Misidentification Syndromes Related to Face Specific Area in the Fusiform Gyrus

Total Page:16

File Type:pdf, Size:1020Kb

Misidentification Syndromes Related to Face Specific Area in the Fusiform Gyrus J Neurol Neurosurg Psychiatry 2000;69:645–648 645 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.5.645 on 1 November 2000. Downloaded from SHORT REPORT Misidentification syndromes related to face specific area in the fusiform gyrus Arthur J Hudson, Gloria M Grace Abstract consistently misidentifies a familiar place, The “delusional misidentification syn- sometimes including occupants, as a replica. dromes” are a group of uncommon and Twenty years later a more common but similar varied disorders in which, in typical form, phenomenon involving people, called the patient thinks that a particular famil- “l’illusion des sosies” or Capgras syndrome,2 iar person is someone else or a certain was described wherein an usually familiar per- familiar place is a duplicate. Although son, such as a family member, is viewed as a first identified and considered a memory stranger with an identical appearance. Since disorder by Pick, evidence in support of then, similar variants have been reported, this has been diYcult to identify. They including the Frégoli syndrome in which, as in have been most often seen in various psy- the case described in this account, the patient chotic and organic brain diseases but conceptually misidentifies a person as another lesions have been generally diVuse al- known person with an entirely diVerent though the right temporal lobe has been appearance.3 The cause of these delusional implicated. A patient was investigated misidentification syndromes, as they are collec- who abruptly developed a disorder tively known,4 is obscure although Pick1 main- copyright. wherein she misidentified her husband as tained that the phenomenon represented a dis- her deceased sister and claimed that her turbance of memory, specifically involving “a home was a duplicate of her real home sense of familiarity”, that plays “an important that were typical of Frégoli syndrome and part in remembrance, especially in recogni- Pick’s reduplicative paramnesia, respec- tion”. tively. A discrete area of brain damage, Although often described in relation to psy- probably ischaemic, in this patient was chotic states including schizophrenia, it is, seen on MRI in the anterior part of the nevertheless, widely considered that these syn- right fusiform gyrus and a smaller area in dromes have an anatomical basis because of the nearby anterior middle and inferior their frequent association with organic brain temporal gyri with associated parahip- disease.45 Brain lesions generally have been pocampal and hippocampal atrophy. A http://jnnp.bmj.com/ poorly localised and are often bilateral al- high order nervous system function that is though lesions in the right temporal lobe have devoted to the identification of faces is 5 6 located in the adjacent midportion of the been described. Sellal et al described both fusiform gyrus and a similar locus for Capgras syndrome and delusional misidentifi- environmental scenes, termed the para- cation for place in a case of viral encephalitis hippocampal place area, is present in the with damage to the anterior medial part of the bordering parahippocampal gyrus. The right temporal lobe and the medial frontal and misidentification phenomena in this case orbital frontal regions bilaterally. Hirstein and on September 25, 2021 by guest. Protected 7 can be explained by disruption of the con- Ramachandran postulated that Capgras syn- nections of these highly specialised areas drome could be explained by damage to Department of Clinical connections from face processing areas in the Neurological Sciences, with the most anterior inferior and medial London Health part of the right temporal lobe where long right temporal lobe to the limbic system. Sciences Centre term memory and mechanisms for the Hence, our finding of discrete lesions in the (University Campus), retrieval of information that are required right anterior inferior temporal lobe has 339 Windermere Road, for the visual recognition of faces and provided a rare opportunity to confirm the London, Ontario, N6A scenes are stored. suspected organic basis and anatomical locali- 5A5, Canada (J Neurol Neurosurg Psychiatry 2000;69:645–648) A J Hudson sation for these kinds of delusions. The visual G M Grace phenomenon in these disorders is distinct from Keywords: fusiform gyrus face area; parahippocampal prosopagnosia in which familiar faces are place area; delusional misidentification; Frégoli syn- Correspondence to: perceived but not recognised. None the less, Dr A J Hudson drome [email protected] pure prosopagnosia is associated with damage to nearby right temporal cortical areas that Received 24 November 1999 Pick,1 almost a century ago, described a include, predominantly, the lingual and poste- and in final form 5 June 2000 syndrome that he named “reduplicative param- rior half of the fusiform and parahippocampal Accepted 6 June 2000 nesia” in which a person repeatedly and gyri.89 www.jnnp.com 646 Hudson, Grace J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.5.645 on 1 November 2000. Downloaded from copyright. http://jnnp.bmj.com/ MRI of the patient’s brain. (A) A coronal T2 weighted image through the temporal lobe at the level of the hippocampus shows abnormal hyperintensity in the right middle and inferior temporal gyrus (small arrow in all figures) and fusiform gyrus (large arrow in all figures). (B) Proton density image of the same area as shown in A, illustrates enlargement of the right temporal horn (divided by cut into two sections as in C). There are also atrophic changes in the right hippocampus and parahippocampal gyrus and (not shown) in the fusiform gyrus. (C) Axial FLAIR image through the temporal lobe at the level of the inferior tip of the temporal horn shows the anteroposterior extent of hyperintensity in the right inferior temporal and fusiform gyri. (D) Schematic illustration of the inferior surface of the brain demonstrates the approximate on September 25, 2021 by guest. Protected extent of the damage (grey shade) in the fusiform gyrus as derived from the MRI in comparison with the putative location and extent of the fusiform face (hatched) area.14 CS=collateral sulcus; FG=fusiform gyrus; ITG=inferior temporal gyrus; LG=lingual gyrus; OTS=occipitotemporal sulcus; PG=parahippocampal gyrus. Case report address him by the sister’s name and would The subject, a 71 year old woman, began hav- become argumentative and hostile towards him ing frequent fainting attacks from intermittent as though he were intruding. Intermittently she complete heart block. This was confirmed would speak to him using his real name, when an electrocardiographic tracing obtained expressing their usual intimacy and clearly at during an episode of unconsciousness dis- such time recognising him as her husband. In closed an abrupt drop in her heart rate from 72 this context it is noteworthy that visual contact to 30 beats per minutes for 10 seconds. Within seemed necessary for misidentification in as a day or two of the recording she was given a much as she never misidentified him as her sis- permanent cardiac pacemaker with immediate ter on the telephone. In addition to misidenti- and complete arrest of fainting. However, dur- fying him she often referred to their home as a ing the first few days of the attacks, she began rented replica and would even pack her bags to misidentifying her husband as her elder sister return to their “real” home. Sometimes she who had died 3 years previously. She would thought other members of her family, all of www.jnnp.com Misidentification syndromes related to face specific area in the fusiform gyrus 647 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.69.5.645 on 1 November 2000. Downloaded from Table 1 Neuropsychological tests temporal lobe (figure). There was also atrophy of the right parahippocampal and hippocampal Classification range* gyri. Normal (average) Subnormal (impaired) Performance on neuropsychological testing (table), about 1 year after the onset of the syn- Test High to mid Low Mild Moderate to severe drome, was in the average to above average Wechsler adult intelligence scale-revised: range on tests of verbal intellectual skill and Verbal IQ + reasoning, most language functions, mental Subset scores Information + calculation, auditory attention, and concentra- Digit span + tion (digit span), oral and manual praxis, and Vocabulary + many aspects of verbal learning and memory. Arithmetic + Comprehension + However, there were deficits in visual percep- Similarities + tion and construction and her performance IQ Performance IQ + was significantly lower (25 points) than verbal Subset scores: Picture completion + IQ. Deficits were apparent in visual attention Picture arrangement + (visual span), memory for visual material Block design + (visual reproduction), and visual motor Object assembly + Digit symbol + processing speed (trail making test). Executive Wisconsin card sorting test:† processes such as word generation (semantic Number of categories + Perseverative responses + fluency) and organisational memory (Rey Non-perseverative responses + auditory verbal learning test) were mildly to Trail making test: moderately impaired, and several qualitative Part A + Part B + impairments of executive function were noted. Wide range achievement test - 3: For example, on delayed recall of the Rey com- Reading subtest + plex figure, perseveration was illustrated when Multilingual aphasia examination: Benton visual naming + her drawing resembled not the appropriate fig- Controlled oral word association: + ure but one drawn
Recommended publications
  • Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment
    The Journal of Neuroscience, December 1989, 9(12): 4355-4370 Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment Stuart Zola-Morgan,’ Larry Ft. Squire,’ David G. Amaral,2 and Wendy A. Suzuki2J Veterans Administration Medical Center, San Diego, California, 92161, and Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, The Salk Institute, San Diego, California 92136, and 3Group in Neurosciences, University of California, San Diego, La Jolla, California 92093 In monkeys, bilateral damage to the medial temporal region Moss, 1984). (In this notation, H refers to the hippocampus, A produces severe memory impairment. This lesion, which in- to the amygdala, and the plus superscript (+) to the cortical cludes the hippocampal formation, amygdala, and adjacent tissue adjacent to each structure.) This lesion appears to con- cortex, including the parahippocampal gyrus (the H+A+ le- stitute an animal model of medial temporal lobe amnesia like sion), appears to constitute an animal model of human me- that exhibited by the well-studied patient H.M. (Scoville and dial temporal lobe amnesia. Reexamination of histological Milner, 1957). material from previously studied monkeys with H+A+ lesions The H+A+ lesion produces greater memory impairment than indicated that the perirhinal cortex had also sustained sig- a lesion limited to the hippocampal formation and parahip- nificant damage. Furthermore, recent neuroanatomical stud- pocampal cortex-the H+ lesion (Mishkin, 1978; Mahut et al., ies show that the perirhinal cortex and the closely associated 1982; Zola-Morgan and Squire, 1985, 1986; Zola-Morgan et al., parahippocampal cortex provide the major source of cortical 1989a).
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • Functional Connectivity of the Angular Gyrus in Normal Reading and Dyslexia (Positron-Emission Tomography͞human͞brain͞regional͞cerebral)
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8939–8944, July 1998 Neurobiology Functional connectivity of the angular gyrus in normal reading and dyslexia (positron-emission tomographyyhumanybrainyregionalycerebral) B. HORWITZ*†,J.M.RUMSEY‡, AND B. C. DONOHUE‡ *Laboratory of Neurosciences, National Institute on Aging, and ‡Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Communicated by Robert H. Wurtz, National Eye Institute, Bethesda, MD, May 14, 1998 (received for review January 19, 1998) ABSTRACT The classic neurologic model for reading, not functionally connected during a specific task. On the other based on studies of patients with acquired alexia, hypothesizes hand, if rCBF in two regions is correlated, these regions need functional linkages between the angular gyrus in the left not be anatomically linked; their activities may be correlated, hemisphere and visual association areas in the occipital and for example, because both receive inputs from a third area (for temporal lobes. The angular gyrus also is thought to have more discussion about these connectivity concepts, see refs. 8, functional links with posterior language areas (e.g., Wer- 10, and 11). nicke’s area), because it is presumed to be involved in mapping Based on lesion studies in many patients with alexia, it has visually presented inputs onto linguistic representations. Us- been proposed that the posterior portion of the neural network ing positron emission tomography , we demonstrate in normal mediating reading in the left cerebral hemisphere involves men that regional cerebral blood flow in the left angular gyrus functional links between the angular gyrus and extrastriate shows strong within-task, across-subjects correlations (i.e., areas in occipital and temporal cortex associated with the functional connectivity) with regional cerebral blood flow in visual processing of letter and word-like stimuli (12–14).
    [Show full text]
  • Introduction and Methods the Field of Neuroesthetics Is a Recent Marriage
    Introduction and Methods The field of neuroesthetics is a recent marriage of the realms of neuroscience and art. The objective of neuroesthetics is to comprehend the perception and subjective experience of art in terms of their neural substrates. In this study, we examined the effect of a number of original pieces of art on the brain of the artist herself and on that of a novice as she experienced the artwork for the first time. This allowed us to compare neural responses not only amongst different visual conditions but also between an expert (i.e. the artist) and a novice. Lia Cook lent her artwork to be used in this study. The pieces, which she believes to have an innate emotional quality, are cotton and rayon textiles. All of the pieces are portraits with a somewhat abstract, pixelated appearance imparted by the medium. In order to better understand the neural effects of the woven facial images, we used several types of control images. These included (i) scrambled woven pieces, or textiles that were controlled for color, contrast, and size but contained no distinct facial forms; and (ii) photographs, which were all photographs of human faces but were printed on heavy paper and lacked the texture and unique visual appearance of the textiles. All of the pieces are 12.5 in. x 18 in. The expert and novice were each scanned with functional MRI while they viewed and touched the tapestries and photographs. The subjects completed 100 trials divided across two functional scans. Each trial lasted a total of 12 s, with jittered intervals of 4 s to 6 s between trials.
    [Show full text]
  • Autism and the Social Brain a Visual Tour
    Autism and the Social Brain A Visual Tour Charles Cartwright, M.D. Director YAI Autism Center “Social cognition refers to the fundamental abilities to perceive, categorize, remember, analyze, reason with, and behave toward other conspecifics” Pelphrey and Carter, 2008 Abbreviation Structure AMY Amygdala EBA Extrastriate body area STS Superior temporal sulcus TPJ Temporal parietal junction FFG Fusiform gyrus OFC Orbital frontal gyrus mPFC Medial prefrontal cortex IFG Inferior frontal Pelphrey and Carter 2008 gyrus Building Upon Structures and Function Pelphrey and Carter 2008 Neuroimaging technologies • Explosion of neuroimaging technology – Faster, more powerful magnets – Better resolution images showing thinner slices of brain • Visualize the brain in action • Explore relationship between brain structure, function, and human behavior. • Help identify what changes unfold in brain disorders like autism Neuroimaging in ASDs • No reliable neuroimaging marker • Imaging not recommended as part of routine work- up • Neuroimaging research can provide clues to brain structure and function and to neurodevelopmental origins Structural Brain Imaging • MRI and CT • Allows for examination of structure of the brain • Identifies abnormalities in different areas of brain • Helps understand patterns of brain development over time MRI • Magnetic Resonance Imaging • Uses magnetic fields and radio waves to produce high-quality two- or three dimensional images of brain structures • Large cylindrical magnet creates magnetic field around head; radio waves are
    [Show full text]
  • The Role of the Fusiform Face Area in Social Cognition: Implications for the Pathobiology of Autism Author(S): Robert T
    The Role of the Fusiform Face Area in Social Cognition: Implications for the Pathobiology of Autism Author(s): Robert T. Schultz, David J. Grelotti, Ami Klin, Jamie Kleinman, Christiaan Van der Gaag, René Marois and Pawel Skudlarski Source: Philosophical Transactions: Biological Sciences, Vol. 358, No. 1430, Autism: Mind and Brain (Feb. 28, 2003), pp. 415-427 Published by: Royal Society Stable URL: https://www.jstor.org/stable/3558153 Accessed: 25-08-2018 20:53 UTC REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/3558153?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Philosophical Transactions: Biological Sciences This content downloaded from 129.59.95.115 on Sat, 25 Aug 2018 20:53:49 UTC All use subject to https://about.jstor.org/terms Published online 21 January 2003 THE ROYAL SOCIETY The role of the fusiform face area in social cognition: implications for the pathobiology of autism Robert T. Schultz1,2*, David J. Grelotti , Ami Klin1, Jamie Kleinman3, Christiaan Van der Gaag4, Ren6 Marois5 and Pawel Skudlarski2 1Child Study Center, Yale University School of Medicine, 230 S.
    [Show full text]
  • Involvement of Human Left Dorsolateral Prefrontal Cortex in Perceptual Decision Making Is Independent of Response Modality
    Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality H. R. Heekeren*†‡§, S. Marrett¶, D. A. Ruff*, P. A. Bandettini*¶, and L. G. Ungerleider*ʈ *Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-9663; †Max Planck Institute for Human Development, 14195 Berlin, Germany; ‡Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; §Berlin NeuroImaging Center, Charite´University Medicine Berlin, 10117 Berlin, Germany; and ¶Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-9663 Contributed by L. G. Ungerleider, May 12, 2006 Perceptual decision making typically entails the processing of such as the DLPFC, during high-motion-coherence trials, i.e., trials sensory signals, the formation of a decision, and the planning and in which the sensory evidence is greatest, than during low- execution of a motor response. Although recent studies in mon- coherence trials. keys and humans have revealed possible neural mechanisms for As in the visual system, in the somatosensory system, in a task perceptual decision making, much less is known about how the in which the monkey must decide which of two vibratory stimuli decision is subsequently transformed into a motor action and has a higher frequency, the monkey’s decision can be predicted whether or not the decision is represented at an abstract level, i.e., by subtracting the activities of two populations of sensory independently of the specific motor response. To address this neurons in the secondary somatosensory cortex (SII) that prefer issue, we used functional MRI to monitor changes in brain activity high and low frequencies, respectively (10).
    [Show full text]
  • Default Mode Network in Childhood Autism Posteromedial Cortex Heterogeneity and Relationship with Social Deficits
    ARCHIVAL REPORT Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits Charles J. Lynch, Lucina Q. Uddin, Kaustubh Supekar, Amirah Khouzam, Jennifer Phillips, and Vinod Menon Background: The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Methods: Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Results: Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. Conclusions: This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity.
    [Show full text]
  • Neural Networks Related to Dysfunctional Face Processing in Autism Spectrum Disorder
    Brain Struct Funct DOI 10.1007/s00429-014-0791-z ORIGINAL ARTICLE Neural networks related to dysfunctional face processing in autism spectrum disorder Thomas Nickl-Jockschat • Claudia Rottschy • Johanna Thommes • Frank Schneider • Angela R. Laird • Peter T. Fox • Simon B. Eickhoff Received: 6 September 2013 / Accepted: 28 April 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract One of the most consistent neuropsychological examined the overlap of the delineated network with the findings in autism spectrum disorders (ASD) is a reduced results of a previous meta-analysis on structural abnor- interest in and impaired processing of human faces. We malities in ASD as well as with brain regions involved in conducted an activation likelihood estimation meta-ana- human action observation/imitation. We found a single lysis on 14 functional imaging studies on neural correlates cluster in the left fusiform gyrus showing significantly of face processing enrolling a total of 164 ASD patients. reduced activation during face processing in ASD across Subsequently, normative whole-brain functional connec- all studies. Both task-dependent and task-independent tivity maps for the identified regions of significant con- analyses indicated significant functional connectivity of vergence were computed for the task-independent (resting- this region with the temporo-occipital and lateral occipital state) and task-dependent (co-activations) state in healthy cortex, the inferior frontal and parietal cortices, the thala- subjects. Quantitative functional decoding was performed mus and the amygdala. Quantitative reverse inference then by reference to the BrainMap database. Finally, we indicated an association of these regions mainly with face processing, affective processing, and language-related tasks.
    [Show full text]
  • An Event-Related Functional Magnetic Resonance Imaging Study
    Neural Correlates of Memory for Items and for Associations: An Event-related Functional Magnetic Resonance Imaging Study Ame´lie M. Achim and Martin Lepage Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/17/4/652/1757197/0898929053467578.pdf by guest on 18 May 2021 Abstract & Although results from cognitive psychology, neuropsychol- coding, greater prefrontal, hippocampal, and parietal activation ogy, and behavioral neuroscience clearly suggest that item was observed for associations, but no significant activation was and associative information in memory rely on partly different observed for items at the selected threshold. During recog- brain regions, little is known concerning the differences and nition, greater activation was observed for associative trials in similarities that exist between these two types of information as the left dorsolateral prefrontal cortex and superior parietal a function of memory stage (i.e., encoding and retrieval). We lobules bilaterally, whereas item recognition trials showed used event-related functional magnetic resonance imaging to greater activation of bilateral frontal regions, bilateral anterior assess neural correlates of item and associative encoding and medial temporal areas, and the right temporo-parietal junction. retrieval of simple images in 18 healthy subjects. During en- Post hoc analyses suggested that the anterior medial temporal coding, subjects memorized items and pairs. During retrieval, activation observed during item recognition was driven mainly subjects made item recognition judgments (old vs. new) and by new items, confirming a role for this structure in novelty de- associative recognition judgments (intact vs. rearranged). Rel- tection. These results suggest that although some structures ative to baseline, item and associative trials activated bilateral such as the medial temporal and prefrontal cortex play a gen- medial temporal and prefrontal regions during both encoding eral role in memory, the pattern of activation in these regions and retrieval.
    [Show full text]
  • Functional Connectivity of the Precuneus in Unmedicated Patients with Depression
    Biological Psychiatry: CNNI Archival Report Functional Connectivity of the Precuneus in Unmedicated Patients With Depression Wei Cheng, Edmund T. Rolls, Jiang Qiu, Deyu Yang, Hongtao Ruan, Dongtao Wei, Libo Zhao, Jie Meng, Peng Xie, and Jianfeng Feng ABSTRACT BACKGROUND: The precuneus has connectivity with brain systems implicated in depression. METHODS: We performed the first fully voxel-level resting-state functional connectivity (FC) neuroimaging analysis of depression of the precuneus, with 282 patients with major depressive disorder and 254 control subjects. RESULTS: In 125 unmedicated patients, voxels in the precuneus had significantly increased FC with the lateral orbitofrontal cortex, a region implicated in nonreward that is thereby implicated in depression. FC was also increased in depression between the precuneus and the dorsolateral prefrontal cortex, temporal cortex, and angular and supramarginal areas. In patients receiving medication, the FC between the lateral orbitofrontal cortex and precuneus was decreased back toward that in the control subjects. In the 254 control subjects, parcellation revealed superior anterior, superior posterior, and inferior subdivisions, with the inferior subdivision having high connectivity with the posterior cingulate cortex, parahippocampal gyrus, angular gyrus, and prefrontal cortex. It was the ventral subdivision of the precuneus that had increased connectivity in depression with the lateral orbitofrontal cortex and adjoining inferior frontal gyrus. CONCLUSIONS: The findings support the theory that the system in the lateral orbitofrontal cortex implicated in the response to nonreceipt of expected rewards has increased effects on areas in which the self is represented, such as the precuneus. This may result in low self-esteem in depression. The increased connectivity of the precuneus with the prefrontal cortex short-term memory system may contribute to the rumination about low self-esteem in depression.
    [Show full text]
  • Relationships Between Hippocampal Atrophy, White Matter Disruption, and Gray Matter Hypometabolism in Alzheimer's Disease
    6174 • The Journal of Neuroscience, June 11, 2008 • 28(24):6174–6181 Neurobiology of Disease Relationships between Hippocampal Atrophy, White Matter Disruption, and Gray Matter Hypometabolism in Alzheimer’s Disease Nicolas Villain,1 Be´atrice Desgranges,1 Fausto Viader,1,2 Vincent de la Sayette,1,2 Florence Me´zenge,1 Brigitte Landeau,1 Jean-Claude Baron,3 Francis Eustache,1 and Gae¨l Che´telat1 1Institut National de la Sante´ et de la Recherche Me´dicale–Ecole Pratique des Hautes Etudes–Universite´ de Caen/Basse-Normandie, Unite´ U923, Groupement d’Inte´reˆt Public Cyceron, Centre Hospitalier Universitaire (CHU) Coˆte de Nacre, 14074 Caen, France, 2De´partement de Neurologie, CHU Coˆte de Nacre, 14033 Caen Cedex, France, and 3Department of Clinical Neurosciences, Neurology Unit, University of Cambridge, Cambridge CB2 2SP, United Kingdom In early Alzheimer’s disease (AD), the hippocampal region is the area most severely affected by cellular and structural alterations, yet glucose hypometabolism predominates in the posterior association cortex and posterior cingulate gyrus. One prevalent hypothesis to account for this discrepancy is that posterior cingulate hypometabolism results from disconnection from the hippocampus through disruptionofthecingulumbundle.However,onlypartialandindirectevidencecurrentlysupportsthishypothesis.Thus,usingstructural 18 magnetic resonance imaging and 2-[ F]fluoro-2-deoxy-D-glucose positron emission tomography in 18 patients with early AD, we assessed the relationships between hippocampal atrophy, white matter integrity, and gray matter metabolism by means of a whole-brain voxel-based correlative approach. We found that hippocampal atrophy is specifically related to cingulum bundle disruption, which is in turn highly correlated to hypometabolism of the posterior cingulate cortex but also of the middle cingulate gyrus, thalamus, mammillary bodies, parahippocampal gyrus, and hippocampus (all part of Papez’s circuit), as well as the right temporoparietal associative cortex.
    [Show full text]