PHYTOCHEMICALS in NUTRITION and HEALTH TX838 FM 02/01/2002 1:19 PM Page Ii PHYTOCHEMICALS in NUTRITION and HEALTH

Total Page:16

File Type:pdf, Size:1020Kb

PHYTOCHEMICALS in NUTRITION and HEALTH TX838 FM 02/01/2002 1:19 PM Page Ii PHYTOCHEMICALS in NUTRITION and HEALTH TX838 FM 02/01/2002 1:19 PM Page ii PHYTOCHEMICALS IN NUTRITION AND HEALTH TX838 FM 02/01/2002 1:19 PM Page ii PHYTOCHEMICALS IN NUTRITION AND HEALTH Edited by Mark S. Meskin Wayne R. Bidlack Audra J. Davies Stanley T. Omaye CRC PRESS Boca Raton London New York Washington, D.C. TX838 FM 02/01/2002 1:19 PM Page iv Library of Congress Cataloging-in-Publication Data Phytochemicals : their role in nutrition and health / edited by Mark S. Meskin ... [et al.]. p. cm. Includes bibliographical references and index. ISBN 1-58716-083-8 1. Phytochemicals—Physiological effect. I. Meskin, Mark S. QP144.V44 P494 2002 613.2—dc21 2001052997 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or inter- nal use of specific clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is ISBN 1-58716-083-8/01/$0.00+$1.50. The fee is subject to change without notice. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for cre- ating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2002 by CRC Press LLC No claim to original U.S. Government works International Standard Book Number 1-58716-083-8 Library of Congress Card Number 2001052997 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper TX838 FM 02/01/2002 1:19 PM Page v Contents PREFACE . .vii EDITORS . .xi CONTRIBUTORS . .xv CHAPTER 1 Evidence-Based Herbalism . 1 EDZARD ERNST CHAPTER 2 Phytochemical Diversity and Biological Activity in Echinacea Phytomedicines: Challenges to Quality Control and Germplasm Improvement . 9 JOHN T. ARNASON, SHANNON E. BINNS, and BERNARD R. BAUM CHAPTER 3 Phytochemicals in the Vaccinium Family: Bilberries, Blueberries, and Cranberries . 19 MARY ELLEN CAMIRE CHAPTER 4 Wine Polyphenols and Protection from Atherosclerosis and Ischemic Heart Disease: Drink to Your Health?. 41 MICHAEL A. DUBICK v TX838 FM 02/01/2002 1:19 PM Page vi vi Contents CHAPTER 5 Beyond α-Tocopherol: The Role of the Other Tocopherols and Tocotrienols. 61 ANDREAS M. PAPAS CHAPTER 6 Phytochemical Pharmacokinetics . 79 HAROLD L. NEWMARK and CHUNG S.YANG CHAPTER 7 Dietary Isothiocyanates: Roles in Cancer Prevention and Metabolism in Rodents and Humans. 87 FUNG-LUNG CHUNG CHAPTER 8 Rationale for the Use of Soy Phytoestrogens for Neuroprotection . 105 HELEN KIM CHAPTER 9 Bioengineering and Breeding Approaches for Improving Nutrient and Phytochemical Content of Plants. 121 DAVID W. STILL CHAPTER 10 Phytochemicals in Oilseeds . 139 FEREIDOON SHAHIDI CHAPTER 11 Lycopene and Human Health. 157 BETTY JANE BURRI CHAPTER 12 Astaxanthin, ß-Cryptoxanthin, Lutein, and Zeaxanthin . 173 JOHN T. LANDRUM, RICHARD A. BONE, and CHRISTIAN HERRERO INDEX . 193 TX838 FM 02/01/2002 1:19 PM Page vii Preface The contents of this book evolved from papers delivered at the Third International Phytochemical Conference, “Phytochemicals: From Harvest to Health,” held on the campus of California State Polytechnic University, Pomona, on November 13 and 14, 2000. Three biennial conferences have been held since 1996. These conferences have taken place during a period of time that has seen an explosion of public interest in phytochemicals and a reinvigorated and expanded growth of scientific research on plant-based bioactive chemicals The focus of these conferences has been to highlight phytochemicals that have significant potential for promoting health or preventing disease supported by solid scientific research. The conferences have also included discussions of research methodology, strategies for identifying promising chemicals, and surveys of existing research. Data from epidemiological studies suggest that diets rich in fruits, vegetables, and whole grains are consistently associated with a decreased risk of chronic degen- erative disease. The essential nutrient content alone of various plant foods cannot account for the health benefits associated with their consumption. Many researchers have correlated specific groups of phytochemicals with decreased incidence of a number of chronic degenerative disease states. The focus of current scientific inves- tigations in the field of phytochemistry centers on the unique mechanisms of action associated with beneficial phytochemical groups and their role in the promotion of optimal health and the treatment of disease. This third book adds new phytochemicals and foods to the list covered by the first two books, Phytochemicals: A New Paradigm (1998) and Phytochemicals As Bioactive Agents (2000) (Chapters 2, 3, 4, and 10). Topics addressed in the two pre- vious books are also updated and expanded (Chapters 5, 7, 8, 11, and 12). Finally, several new and important topics have been added (Chapters 1, 6, and 9). vii TX838 FM 02/01/2002 1:19 PM Page viii viii Preface Herbal medicinal products are among the best selling nutrition-related products of our time. The public assumes these products are both safe and effective, but there is little basis for this assumption, especially in a regulatory environment in which these products are essentially unregulated. The ideal standard for determining the safety and efficacy of these plant products is the double-blind, placebo-controlled clinical trial. Such data are rarely available and when available, they are often con- tradictory. In Chapter 1, Ernst suggests that in the current situation the best evidence is provided by a systematic review or meta-analysis of existing data. A strong case for evidence-based herbalism is articulated and the results of systematic reviews of 11 herbal medicinal products are described. The approach described can identify herbal medicinal products that are currently safe and effective and highlight those herbs which require much more evidence prior to widespread use. A wide range of phytochemicals has been studied as potentially therapeutic. Many of these chemicals have been identified based on chemical structure, in vitro activity, epidemiological evidence, and bioactivity screening programs. The fact that a chemical has interesting properties or that it demonstrates bioactivity in a screen- ing protocol does not necessarily indicate that the chemical will be effective in vivo in humans. If a chemical is not bioavailable or it is heavily metabolized in vivo, it will be ineffective. The pharmacokinetics of phytochemicals in humans have been largely ignored. In order to understand the potential therapeutic effectiveness of a phyto- chemical, researchers will have to study its pharmacokinetics. Newmark and Yang suggest guidelines for approaching studies of phytochemical pharmacokinetics in Chapter 6. The illustrations provided demonstrate a wide variation in phytochemical absorption and metabolism and emphasize the need for studies of phytochemical digestion, absorption, metabolism, and excretion. As interest heightens in the use of therapeutically beneficial phytochemicals, researchers will be looking more closely at technologies for enhancing the phyto- chemical content of traditional foods and for methods that will maximize plant pro- duction of phytochemicals for extraction. In Chapter 9 Still compares and contrasts the two ways plant biologists can manipulate the concentration of a phytochemical in a plant: traditional plant breeding vs. biotechnology. The methodologies, advan- tages, and disadvantages of both strategies are covered in detail. Bioengineering technologies have been evolving rapidly and Still’s discussion clearly indicates that there is great promise in these technologies while significant challenges need to be addressed. Both novices and those already familiar with these technologies will be challenged and informed by this review. Chapters 2, 3, 4, and 10 cover phytochemicals or foods that have not been dis- cussed in our previous books. Echinacea-based phytomedicines are widely con- sumed around the world as cold and flu treatments, wound-healing agents, and immunostimulants. Many of the producers of these products and the majority of con- sumers do not understand or are unaware of the complex quality control issues that are inherent in the production of a phytomedicine. Arnason, Binns, and Baum in Chapter 2 point out that there are a wide number
Recommended publications
  • Chemical Structures of Lignans and Neolignans Isolated from Lauraceae
    Review Chemical Structures of Lignans and Neolignans Isolated from Lauraceae Ya Li 1,*, Shuhan Xie 2, Jinchuan Ying 1, Wenjun Wei 1 and Kun Gao 1,* 1 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; [email protected] (J.Y.); [email protected] (W.W.) 2 Lanzhou University High School, Lanzhou 730000, China; [email protected] * Correspondences: [email protected] (Y.L.); [email protected] (K.G.); Tel.: +86-931-8912500 (Y.L.) Academic Editor: David Barker Received: 09 November 2018; Accepted: 29 November 2018; Published: 30 November 2018 Abstract: Lauraceae is a good source of lignans and neolignans, which are the most chemotaxonomic characteristics of many species of the family. This review describes 270 naturally occurring lignans and neolignans isolated from Lauraceae. Keywords: lignans; neolignans; Lauraceae; chemical components; chemical structures 1. Introduction Lignans are widely distributed in the plant kingdom, and show diverse pharmacological properties and a great number of structural possibilities. The Lauraceae family, especially the genera of Machilus, Ocotea, and Nectandra, is a rich source of lignans and neolignans, and neolignans represent potential chemotaxonomic significance in the study of the Lauraceae. Lignans and neolignans are dimers of phenylpropane, and conventionally classified into three classes: lignans, neolignans, and oxyneolignans, based on the character of the C–C bond and oxygen bridge joining the two typical phenyl propane units that make up their general structures [1]. Usually, lignans show dimeric structures formed by a β,β’-linkage (8,8’-linkage) between two phenylpropanes units. Meanwhile, the two phenylpropanes units are connected through a carbon–carbon bond, except for the 8,8’-linkage, which gives rise to neolignans.
    [Show full text]
  • Recent Advances in Research on Lignans and Neolignans Cite This: Nat
    Natural Product Reports View Article Online REVIEW View Journal | View Issue Recent advances in research on lignans and neolignans Cite this: Nat. Prod. Rep.,2016,33, 1044 ab a a Remy´ Bertrand Teponno,† Souvik Kusari† and Michael Spiteller* Covering: 2009 to 2015 Lignans and neolignans are a large group of natural products derived from the oxidative coupling of two C6–C3 units. Owing to their biological activities ranging from antioxidant, antitumor, anti-inflammatory to antiviral properties, they have been used for a long time both in ethnic as well as in conventional medicine. This review describes 564 of the latest examples of naturally occurring lignans and neolignans, and their glycosides in some cases, which have been isolated between 2009 and 2015. It comprises the Received 15th February 2016 data reported in more than 200 peer-reviewed articles and covers their source, isolation, structure DOI: 10.1039/c6np00021e Creative Commons Attribution-NonCommercial 3.0 Unported Licence. elucidation and bioactivities (where available), and highlights the biosynthesis and total synthesis of some www.rsc.org/npr important ones. 1 Introduction 1 Introduction 1.1 Denition 1.2 Biosynthesis and distribution of lignans and neolignans The last decade has witnessed a renewed interest in biologically 1.3 Hyphenated techniques used for the isolation, identi- active compounds isolated from a plethora of natural resources, cation and quantication of lignans and neolignans in addition to impressive progress in allied methodologies such This article is licensed under a 2 Lignans as combinatorial chemistry and high-throughput screening. 2.1 Dibenzocyclooctadiene derivatives Given the advantages of formulations containing compounds 2.2 Arylnaphthalene and aryltetralin derivatives obtained from natural resources over compounds obtained by 2.3 Dibenzylbutane, dibenzylbutyrolactol and dibenzylbutyr- total synthesis, including relatively low toxicity, complete Open Access Article.
    [Show full text]
  • Chemical Pro Les and Metabolite Study of Raw and Processed
    Chemical Proles and Metabolite Study of Raw and Processed Cistanche Deserticola in rats by UPLC-Q- TOF-MSE Zhe Li Liaoning University of Traditional Chinese Medicine Lkhaasuren Ryenchindorj Drug Research Institute of Mono groups Bonan Liu Liaoning University of Traditional Chinese Medicine Ji SHI ( [email protected] ) Liaoning University of Traditional Chinese Medicine https://orcid.org/0000-0002-6409-4662 Chao Zhang Liaoning University of Traditional Chinese Medicine Yue Hua Liaoning University of Traditional Chinese Medicine Pengpeng Liu Liaoning University of Traditional Chinese Medicine Guoshun Shan Liaoning University of Traditional Chinese Medicine Tianzhu Jia Liaoning University of Traditional Chinese Medicine Research Keywords: Cistanche deserticola, Processing, UPLC-Q-TOF-MS E, Chemical proles, metabolites in vivo Posted Date: June 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-556141/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Chemical profiles and metabolite study of raw and processed Cistanche deserticola in rats by UPLC-Q-TOF-MSE Zhe Li1, Lkhaasuren Ryenchindorj2, Bonan Liu1, Ji Shi1*, Chao Zhang1, Yue Hua1, Pengpeng Liu1, Guoshun Shan1, Tianzhu Jia1 (1.Liaoning University of Traditional Chinese Medicine, Pharmaceutic Department, Liaoning Dalian, China;2.Drug Research Institute of Monos Group, Ulaanbaatar 14250, Mongolia) ABSTRACT: Background: Chinese materia medica processing is a distinguished and unique pharmaceutical technique in traditional Chinese Medicien (TCM), which has played an important role in reducing side effects, increasing medical potencies, altering the properties and even changing the curative effects of raw herbs.The efficacy improvement in medicinal plants is mainly caused by changes in the key substances through an optimized processing procedure.The effect of invigorating the kidney-yang for rice wine-steamed Cistancha deserticola was more strengthened than raw C.
    [Show full text]
  • Echinacoside, an Inestimable Natural Product in Treatment of Neurological and Other Disorders
    molecules Review Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders Jingjing Liu 1,†, Lingling Yang 1,†, Yanhong Dong 1, Bo Zhang 1 and Xueqin Ma 1,2,* ID 1 Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China; [email protected] (J.L.); [email protected] (L.Y.); [email protected] (Y.D.); [email protected] (B.Z.) 2 Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China * Correspondence: [email protected]; Tel.: +86-951-6880693 † These authors contributed equally to this work. Academic Editors: Nancy D. Turner and Isabel C. F. R. Ferreira Received: 1 May 2018; Accepted: 15 May 2018; Published: 18 May 2018 Abstract: Echinacoside (ECH), a natural phenylethanoid glycoside, was first isolated from Echinacea angustifolia DC. (Compositae) sixty years ago. It was found to possess numerous pharmacologically beneficial activities for human health, especially the neuroprotective and cardiovascular effects. Although ECH showed promising potential for treatment of Parkinson’s and Alzheimer’s diseases, some important issues arose. These included the identification of active metabolites as having poor bioavailability in prototype form, the definite molecular signal pathways or targets of ECH with the above effects, and limited reliable clinical trials. Thus, it remains unresolved as to whether scientific research can reasonably make use of this natural compound. A systematic summary and knowledge of future prospects are necessary to facilitate further studies for this natural product. The present review generalizes and analyzes the current knowledge on ECH, including its broad distribution, different preparation technologies, poor pharmacokinetics and kinds of therapeutic uses, and the future perspectives of its potential application.
    [Show full text]
  • Phytochemical Characterization of Phenolic Compounds by LC- MS
    Original Article DOI: 10.4274/tjps.galenos.2021.33958 Phytochemical Characterization of Phenolic Compounds by LC- MS/MS and Biological Activities of Ajuga reptans L., Ajuga salicifolia (L.) Schreber and Ajuga genevensis L. from Turkey* Ajuga reptans L., Ajuga salicifolia (L.) Schreber ve Ajuga genevensis L.'nin LC-MS / MS ile Fenolik Bileşiklerinin Fitokimyasal Karakterizasyonu ve Biyolojik Aktiviteleri Running title: Phytochemistry and bioactivity of some Ajuga sp. Gamze Göger1, Yavuz Bülent Köse2, Fatih Demirci3,4 Fatih Göger3 1 Trakya University, Faculty of Pharmacy, Department of Pharmacognosy, 22030 Edirne, Turkey 2 Anadolu University, Faculty of Pharmacy Department of Pharmaceutical Botany 26470- Eskişehir, Turkey proof 3 Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470-Eskişehir, Turkey 4Eastern Mediterranean University, Faculty of Pharmacy, 99628 Famagusta, N. Cyprus, Mersin 10, Turkey Corresponding author: Gamze Göger; E-mail address: [email protected] (284) 235 40 10 / 3251 ORCIDs: Gamze GÖGER: https://orcid.org/0000-0003-2978-5385 Fatih GÖGER: https://orcid.org/0000-0002-9665-0256 Yavuz Bülent KÖSE: https://orcid.org/0000-0002-3060-7271 Fatih DEMİRCİ : https://orcid.org/0000-0003-1497-3017 15.01.2021 23.02.2021 * This work is dedicated to late Prof. Dr. Hulusi MALYER for his outstanding contributions to pharmaceutical botany. ABSTRACT Objectives: In the present study, phytochemical properties, in vitro antioxidant and antimicrobial activity of Ajuga L. species were investigated. Materials and Methods: Ajuga reptans L., A. salicifolia (L.) Schreber, and A. genevensis L. uncorrectedcollected from Turkey. Air dried aerial parts of these species were extracted with methanol (70%). The phenolic composition of the crude extracts was analysed by LC-MS/MS method.
    [Show full text]
  • A 1A9, A431 and A549 Cell Lines, 3478 12Α,13Α-Aziridinyl Epothilone
    Index A Acanthoscelides obtectus, 4091 1A9, A431 and A549 cell lines, 3478 Acanthostrongylophora, 1293 12a,13a-Aziridinyl epothilone derivatives, 990 Acari, 4070, 4083 Aaptos ciliata, 1292 Acaricides, 4070, 4076, 4083 AATs. See Anthocyanin acyltransferases Accelerated solvent extraction (ASE), 1017, (AATs) 2017, 2021–2023, 2032, 2037, 2111 Ab (1-42), 2287 p-Acceptors, 692 ABA biosynthesis, 1736 Accretion, 2405 Ab aggregation, 2286 Accumulation, 2321 Abdominal troubles, 3477 Acetaldehyde (ATL), 2902 Aberrant behavior, 1375 Acetaldehyde acid, 1783 Aberrant estrous cycles, 2421 Acetate, 50, 59 Abies alba, 2980 Acetate-mevalonate (Ac-MEV), 2943 Abietadiene synthase, 2725 Acetate pathway, 2314 Abiotic and biotic elicitors, 2783 Acetic acid (ACE), 851, 1608, 2884 Abiotic factor, 1697 Acetogenic bacteria, 2443 Abiotic stresses, 2930 Acetone, 3371 Ab neuropathology, 2285 Acetonitrile, 691, 1170, 1175 Ab oligomerization, 2285 3-Acetylaconitine, 1508 Ab oligomers, 2283 Acetyl-ACP, 963 Ab peptides, 1308, 2285 Acetyl-and butyrylcholinesterase inhibitors, Ab polymerization, 2287 3488 Abrin, 296 Acetylcholine (ACh), 1241, 1306, 1333, 1526, Abscisic acid (ABA), 2860, 3591 1527, 1529, 1530, 3710 Absolute configuration, 930, 3320 Acetylcholine esterase, 51, 52 Absolute configuration of monosaccharides, Acetylcholine esterase inhibitor activity, 2906 3319 Acetylcholinesterase (AChE), 41, 1246, 1308, Absorbance (A), 3334, 3380 1334, 1527, 1529–1533, 1535, 4097 Absorbance spectrum, 3929, 3933, 3934 Acetyl-CoA, 61, 584 Absorption, 1230, 2321, 2470–2476, Acetyl-CoA carboxylase (ACC), 1658, 1825 2478–2481, 3134, 3377, 3616, 4024 3-Acetyldeoxynivalenol, 3127, 3145 coefficient, 3380 15-Acetyl deoxynivalenol (15ADON), and metabolism, 1428 3127, 3145 wavelength, 4028 Acetylerucifoline, 1061 Abusive correlations, 2410 Acetylgaertneroside, 3054 Acacetin, 1830 60-O-Acetylgeniposide, 3058 Acacia, 865 8-O-Acetylharpagide, 3055 a2C adrenergic, 4124 Acetylintermedine, 1061 Acanthaceae, 801 Acetyllycopsamine, 1061 K.G.
    [Show full text]
  • New Phenylethanoid Glycosides from Cistanche Tubulosa (SCHRENK) HOOK
    No. 8 3309 Chem. Pharm. Bull. 35( 8 )3309-3314(1987) New Phenylethanoid Glycosides from Cistanche tubulosa (SCHRENK) HOOK. f. I. HIROMI KOBAYASHI.*.a HIROKO OGUCHI,a NOBUO TAKIZAWA,a TOSHIO MIYASE,b AKIRA UENO,b KHAN USMANGHANI,c and MANSOOR AHMAD c Central Research Laboratories, Yomeishu Seizo Co., Ltd.,a 2132-37 Nakaminowa, Minowa-machi, Kamiina-gun, Nagano 399-46, Japan, Shizuoka College of Pharmacy,b 2-2-1 Oshika, Shizuoka-shi 422, Japan and Department of Pharmacognosy, Faculty of Pharmacy, University of Karachi,c Karachi-32, Pakistan (Received January 22, 1987) Four new phenylethanoid glycosides, tubulosides A (II), B (VI), C (VII) and D (VIII), have been isolated from Cistanche tubulosa (SCHRENK)HOOK. f. (Orobanchaceae), together with four known phenylethanoid glycosides, echinacoside (I), acteoside (III), acteoside isomer (IV) and 2'- acetylacteoside (V). The structures of II, VI, VII and VIII were established on the basis of chemical evidence and spectral data. Compounds VII and VIII possess a triacetylrhamnosyl moiety as the terminal sugar. Keywords Cistanche tubulosa; Orobanchaceae; parasitic plant; phenylethanoid glycoside; tubuloside A; tubuloside B; tubuloside C; tubuloside D In our series of investigations on the chemical constituents of Cistanche spp. (Orobanchaceae), the phenylethanoid glycosides1-3) and iridoide4) from Cistanche salsa (C. A. MEY.) G. BECK have been reported. The present paper deals with the phenylethanoid glycosides from Cistanche tubulosa (SCHRENK) HOOK. f. collected in Pakistan. Cistanche tubulosa (SCHRENK) HOOK. f.5) is a parasitic plant growing on the roots of Salvadora and Calotropis spp., and occurs widely in North Africa, Arabia, West Asia to Pakistan and India.
    [Show full text]
  • Universita' Degli Studi Di Napoli Federico Ii
    UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTA’ DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO IN SCIENZE CHIMICHE XVIII CICLO 2002-2005 Indirizzo: Sintesi, struttura e reattività delle molecole organiche Chemistry and phytotoxicity of secondary metabolites from Mediterranean plants Tutor Candidata Prof.ssa M. Della Greca Dott.ssa Francesca Cutillo Relatore Prof.ssa R. Lanzetta Coordinatore Prof. Rosa Lanzetta 1 INDEX • SUMMARY 3 • INTRODUCTION 8 • MATERIALS AND METHODS 18 General experimental procedures……………………………………............................18 Extraction and isolation of compounds from Brassica fruticulosa ….............................19 Extraction and isolation of compounds from Malva silvestris……….. ...........................21 Extraction and isolation of compounds from Chenopodium album…………………….22 Bioassays……………………………………………………………………………….28 Spectroscopic data of isolated compounds……………………………………………..29 • RESULTS AND DISCUSSION 52 Brassica fruticulosa…............................................................................. ................ ....... 53 Malva silvestris. ...............................................................................................................74 Chenopodium album....................................................................................................... .90 • BIOASSAYS 123 • CONCLUSIONS 144 • REFERENCES 147 • FTICR: FOURIER TRANSFORM ION CYCLOTRON RESONANCE 157 Investigation upon the charge state, conformation and RS20 interaction of Calmodulin. Introduction………………………………………………………………………..….157
    [Show full text]
  • HPLC Determination of Antilipoxygenase Activity of a Water Infusion of Ligustrum Vulgare L
    Molecules 2011, 16, 8198-8208; doi:10.3390/molecules16108198 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article HPLC Determination of Antilipoxygenase Activity of a Water Infusion of Ligustrum vulgare L. Leaves and Some of Its Constituents Pavel Mučaji 1,*, Anna Záhradníková 1, Lýdia Bezáková 2, Mária Cupáková 3, Drahomíra Rauová 3 and Milan Nagy 1 1 Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovak Republic; E-Mails: [email protected] (A.Z.); [email protected] (M.N.) 2 Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovak Republic; E-Mail: [email protected] 3 Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovak Republic; E-Mails: [email protected] (M.C.); [email protected] (D.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +421-2-50117201; Fax: +421-2-50117100. Received: 30 August 2011; in revised form: 15 September 2011 / Accepted: 20 September 2011 / Published: 28 September 2011 Abstract: The aim of the study was a HPLC evaluation of the lipoxygenase activity inhibiting activity of a water infusion of Ligustrum vulgare L. leaves and selected isolates from it. The antiradical activity of the water infusion was determined using DPPH, ABTS and FRAP tests. Oleuropein and echinacoside concentrations in the water infusion were determined by HPLC. Water infusion, echinacoside and oleuropein were used for an antilipoxygenase activity assay using lipoxygenase isolated from rat lung cytosol fraction.
    [Show full text]
  • D273d60166f3424ef04cd6cc57c
    Molecules 2015, 20, 10065-10081; doi:10.3390/molecules200610065 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Comparison of Fruits of Forsythia suspensa at Two Different Maturation Stages by NMR-Based Metabolomics Jinping Jia 1,2, Fusheng Zhang 2, Zhenyu Li 2, Xuemei Qin 2 and Liwei Zhang 1,* 1 Institute of Molecular Science, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, China; E-Mail: [email protected] 2 Modern Research Center for Traditional Chinese Medicine, Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, China; E-Mails: [email protected] (F.Z.); [email protected] (Z.L.); [email protected] (X.Q.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-0351-7019297; Fax: +86-0351-7018113. Academic Editor: Maria Halabalaki Received: 10 March 2015 / Accepted: 26 May 2015 / Published: 29 May 2015 Abstract: Forsythiae Fructus (FF), the dried fruit of Forsythia suspensa, has been widely used as a heat-clearing and detoxifying herbal medicine in China. Green FF (GF) and ripe FF (RF) are fruits of Forsythia suspensa at different maturity stages collected about a month apart. FF undergoes a complex series of physical and biochemical changes during fruit ripening. However, the clinical uses of GF and RF have not been distinguished to date. In order to comprehensively compare the chemical compositions of GF and RF, NMR-based metabolomics coupled with HPLC and UV spectrophotometry methods were adopted in this study. Furthermore, the in vitro antioxidant and antibacterial activities of 50% methanol extracts of GF and RF were also evaluated.
    [Show full text]
  • Echinacea Purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions
    pharmaceuticals Article Echinacea purpurea (L.) Moench: Chemical Characterization and Bioactivity of Its Extracts and Fractions Joana Coelho 1,2, Lillian Barros 1,* , Maria Inês Dias 1 , Tiane C. Finimundy 1 , Joana S. Amaral 1,3 , Maria José Alves 1, Ricardo C. Calhelha 1 , P. F. Santos 2,* and Isabel C.F.R. Ferreira 1 1 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (J.C.); [email protected] (M.I.D.); [email protected] (T.C.F.); [email protected] (J.S.A.); [email protected] (M.J.A.); [email protected] (R.C.C.); [email protected] (I.C.F.R.F.) 2 Centro de Química-Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal 3 REQUIMTE/LAQV, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal * Correspondence: [email protected] (L.B.); [email protected] (P.F.S.) Received: 30 May 2020; Accepted: 17 June 2020; Published: 20 June 2020 Abstract: Echinacea purpurea (L.) Moench is widely known for its medicinal properties, being one of the most used medicinal plants for its immunostimulant properties. Nevertheless, there is still scarce information on its cytotoxic activity. Thus, this study aims at evaluating the cytotoxicity and antimicrobial activity of several aqueous and organic extracts of the aerial parts of this plant and chemically characterizing the obtained extracts. The analysis was performed by HPLC–DAD–ESI/MS. Fifteen compounds were identified; of these, seven were phenolic acids and eight were flavonoids.
    [Show full text]
  • Supporting Information For: Lignans: a Chemometric Analysis
    Supporting Information for: Lignans: A Chemometric Analysis Lisa I. Pilkington* School of Chemical Sciences, The University of Auckland, Auckland, New Zealand. *To whom correspondence should be addressed: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. E-mail: [email protected], Tel. 64-9-373-7599 ext. 86776 S1 Table of Contents Figure S1. The statistical distribution of the dipole moments of all analysed compounds.. .. S4 Figure S2. The statistical distribution of the water solubility (LogS) of all analysed compounds.. ............................................................................................................................. S4 Figure S3. The statistical distribution of the ionisation potentials of all analysed compounds. .................................................................................................................................................. S5 Figure S5. The statistical distribution of the molecular weight of all classical lignans and neolignans. ............................................................................................................................... S6 Figure S6. The statistical distribution of the octanol – water partition coefficient (LogP) of all classical lignans and neolignans. ........................................................................................ S6 Figure S7. The statistical distribution of the hydrogen bond donors of classical lignans and neolignans. ..............................................................................................................................
    [Show full text]