valid target to overcome drug resistance being encountered widely in the clinic with RAF or MEK inhibitors. Cancer Res; 71(12); 4280–91. Ó2011 AACR. Introduction are found mutationally activated in 30% of all human cancers, with highest prevalence in pancreas (90%), colon (50%), RAS–RAF mitogen-activated protein kinase (MAPK) signal- thyroid (50%), and lung (30%) cancers (1, 2).
    [Show full text]
  • Supplementary Table 1. in Vitro Side Effect Profiling Study for LDN/OSU-0212320. Neurotransmitter Related Steroids
    Supplementary Table 1. In vitro side effect profiling study for LDN/OSU-0212320. Percent Inhibition Receptor 10 µM Neurotransmitter Related Adenosine, Non-selective 7.29% Adrenergic, Alpha 1, Non-selective 24.98% Adrenergic, Alpha 2, Non-selective 27.18% Adrenergic, Beta, Non-selective -20.94% Dopamine Transporter 8.69% Dopamine, D1 (h) 8.48% Dopamine, D2s (h) 4.06% GABA A, Agonist Site -16.15% GABA A, BDZ, alpha 1 site 12.73% GABA-B 13.60% Glutamate, AMPA Site (Ionotropic) 12.06% Glutamate, Kainate Site (Ionotropic) -1.03% Glutamate, NMDA Agonist Site (Ionotropic) 0.12% Glutamate, NMDA, Glycine (Stry-insens Site) 9.84% (Ionotropic) Glycine, Strychnine-sensitive 0.99% Histamine, H1 -5.54% Histamine, H2 16.54% Histamine, H3 4.80% Melatonin, Non-selective -5.54% Muscarinic, M1 (hr) -1.88% Muscarinic, M2 (h) 0.82% Muscarinic, Non-selective, Central 29.04% Muscarinic, Non-selective, Peripheral 0.29% Nicotinic, Neuronal (-BnTx insensitive) 7.85% Norepinephrine Transporter 2.87% Opioid, Non-selective -0.09% Opioid, Orphanin, ORL1 (h) 11.55% Serotonin Transporter -3.02% Serotonin, Non-selective 26.33% Sigma, Non-Selective 10.19% Steroids Estrogen 11.16% 1 Percent Inhibition Receptor 10 µM Testosterone (cytosolic) (h) 12.50% Ion Channels Calcium Channel, Type L (Dihydropyridine Site) 43.18% Calcium Channel, Type N 4.15% Potassium Channel, ATP-Sensitive -4.05% Potassium Channel, Ca2+ Act., VI 17.80% Potassium Channel, I(Kr) (hERG) (h) -6.44% Sodium, Site 2 -0.39% Second Messengers Nitric Oxide, NOS (Neuronal-Binding) -17.09% Prostaglandins Leukotriene,
    [Show full text]
  • Endometrial Gene Expression in the Early Luteal Phase Is Impacted By
    Human Reproduction, Vol.27, No.11 pp. 3259–3272, 2012 Advanced Access publication on August 28, 2012 doi:10.1093/humrep/des279 ORIGINAL ARTICLE Reproductive biology Endometrial gene expression in the early luteal phase is impacted by mode of triggering final oocyte maturation in recFSH stimulated and GnRH antagonist co-treated IVF cycles P. Humaidan1,*, I. Van Vaerenbergh2, C. Bourgain2, B. Alsbjerg3, Downloaded from C. Blockeel4, F. Schuit5, L. Van Lommel5, P. Devroey4, and H. Fatemi4 1The Fertility Clinic, Department D, Odense University Hospital, OHU, Entrance 55, Odense C 5000, Denmark 2Reproductive Immunology and Implantation Unit, Dutch-speaking Free University of Brussels, Brussels, Belgium 3The Fertility Clinic, Skive Regional Hospital, Skive, Denmark 4Centre for Reproductive Medicine, Dutch-speaking Free University of Brussels, Brussels, Belgium 5Gene Expression Unit, KU Leuven, Leuven, Belgium http://humrep.oxfordjournals.org/ *Correspondence address. Tel: +45-20-34-26-87; E-mail: [email protected] Submitted on March 9, 2012; resubmitted on June 3, 2012; accepted on June 22, 2012 study question: Do differences in endometrial gene expression exist after ovarian stimulation with four different regimens of triggering final oocyte maturation and luteal phase support in the same patient? summary answer: Significant differences in the expression of genes involved in receptivity and early implantation were seen between by greta verheyen on June 5, 2013 the four protocols. what is known already: GnRH agonist triggering
    [Show full text]
  • TGF-Beta/Smad
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com TGF-beta/Smad The TGF-β superfamily comprises TGF-βs, bone morphogenetic proteins (BMPs), activins and related proteins. These proteins were identified mainly through their roles in development; they regulate the establishment of the body plan and tissue differentiation through their effects on cell proliferation, differentiation and migration. There are eight vertebrate Smads: Smad1 to Smad8. Smad2 and Smad3 are activated through carboxy-terminal phosphorylation by the TGF-b and activin receptors TbRI and ActRIB, whereas Smad1, Smad5 and Smad8 are activated by ALK-1, ALK-2, BMP-RIA/ALK-3 and BMP-RIB/ALK-6 in response to BMP1–4 or other ligands. TGF-β binds two receptor types, the TGF-β type I and type II receptors (TβRI and TβRII, respectively) to form the active signaling complex. The TβRII activates TβRI kinase activity by phosphorylating the TβRI, which then transmits the signal intracellularly by phosphorylating the Smad transcription factors. The Smads constitutively shuttle between the cytoplasm and nucleus, but signaling causes the Smads to accumulate predominantly in the nucleus where they bind DNA and other transcriptional machinery to regulate the expression of target genes. TGF-β also involves in the regulations of PI3K and MAPK signaling pathways. Abnormalities of the TGF-beta receptors and SMADs have been detected in various tumors, including colorectal cancers and pancreatic cancers. In addition, TGF-β/BMP signaling is also involved in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption ofTGF-β/BMP signaling.
    [Show full text]
  • Synthetic Mrnas; Their Analogue Caps and Contribution to Disease
    diseases Review Synthetic mRNAs; Their Analogue Caps and Contribution to Disease Anthony M. Kyriakopoulos 1,* and Peter A. McCullough 2 1 Nasco AD Biotechnology Laboratory, Sachtouti 11, 18536 Piraeus, Greece 2 Department of Internal Medicine, Division of Cardiology, Baylor University Medical Center, Dallas, TX 75246, USA; [email protected] * Correspondence: [email protected]; Tel.: +30-6944415602 Abstract: The structure of synthetic mRNAs as used in vaccination against cancer and infectious diseases contain specifically designed caps followed by sequences of the 50 untranslated repeats of b-globin gene. The strategy for successful design of synthetic mRNAs by chemically modifying their caps aims to increase resistance to the enzymatic deccapping complex, offer a higher affinity for binding to the eukaryotic translation initiation factor 4E (elF4E) protein and enforce increased translation of their encoded proteins. However, the cellular homeostasis is finely balanced and obeys to specific laws of thermodynamics conferring balance between complexity and growth rate in evolution. An overwhelm- ing and forced translation even under alarming conditions of the cell during a concurrent viral infection, or when molecular pathways are trying to circumvent precursor events that lead to autoimmunity and cancer, may cause the recipient cells to ignore their differential sensitivities which are essential for keeping normal conditions. The elF4E which is a powerful RNA regulon and a potent oncogene governing cell cycle progression and proliferation at a post-transcriptional level, may then be a great contributor to disease development. The mechanistic target of rapamycin (mTOR) axis manly inhibits the elF4E to proceed with mRNA translation but disturbance in fine balances between mTOR and elF4E Citation: Kyriakopoulos, A.M.; action may provide a premature step towards oncogenesis, ignite pre-causal mechanisms of immune McCullough, P.A.
    [Show full text]
  • Transcriptomic Landscape of Early Age Onset of Colorectal Cancer Identifies
    www.nature.com/scientificreports OPEN Transcriptomic landscape of early age onset of colorectal cancer identifes novel genes and pathways in Indian CRC patients Manish Pratap Singh, Sandhya Rai, Nand K. Singh & Sameer Srivastava* Past decades of the current millennium have witnessed an unprecedented rise in Early age Onset of Colo Rectal Cancer (EOCRC) cases in India as well as across the globe. Unfortunately, EOCRCs are diagnosed at a more advanced stage of cancer. Moreover, the aetiology of EOCRC is not fully explored and still remains obscure. This study is aimed towards the identifcation of genes and pathways implicated in the EOCRC. In the present study, we performed high throughput RNA sequencing of colorectal tumor tissues for four EOCRC (median age 43.5 years) samples with adjacent mucosa and performed subsequent bioinformatics analysis to identify novel deregulated pathways and genes. Our integrated analysis identifes 17 hub genes (INSR, TNS1, IL1RAP, CD22, FCRLA, CXCL3, HGF, MS4A1, CD79B, CXCR2, IL1A, PTPN11, IRS1, IL1B, MET, TCL1A, and IL1R1). Pathway analysis of identifed genes revealed that they were involved in the MAPK signaling pathway, hematopoietic cell lineage, cytokine–cytokine receptor pathway and PI3K-Akt signaling pathway. Survival and stage plot analysis identifed four genes CXCL3, IL1B, MET and TNS1 genes (p = 0.015, 0.038, 0.049 and 0.011 respectively), signifcantly associated with overall survival. Further, diferential expression of TNS1 and MET were confrmed on the validation cohort of the 5 EOCRCs (median age < 50 years and sporadic origin). This is the frst approach to fnd early age onset biomarkers in Indian CRC patients.
    [Show full text]
  • Anaplastic Lymphoma Kinase (ALK): Structure, Oncogenic Activation, and Pharmacological Inhibition
    Pharmacological Research 68 (2013) 68–94 Contents lists available at SciVerse ScienceDirect Pharmacological Research jo urnal homepage: www.elsevier.com/locate/yphrs Invited review Anaplastic lymphoma kinase (ALK): Structure, oncogenic activation, and pharmacological inhibition ∗ Robert Roskoski Jr. Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742, USA a r t i c l e i n f o a b s t r a c t Article history: Anaplastic lymphoma kinase was first described in 1994 as the NPM-ALK fusion protein that is expressed Received 14 November 2012 in the majority of anaplastic large-cell lymphomas. ALK is a receptor protein-tyrosine kinase that was Accepted 18 November 2012 more fully characterized in 1997. Physiological ALK participates in embryonic nervous system develop- ment, but its expression decreases after birth. ALK is a member of the insulin receptor superfamily and Keywords: is most closely related to leukocyte tyrosine kinase (Ltk), which is a receptor protein-tyrosine kinase. Crizotinib Twenty different ALK-fusion proteins have been described that result from various chromosomal rear- Drug discovery rangements, and they have been implicated in the pathogenesis of several diseases including anaplastic Non-small cell lung cancer large-cell lymphoma, diffuse large B-cell lymphoma, and inflammatory myofibroblastic tumors. The Protein kinase inhibitor EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development Targeted cancer therapy Acquired drug resistance in about 5% of non-small cell lung cancers. The formation of dimers by the amino-terminal portion of the ALK fusion proteins results in the activation of the ALK protein kinase domain that plays a key role in the tumorigenic process.
    [Show full text]