Classical First-Order Logic Software Formal Verification

Total Page:16

File Type:pdf, Size:1020Kb

Classical First-Order Logic Software Formal Verification Classical First-Order Logic Software Formal Verification Maria Jo~aoFrade Departmento de Inform´atica Universidade do Minho 2008/2009 Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 1 / 31 Introduction First-order logic (FOL) is a richer language than propositional logic. Its lexicon contains not only the symbols ^, _, :, and ! (and parentheses) from propositional logic, but also the symbols 9 and 8 for \there exists" and \for all", along with various symbols to represent variables, constants, functions, and relations. There are two sorts of things involved in a first-order logic formula: terms, which denote the objects that we are talking about; formulas, which denote truth values. Examples: \Not all birds can fly." \Every child is younger than its mother." \Andy and Paul have the same maternal grandmother." Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 2 / 31 Syntax Variables: x; y; z; : : : 2 X (represent arbitrary elements of an underlying set) Constants: a; b; c; : : : 2 C (represent specific elements of an underlying set) Functions: f; g; h; : : : 2 F (every function f as a fixed arity, ar(f)) Predicates: P; Q; R; : : : 2 P (every predicate P as a fixed arity, ar(P )) Fixed logical symbols: >, ?, ^, _, :, 8, 9 Fixed predicate symbol: = for \equals" (“first-order logic with equality") Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 3 / 31 Syntax Terms The set T , of terms of FOL, is given by the abstract syntax T 3 t ::= x j c j f(t1; : : : ; tar(f)) Formulas The set L, of formulas of FOL, is given by the abstract syntax L 3 φ, ::= ? j > j :φ j φ ^ j φ _ j φ ! j t1 = t2 j 8x: φ j 9x: φ j P (t1; : : : ; tar(P )) :, 8, 9 bind most tightly; then _ and ^; then !, which is right-associative. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 4 / 31 Free and bound variables The free variables of a formula φ are those variables occurring in φ that are not quantified. FV(φ) denotes the set of free variables occurring in φ. The bound variables of a formula φ are those variables occurring in φ that do have quantifiers.BV (φ) denote the set of bound variables occurring in φ. Note that variable can have both free and bound occurrences within the same formula. Let φ be (9x: R(x; y) ^ (8y: P (y; x))), then FV(φ) = fyg and BV(φ) = fx; yg. A formula φ is closed if it does not contain any free variables. If FV(φ) = fx1; : : : ; x2g, then I its universal closure is 8x1:::: 8xn: φ I its existential closure is 9x1:::: 9xn: φ Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 5 / 31 Substitution Convention We write φ(x1; : : : ; xn) to denote a formula having free variables x1; : : : ; xn. We write φ(t1; : : : ; tn) to denote the formula obtained by replacing each free occurrence of xi in φ with the term ti. When using this notation, it should always be assumed that each ti contains none of the variables in BV(φ). E.g., if φ(x) is 9y: x = y then we do not allow the substitution φ(y). A sentence of first-order logic is a formula having no free variables. The presence of free variables distinguishes formulas from sentences. This distinction did not exist in propositional logic. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 6 / 31 Semantics Vocabulary A vocabulary (or signature) is a set of function, relation, and constant symbols. C[F[P is a vocabulary. V-structure Let V be a vocabulary. A V-structure consists of a nonempty underlying set U along with an interpretation of V. An interpretation of V assigns: an element of U to each constant in V, a function from U n to U to each n-ary function in V, and a subset of U n to each n-ary relation in V. Model We say that M is a model of (C; F; P) iff M is a (C[F[P)-structure. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 7 / 31 Semantics An alternative definition: Model A model M of (C; F; P) consists of the following set of data: a non-empty set U, the universe of concrete values; for each constant symbol c 2 C, a concrete element M(c) 2 U; for each f 2 F, a concrete function M(f): U ar(f) !U; for each P 2 P, a subset M(P ) ⊆ U ar(P ). The set U the interpretation domain (or interpretation universe) of M. Semantically, one recognises the special role of equality by imposing on an interpretation function M(=) to be actual equality on the set U of M. Thus, (a; b) is in the set M(=) iff a and b are the same elements in the set U. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 8 / 31 Semantics Assignment An assignment or environment for a universe U of concrete values is a function α : X!U. We denote by α[x := a] the assignment which maps x to a and any other variable y to α(y). Given a model M for (C; F; P) with interpretation domain U, and given an assignment α : X!U, we define an interpretation function for terms, αM : T!U, as follows: αM(x) = α(x) αM(f(t1; : : : ; tn)) = M(f)(αM(t1); : : : ; αM(tn)) Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 9 / 31 Semantics Satisfaction relation Given a model M for (C; F; P) and given an assignment α : X!U, we define the satisfaction relation M j=α φ for each logical formula φ over (C; F; P) as follows: M j=α > M 6j=α ? M j=α P (t1; : : : ; tn) iff (αM(t1); : : : ; αM(tn)) 2 M(P ) M j=α :φ iff M 6j=α φ M j=α φ ^ iff M j=α φ and A j=α M j=α φ _ iff M j=α φ or A j= M j=α φ ! iff M 6j=α φ or M j=α M j=α 8x: φ iff M j=α[x:=a] φ for all a 2 U M j=α 9x: φ iff M j=α[x:=a] φ for some a 2 U If φ is a sentence we often drop α and write M j= φ. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 10 / 31 Validity, satisfiability, and contradiction If M j= φ holds, then we say that M models φ, or that φ holds in M, or simply, that φ is true in M. A sentence φ is valid iff it holds in every model. We write j= φ. A valid sentence is called a tautology. satisfiable iff it holds in some model. unsatisfiable iff there is no model in which φ is true. An unsatisfiable sentence is called a contradiction. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 11 / 31 Validity, satisfiability, and contradiction The definition of satisfiability can be extended to apply to all formulas of first-order logic (not just sentences). The formula φ(x1; : : : ; xn) is satisfiable if and only if the sentence 8x1:::: 8xn: φ(x1; : : : ; xn) (its universal closure) is satisfiable. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 12 / 31 Consequence and equivalence φ j= iff for every model M, if M j= φ then M j= . We say is a consequence of φ. φ ≡ iff φ j= and φ j= . We say φ and are equivalent. Let Γ = fφ1; φ2; φ3;::: g be a set of sentences. M j= Γ iff M j= φi for each sentence φi in Γ. We say M models Γ. Γ j= iff M j= Γ implies M j= for every model M. We say is a consequence of Γ. Proposition φ j= iff j= φ ! Γ j= and Γ finite iff j= V Γ ! Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 13 / 31 Consistency Let Γ = fφ1; φ2; φ3;::: g be a set of sentences. Γ is consistent or satisfiable iff there is model for Γ. We say that Γ is inconsistent iff it is not consistent and denote this by Γ j= ?. Proposition fφ, :φg j= ? If Γ j= ? and Γ ⊆ ∆, then ∆ j= ?. Γ j= φ iff Γ; :φ j= ? Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 14 / 31 Substitution Formula is a subformula of formula φ if it occurs syntactically within φ. Formula is a strict subformula of φ if is a subformula of φ and 6= φ Substitution theorem Suppose φ ≡ . Let θ be a formula that contains φ as a subformula. Let θ0 be the formula obtained by safe replacing (i.e., avoiding the capture of free variables of φ) some occurrence of φ in θ with . Then θ ≡ θ0. Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 15 / 31 Adquate sets of connectives for FOL As in propositional logic, there is some redundancy among the connectives and quantifiers. Note that in classical first-order logic 8x: φ ≡ :9x: :φ 9x: φ ≡ :8x: :φ Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 16 / 31 Decidability Given formulas φ and as input, we may ask: Decision problems Validity problem: \Is φ valid ?" Satisfiability problem: \Is φ satisfiable ?" Consequence problem: \Is a consequence of φ ?" Equivalence problem: \Are φ and equivalent ?" These are, in some sense, variations of the same problem.
Recommended publications
  • Chapter 10: Symbolic Trails and Formal Proofs of Validity, Part 2
    Essential Logic Ronald C. Pine CHAPTER 10: SYMBOLIC TRAILS AND FORMAL PROOFS OF VALIDITY, PART 2 Introduction In the previous chapter there were many frustrating signs that something was wrong with our formal proof method that relied on only nine elementary rules of validity. Very simple, intuitive valid arguments could not be shown to be valid. For instance, the following intuitively valid arguments cannot be shown to be valid using only the nine rules. Somalia and Iran are both foreign policy risks. Therefore, Iran is a foreign policy risk. S I / I Either Obama or McCain was President of the United States in 2009.1 McCain was not President in 2010. So, Obama was President of the United States in 2010. (O v C) ~(O C) ~C / O If the computer networking system works, then Johnson and Kaneshiro will both be connected to the home office. Therefore, if the networking system works, Johnson will be connected to the home office. N (J K) / N J Either the Start II treaty is ratified or this landmark treaty will not be worth the paper it is written on. Therefore, if the Start II treaty is not ratified, this landmark treaty will not be worth the paper it is written on. R v ~W / ~R ~W 1 This or statement is obviously exclusive, so note the translation. 427 If the light is on, then the light switch must be on. So, if the light switch in not on, then the light is not on. L S / ~S ~L Thus, the nine elementary rules of validity covered in the previous chapter must be only part of a complete system for constructing formal proofs of validity.
    [Show full text]
  • Logic and Proof
    Logic and Proof Computer Science Tripos Part IB Michaelmas Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2000 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 3 3 Proof Systems for Propositional Logic 12 4 Ordered Binary Decision Diagrams 19 5 First-order Logic 22 6 Formal Reasoning in First-Order Logic 29 7 Clause Methods for Propositional Logic 34 8 Skolem Functions and Herbrand’s Theorem 42 9 Unification 49 10 Applications of Unification 58 11 Modal Logics 65 12 Tableaux-Based Methods 70 i ii 1 1 Introduction and Learning Guide This course gives a brief introduction to logic, with including the resolution method of theorem-proving and its relation to the programming language Prolog. Formal logic is used for specifying and verifying computer systems and (some- times) for representing knowledge in Artificial Intelligence programs. The course should help you with Prolog for AI and its treatment of logic should be helpful for understanding other theoretical courses. Try to avoid getting bogged down in the details of how the various proof methods work, since you must also acquire an intuitive feel for logical reasoning. The most suitable course text is this book: Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning about Systems (CUP, 2000) It costs £18.36 from Amazon. It covers most aspects of this course with the ex- ception of resolution theorem proving. It includes material that may be useful in Specification and Verification II next year, namely symbolic model checking.
    [Show full text]
  • Foundations of Mathematics
    Foundations of Mathematics Fall 2019 ii Contents 1 Propositional Logic 1 1.1 The basic definitions . .1 1.2 Disjunctive Normal Form Theorem . .3 1.3 Proofs . .4 1.4 The Soundness Theorem . 11 1.5 The Completeness Theorem . 12 1.6 Completeness, Consistency and Independence . 14 2 Predicate Logic 17 2.1 The Language of Predicate Logic . 17 2.2 Models and Interpretations . 19 2.3 The Deductive Calculus . 21 2.4 Soundness Theorem for Predicate Logic . 24 3 Models for Predicate Logic 27 3.1 Models . 27 3.2 The Completeness Theorem for Predicate Logic . 27 3.3 Consequences of the completeness theorem . 31 4 Computability Theory 33 4.1 Introduction and Examples . 33 4.2 Finite State Automata . 34 4.3 Exercises . 37 4.4 Turing Machines . 38 4.5 Recursive Functions . 43 4.6 Exercises . 48 iii iv CONTENTS Chapter 1 Propositional Logic 1.1 The basic definitions Propositional logic concerns relationships between sentences built up from primitive proposition symbols with logical connectives. The symbols of the language of predicate calculus are 1. Logical connectives: ,&, , , : _ ! $ 2. Punctuation symbols: ( , ) 3. Propositional variables: A0, A1, A2,.... A propositional variable is intended to represent a proposition which can either be true or false. Restricted versions, , of the language of propositional logic can be constructed by specifying a subset of the propositionalL variables. In this case, let PVar( ) denote the propositional variables of . L L Definition 1.1.1. The collection of sentences, denoted Sent( ), of a propositional language is defined by recursion. L L 1. The basis of the set of sentences is the set PVar( ) of propositional variables of .
    [Show full text]
  • Logic and Proof Release 3.18.4
    Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................
    [Show full text]
  • CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem
    CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem The Hilbert proof systems are systems based on a language with implication and contain a Modus Ponens rule as a rule of inference. They are usually called Hilbert style formalizations. We will call them here Hilbert style proof systems, or Hilbert systems, for short. Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics (3rd century B.C.). It is also considered as the most "natural" to our intuitive thinking and the proof systems containing it as the inference rule play a special role in logic. The Hilbert proof systems put major emphasis on logical axioms, keeping the rules of inference to minimum, often in propositional case, admitting only Modus Ponens, as the sole inference rule. 1 Hilbert System H1 Hilbert proof system H1 is a simple proof system based on a language with implication as the only connective, with two axioms (axiom schemas) which characterize the implication, and with Modus Ponens as a sole rule of inference. We de¯ne H1 as follows. H1 = ( Lf)g; F fA1;A2g MP ) (1) where A1;A2 are axioms of the system, MP is its rule of inference, called Modus Ponens, de¯ned as follows: A1 (A ) (B ) A)); A2 ((A ) (B ) C)) ) ((A ) B) ) (A ) C))); MP A ;(A ) B) (MP ) ; B 1 and A; B; C are any formulas of the propositional language Lf)g. Finding formal proofs in this system requires some ingenuity. Let's construct, as an example, the formal proof of such a simple formula as A ) A.
    [Show full text]
  • Symbolic Logic: Grammar, Semantics, Syntax
    Symbolic Logic: Grammar, Semantics, Syntax Logic aims to give a precise method or recipe for determining what follows from a given set of sentences. So we need precise definitions of `sentence' and `follows from.' 1. Grammar: What's a sentence? What are the rules that determine whether a string of symbols is a sentence, and when it is not? These rules are known as the grammar of a particular language. We have actually been operating with two different but very closely related grammars this term: a grammar for propositional logic and a grammar for first-order logic. The grammar for propositional logic (thus far) is simple: 1. There are an indefinite number of propositional variables, which we have been symbolizing as A; B; ::: and P; Q; :::; each of these is a sen- tence. ? is also a sentence. 2. If A; B are sentences, then: •:A is a sentence, • A ^ B is a sentence, and • A _ B is a sentence. 3. Nothing else is a sentence: anything that is neither a member of 1, nor constructable via successive applications of 2 to the members of 1, is not a sentence. The grammar for first-order logic (thus far) is more complex. 2 and 3 remain exactly the same as above, but 1 must be replaced by some- thing more complex. First, a list of all predicates (e.g. Tet or SameShape) and proper names (e.g. max; b) of a particular language L must be specified. Then we can define: 1F OL. A series of symbols s is an atomic sentence = s is an n-place predicate followed by an ordered sequence of n proper names.
    [Show full text]
  • Proofs and Mathematical Reasoning
    Proofs and Mathematical Reasoning University of Birmingham Author: Supervisors: Agata Stefanowicz Joe Kyle Michael Grove September 2014 c University of Birmingham 2014 Contents 1 Introduction 6 2 Mathematical language and symbols 6 2.1 Mathematics is a language . .6 2.2 Greek alphabet . .6 2.3 Symbols . .6 2.4 Words in mathematics . .7 3 What is a proof? 9 3.1 Writer versus reader . .9 3.2 Methods of proofs . .9 3.3 Implications and if and only if statements . 10 4 Direct proof 11 4.1 Description of method . 11 4.2 Hard parts? . 11 4.3 Examples . 11 4.4 Fallacious \proofs" . 15 4.5 Counterexamples . 16 5 Proof by cases 17 5.1 Method . 17 5.2 Hard parts? . 17 5.3 Examples of proof by cases . 17 6 Mathematical Induction 19 6.1 Method . 19 6.2 Versions of induction. 19 6.3 Hard parts? . 20 6.4 Examples of mathematical induction . 20 7 Contradiction 26 7.1 Method . 26 7.2 Hard parts? . 26 7.3 Examples of proof by contradiction . 26 8 Contrapositive 29 8.1 Method . 29 8.2 Hard parts? . 29 8.3 Examples . 29 9 Tips 31 9.1 What common mistakes do students make when trying to present the proofs? . 31 9.2 What are the reasons for mistakes? . 32 9.3 Advice to students for writing good proofs . 32 9.4 Friendly reminder . 32 c University of Birmingham 2014 10 Sets 34 10.1 Basics . 34 10.2 Subsets and power sets . 34 10.3 Cardinality and equality .
    [Show full text]
  • Formal Proof—Getting Started Freek Wiedijk
    Formal Proof—Getting Started Freek Wiedijk A List of 100 Theorems On the webpage [1] only eight entries are listed for Today highly nontrivial mathematics is routinely the first theorem, but in [2p] seventeen formaliza- being encoded in the computer, ensuring a reliabil- tions of the irrationality of 2 have been collected, ity that is orders of a magnitude larger than if one each with a short description of the proof assistant. had just used human minds. Such an encoding is When we analyze this list of theorems to see called a formalization, and a program that checks what systems occur most, it turns out that there are such a formalization for correctness is called a five proof assistants that have been significantly proof assistant. used for formalization of mathematics. These are: Suppose you have proved a theorem and you want to make certain that there are no mistakes proof assistant number of theorems formalized in the proof. Maybe already a couple of times a mistake has been found and you want to make HOL Light 69 sure that that will not happen again. Maybe you Mizar 45 fear that your intuition is misleading you and want ProofPower 42 to make sure that this is not the case. Or maybe Isabelle 40 you just want to bring your proof into the most Coq 39 pure and complete form possible. We will explain all together 80 in this article how to go about this. Although formalization has become a routine Currently in all systems together 80 theorems from activity, it still is labor intensive.
    [Show full text]
  • Formal Proof : Understanding, Writing and Evaluating Proofs, February 2010
    Formal Proof Understanding, writing and evaluating proofs David Meg´ıas Jimenez´ (coordinador) Robert Clariso´ Viladrosa Amb la col·laboracio´ de M. Antonia` Huertas Sanchez´ PID 00154272 The texts and images contained in this publication are subject –except where indicated to the contrary– to an Attribution-NonCommercial-NoDerivs license (BY-NC-ND) v.3.0 Spain by Creative Commons. You may copy, publically distribute and transfer them as long as the author and source are credited (FUOC. Fundacion´ para la Universitat Oberta de Catalunya (Open University of Catalonia Foundation)), neither the work itself nor derived works may be used for commercial gain. The full terms of the license can be viewed at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode © CC-BY-NC-ND • PID 00154272 Formal Proof Table of contents Introduction ................................................... ....... 5 Goals ................................................... ................ 6 1. Defining formal proofs .......................................... 7 2. Anatomy of a formal proof ..................................... 10 3. Tool-supported proofs ........................................... 13 4. Planning formal proofs ......................................... 17 4.1. Identifying the problem . ..... 18 4.2. Reviewing the literature . ....... 18 4.3. Identifying the premises . ..... 19 4.4. Understanding the problem . ... 20 4.5. Formalising the problem . ..... 20 4.6. Selecting a proof strategy . ........ 21 4.7. Developingtheproof ................................
    [Show full text]
  • The Entscheidungsproblem and Alan Turing
    The Entscheidungsproblem and Alan Turing Author: Laurel Brodkorb Advisor: Dr. Rachel Epstein Georgia College and State University December 18, 2019 1 Abstract Computability Theory is a branch of mathematics that was developed by Alonzo Church, Kurt G¨odel,and Alan Turing during the 1930s. This paper explores their work to formally define what it means for something to be computable. Most importantly, this paper gives an in-depth look at Turing's 1936 paper, \On Computable Numbers, with an Application to the Entscheidungsproblem." It further explores Turing's life and impact. 2 Historic Background Before 1930, not much was defined about computability theory because it was an unexplored field (Soare 4). From the late 1930s to the early 1940s, mathematicians worked to develop formal definitions of computable functions and sets, and applying those definitions to solve logic problems, but these problems were not new. It was not until the 1800s that mathematicians began to set an axiomatic system of math. This created problems like how to define computability. In the 1800s, Cantor defined what we call today \naive set theory" which was inconsistent. During the height of his mathematical period, Hilbert defended Cantor but suggested an axiomatic system be established, and characterized the Entscheidungsproblem as the \fundamental problem of mathemat- ical logic" (Soare 227). The Entscheidungsproblem was proposed by David Hilbert and Wilhelm Ackerman in 1928. The Entscheidungsproblem, or Decision Problem, states that given all the axioms of math, there is an algorithm that can tell if a proposition is provable. During the 1930s, Alonzo Church, Stephen Kleene, Kurt G¨odel,and Alan Turing worked to formalize how we compute anything from real numbers to sets of functions to solve the Entscheidungsproblem.
    [Show full text]
  • Contents 1 Proofs, Logic, and Sets
    Introduction to Proof (part 1): Proofs, Logic, and Sets (by Evan Dummit, 2019, v. 1.00) Contents 1 Proofs, Logic, and Sets 1 1.1 Overview of Mathematical Proof . 1 1.2 Elements of Logic . 5 1.2.1 Propositions and Conditional Statements . 5 1.2.2 Boolean Operators and Boolean Logic . 8 1.3 Sets and Set Operations . 11 1.3.1 Sets . 11 1.3.2 Subsets . 12 1.3.3 Intersections and Unions . 14 1.3.4 Complements and Universal Sets . 17 1.3.5 Cartesian Products . 20 1.4 Quantiers . 22 1.4.1 Quantiers and Variables . 22 1.4.2 Properties of Quantiers . 24 1.4.3 Examples Involving Quantiers . 26 1.4.4 Families of Sets . 28 1 Proofs, Logic, and Sets In this chapter, we introduce a number of foundational concepts for rigorous mathematics, including an overview of mathematical proof, elements of Boolean and propositional logic, and basic elements of set theory. 1.1 Overview of Mathematical Proof • In colloquial usage, to provide proof of something means to provide strong evidence for a particular claim. • In mathematics, we formalize this intuitive idea of proof by making explicit the types of logical inferences that are allowed. ◦ To provide a mathematical proof of a claim is to give a sequence of statements showing that a partic- ular collection of assumptions (typically called hypotheses) imply the stated result (typically called the conclusion). ◦ Each statement in a proof follows logically from the previous statements in the proof or facts known to be true from elsewhere. This type of reasoning is usually called deductive reasoning.
    [Show full text]
  • A Philosophical Examination of Proofs in Mathematics Eric Almeida
    Undergraduate Review Volume 3 Article 13 2007 A Philosophical Examination of Proofs in Mathematics Eric Almeida Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Logic and Foundations Commons, and the Logic and foundations of mathematics Commons Recommended Citation Almeida, Eric (2007). A Philosophical Examination of Proofs in Mathematics. Undergraduate Review, 3, 80-84. Available at: http://vc.bridgew.edu/undergrad_rev/vol3/iss1/13 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2007 Eric Almeida 0 A Philosophical Examination of Proofs in Mathematics Eric Almeida Eric Almeida is a Philosophy Major. This “The purpose of a proof is to understand, not verify”-- Arnold Ross. project was mentored by Dr. Catherine n mathematics, a proof is a demonstration that, given certain axioms, some Womack. statement of interest is necessarily true. Proofs employ logic but usually include some amount of natural language which of course admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of informal logic. The distinction has led to much Iexamination of current and historical mathematical practice, quasi-empiricism in mathematics. One of the concerns with the philosophy of mathematics is the role of language and logic in proofs, and mathematics as a language. Regardless of one’s attitude to formalism, the result that is proved to be true is a theorem; in a completely formal proof it would be the final word, and the complete proof shows how it follows from the axioms alone.
    [Show full text]