Comparing Erosion Risks from Forest Operations to Wildfire

Total Page:16

File Type:pdf, Size:1020Kb

Comparing Erosion Risks from Forest Operations to Wildfire Comparing Erosion Risks from Forest Operations to Wildfire William J. Elliot Project Leader, USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho, Tel. 208 882 3557, Fax. 208 883 2318, Peter R. Robichaud Research Engineer , USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho, Tel. 208 882 3557, Fax. 208 883 2318, [email protected] Abstract - Wildfire and forest operations remove vegetation and disturb forest soils. Both of these effects can lead to an increased risk of soil erosion. Operations to reduce forest fuel loads, however, may reduce the risk of wildfire. This paper presents research and modeling results which show that under many conditions, carefully planned operations with adequate buffers, results in lower long-term erosion rates than experienced following wildfire, which is inevitable if fuel loads are not reduced. The effects of reducing fire-induced flood flows on forest stream systems, however, are unknown. Keywords. Soil Erosion, Forest operations, Forest fires, WEPP INTRODUCTION Forests provide numerous benefits for society, including fiber, wildlife, and recreation. Forest managers are challenged to balance ecosystem health and societal needs. During the first half of the last century, public forest management emphasized the harvesting of forest resources. In recent years, the emphasis in public forest management has been shifted to long-term sustainability. Fuel management is another issue that has recently become important. During most of the last century, fire suppression and timber harvest were the main fuel management practices. This has resulted in forests with an oversupply of fuels and diseased trees, leading to an increased risk of severe wildfires (Duncan 2001). Both fires and timber harvest increase soil erosion and sediment delivery from forest hillslopes. Soil erosion is one of the major concerns in current forest management. Soil erosion reduces upland forest productivity. Sediment from eroding hillslopes adversely affects water quality in forest streams, impacting the viability of aquatic ecosystems and numerous endangered aquatic species. Currently, managers are seeking to minimize erosion by applying improved management practices for forest operations and fuel management. One of the questions managers are seeking to answer is whether frequent forest operations cause more or less erosion than less frequent wildfires. The purpose of this paper is to compare erosion rates following forest disturbances to erosion rates following wildfires. FOREST EROSION PROCESSES In forests, soil erosion occurs from disturbances such as forest roads, timber harvesting, or fire. These disturbances have major affects on both the vegetation and the soil properties. Soil The International Mountain Logging and 11th Pacific Northwest Skyline Symposium 2001 78 erodibility depends on both the surface cover and the soil texture (Elliot and Hall 1997). The soil erodibility on a skid trail is greater than in the areas between skid trails, and the erodibility following a wildfire is much greater than in an undisturbed forest (Robichaud et al. 1993). Fire is a natural part of healthy forest ecosystems. In the past century, fire supression has resulted in reduced forest health, and an increase in fuel loads. Some managers suggest that this has resulted in an increase in high severity wildfires (Duncan 2001). After a fire or operation, forests are highly susceptible to erosion in the following year. They do, however, recover quickly as vegetation regrowth is rapid when smaller plants do not have to compete with trees for sunlight, nutrients, and water. For example, figure 1 shows the reduction in erosion rates following a wildfire in Eastern Oregon dropped about 90 percent the first year, with no erosion observed in year 4 on any of the slopes. 10 Percent Slope 1 20 30 60 0.1 Erosion (Mg/ha) 0.01 0.001 1234 Years after Fire Figure 1. Erosion rates measured following a wildfire in Eastern Oregon. Note log scale on y-axis (Robichaud and Brown 1999). Erosion in forests is highly variable, driven by a few extreme events each decade. Field data collected during years without events are likely to be well below "average" erosion rates, and data collected during a year with an event are likely to be well above the "average" rate. Eroded sediments are frequently deposited in stream channels where they may remain for years to decades, slowly moving through the stream system in response to high runoff events (Trimble 1999). Thus, the scale at which sedimentation is measured becomes important. Smaller scales will show large variations in erosion rates as disturbed sites recover, whereas watershed scale observations will tend to reflect long-term trends in erosion rates, with large sedimentation events associated with infrequent watershed disturbances or flood events. The International Mountain Logging and 11th Pacific Northwest Skyline Symposium 2001 79 Managers and the public tend to focus on the erosion that may occur immediately following a disturbance, and fail to consider medium- or long-term impacts of short-term disturbances. EROSION PREDICTION Prediction of soil erosion by water is a common practice for natural resource managers for evaluating impacts of upland erosion on soil productivity and offsite water quality. Erosion prediction methods are used to evaluate different management practices and control techniques. One of the prediction tools recently developed is the Water Erosion Prediction Project (WEPP; Flanagan and Livingston 1995). WEPP is a physically-based soil erosion model, and is particularly suited to modeling the conditions common in forests. Forest templates were developed for the model (Elliot and Hall, 1997) and later, a user-friendly suite of Internet interfaces called FS-WEPP (Elliot et al. 2000). Included with these interfaces is a database of typical forest soil and vegetation conditions. These databases were populated with values determined from rainfall simulation and natural rainfall field research by scientists within our organization and elsewhere. Cover is one of the most important factors in determining soil erosion rate. The WEPP model does not have a cover value for an input, but instead calculates the amount of cover each day as a function of vegetation growth and residue decomposition values in response to the climate. In the WEPP model, the hillslope can have a complex shape, and can include numerous soils and vegetation types along the hillslope. Each unique combination of soil and vegetation is called an overland flow element (OFE) (Figure 2). This feature allows users to describe disturbed forest conditions with undisturbed forest buffers. OFE 1 OFE 2 OFE 3 Figure 2. Overland flow elements (OFEs). OFE 1 has soil 1 and management 1, OFE 2 has soil 2 and management 1, and OFE 3 has soil 2 and management 2. FS WEPP INTERFACES Two Internet interfaces have been developed for WEPP for forest conditions (Elliot et al. 2000). One is for a number of road scenarios (WEPP:Road), and the other for disturbed forest conditions (Disturbed WEPP). A complementary interface (Rock Clime) assists the user in selecting an appropriate climate from a large climate database, or to customize the mean monthly precipitation amounts, number of wet days per month, and monthly mean maximum and minimum temperatures (Scheele et al. 2001). Disturbed WEPP. We are developing Disturbed WEPP for forest conditions including prescribed fires, wild fires, and young and mature forest. Disturbed WEPP currently allows two The International Mountain Logging and 11th Pacific Northwest Skyline Symposium 2001 80 OFEs (Figure 2) so that users can study numerous combinations of uphill and downhill disturbances, such as a harvest area above a buffer zone. The user can select the climate and soil, the vegetation type and surface cover on the two OFEs, and the topography for each OFE. To aid users in ensuring the desired amount of cover, Disturbed WEPP allows the user to calibrate WEPP to achieve the desired cover on each OFE. The output presents the probability associated with years with exceptionally high runoff and erosion as well as a mean annual erosion rate that would occur in a year with an "average" climate. A recent validation study (Elliot and Foltz 2001) found that when parameterized for forest conditions, the Disturbed WEPP model was able to predict soil erosion following prescribed and wildfire and disturbed forests (Tables 1 and 2). VALIDATION RESULTS AND DISCUSSION We have completed a number of studies on erosion following prescribed and wildfire, and have identified several studies of erosion following forest operations. For our validation, we used the Rock:Clime interface to describe a climate as close to the reported weather as we could. We used as much soil and topographic data as we could determine from each reference. Erosion After Fire. Table 1 summarizes studies on hillslope erosion rates following fire. Elliot et al. (1996) reported an erosion rate between 0.5 and 1 Mg ha-1 following a prescribed fire in central Idaho. The site had experienced a low severity prescribed fire and had a skid trail at the bottom of the slope. It appeared that most of the sediment was generated from this short width of skid trail. The predicted values were similar to the observed. On a prescribed fire study in Montana, Robichaud (1998) observed very low erosion rates the year following the prescribed fire, but a greater rate the second and third years. The first year (1995) was a year of low snowfall, likely the reason for the low erosion rate. The second year was a particularly wet year, resulting in increased erosion even though the vegetation had recovered. The third year, the effects of increased vegetation were apparent with the decreasing erosion rate. After specifying the cover for a different vegetation class and increased cover, Disturbed WEPP predicted values similar to the observed values in years 2 and 3. The predicted erosion rates following wild fire reported in Robichaud and Brown (1999) were within the confidence limits of the field observations (Elliot and Foltz 2001).
Recommended publications
  • Modifying Wepp to Improve Streamflow Simulation in a Pacific Northwest Watershed
    MODIFYING WEPP TO IMPROVE STREAMFLOW SIMULATION IN A PACIFIC NORTHWEST WATERSHED A. Srivastava, M. Dobre, J. Q. Wu, W. J. Elliot, E. A. Bruner, S. Dun, E. S. Brooks, I. S. Miller ABSTRACT. The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow, soil water, and deep percolation. However, to adequately simulate hydrologic conditions with significant quantities of groundwater flow into streams, a baseflow component for WEPP is needed. The objectives of this study were (1) to simulate streamflow in the Priest River Experimental Forest in the U.S. Pacific Northwest using the WEPP model and a baseflow routine, and (2) to compare the performance of the WEPP model with and without including the baseflow using observed streamflow data. The baseflow was determined using a linear reservoir model. The WEPP- simulated and observed streamflows were in reasonable agreement when baseflow was considered, with an overall Nash- Sutcliffe efficiency (NSE) of 0.67 and deviation of runoff volume (Dv) of 7%. In contrast, the WEPP simulations without including baseflow resulted in an overall NSE of 0.57 and Dv of 47%. On average, the simulated baseflow accounted for 43% of the streamflow and 12% of precipitation annually. Integration of WEPP with a baseflow routine improved the model’s applicability to watersheds where groundwater contributes to streamflow. Keywords. Baseflow, Deep seepage, Forest watershed, Hydrologic modeling, Subsurface lateral flow, Surface runoff, WEPP.
    [Show full text]
  • Adapting the Water Erosion Prediction Project (WEPP) Model for Forest Applications
    Journal of Hydrology 366 (2009) 46–54 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Adapting the Water Erosion Prediction Project (WEPP) model for forest applications Shuhui Dun a,*, Joan Q. Wu a, William J. Elliot b, Peter R. Robichaud b, Dennis C. Flanagan c, James R. Frankenberger c, Robert E. Brown b, Arthur C. Xu d a Washington State University, Department of Biological Systems Engineering, P.O. Box 646120, Pullman, WA 99164, USA b US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA c US Department of Agriculture, Agricultural Research Service (USDA-ARS), National Soil Erosion Research Laboratory, West Lafayette, IN 47907, USA d Tongji University, Department of Geotechnical Engineering, Shanghai 200092, China article info summary Article history: There has been an increasing public concern over forest stream pollution by excessive sedimentation due Received 11 July 2008 to natural or human disturbances. Adequate erosion simulation tools are needed for sound management Received in revised form 6 December 2008 of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in Accepted 12 December 2008 forest applications where Hortonian flow is the major form of runoff, such as modeling erosion from roads, harvested units, and burned areas by wildfire or prescribed fire. Nevertheless, when used for mod- eling water flow and sediment discharge from natural forest watersheds where subsurface flow is dom- Keywords: inant, WEPP (v2004.7) underestimates these quantities, in particular, the water flow at the watershed Forest watershed outlet. Surface runoff Subsurface lateral flow The main goal of this study was to improve the WEPP v2004.7 so that it can be applied to adequately Soil erosion simulate forest watershed hydrology and erosion.
    [Show full text]
  • Using the Wepp Model to Predict Sediment Yield in a Sample Watershed in Kahramanmaras Region
    USING THE WEPP MODEL TO PREDICT SEDIMENT YIELD IN A SAMPLE WATERSHED IN KAHRAMANMARAS REGION Alaaddin YÜKSEL Abdullah E. AKAY Mahmut REİS KSÜ, Orman Fakültesi, Orman Mühendisliği Bölümü, 46060, Kahramanmaraş Recep GÜNDOĞAN KSÜ, Ziraat Fakültesi, Toprak Bölümü, 46060, Kahramanmaraş E-mail: [email protected], [email protected], [email protected], [email protected] ABSTRACT Considerable amount of sediment yield reaches into streams, lakes, and dam reservoirs from 26 major watersheds in Turkey. Several models have been developed to estimate the sediment yield from watersheds. WEPP (Water Erosion Prediction Project) model is one of the most common model which not only predicts the amount of sediment yield but also determines where and when the sediment produc- tion occurs and locates possible deposition places. Besides, the geo-spatial interface for WEPP model (GeoWEPP) can use digital geo-referenced information by integrat- ing with the most common GIS tools ( i.e. ArcView, ArcGIS) . Therefore, watershed managers can decide the most appropriate soil erosion conservation and sediment prevention techniques for a specific watershed based on the WEPP outputs in text or graphical format. The sediment yield from a watershed in Kahramanmaraş region (Ayvalı Dam Watershed) was estimated by using GeoWEPP model. In this study, process of estimating sediment yield from a specific sub watershed located in a for- ested area was presented to indicate the performance of GeoWEPP. This study indi- cated that using GeoWEPP can provide watershed managers with quick estimation of sediment yield from large watersheds in high accuracy. Keywords: WEPP, GeoWEPP, Sedimentation, Dam Watershed, Kahramanmaraş, 12 INTERNATIONAL CONGRESS ON RIVER BASIN MANAGEMENT 1.
    [Show full text]
  • Application of the WEPP Model to Surface Mine Reclamation• By
    Application of the WEPP Model to Surface Mine Reclamation• by W. J. Elliot Wu Qiong Annette V. Elliot2 Abstract. Sediment from mining sources contributes to the pollution of surface waters. Restoration of mined sites can reduce the problems associated with erosion, and one of the most important objectives of surface mine reclamation is the control of surface runoff and erosion from reclaimed areas. Current methods for predicting sediment yield do not suit surface mine sites because non- agricultural soils and vegetation are involved. There is a need for a computer model to aid in identifying improved management systems and reclamation practices with suitable input data files and appropriate hydrologic modeling routines. The USDA Water Erosion Prediction Project (WEPP) resulted in the development of a computer model based on fundamental erosion mechanics. The WEPP model will be in widespread use by the mid 1990s by the Soil Conservation Service (SCSI, and will be the erosion prediction model of choice well into the next century. This paper gives an overview of the WEPP erosion prediction technology and its implications to surface mine reclamation, and reports on a research project that identifies critical watershed parameters unique to surface mining and reclamation through a sensitivity analysis of the WEPP Watershed Model. The study contributes to the validation of the WEPP Watershed Version by comparing estimates generated by the model with observed data from watersheds after surface mining. Additional Key Words: Erosion simulation INTRODUCTION control of surface runoff and erosion from reclaimed areas (Mitchell et al., 1983; Hartley As renewable fossil fuel energy reserves are and Schuman, 1984).
    [Show full text]
  • Modeling Phosphorus Transport Using the WEPP Model Mario Perez-Bidegain Iowa State University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Modeling phosphorus transport using the WEPP model Mario Perez-Bidegain Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Agronomy and Crop Sciences Commons, Bioresource and Agricultural Engineering Commons, Environmental Sciences Commons, and the Soil Science Commons Recommended Citation Perez-Bidegain, Mario, "Modeling phosphorus transport using the WEPP model" (2007). Retrospective Theses and Dissertations. 15497. https://lib.dr.iastate.edu/rtd/15497 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Modeling phosphorus transport using the WEPP model by Mario Perez-Bidegain A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Soil Science (Soil Management); Environmental Science Program of Study Committee: Richard M. Cruse, Co-major Professor Matthew J. Helmers, Co-major Professor Brian K. Hornbuckle Robert Horton John M. Laflen Iowa State University Ames, Iowa 2007 Copyright © Mario Perez-Bidegain, 2007. All rights reserved. UMI Number: 3259439 UMI Microform 3259439 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Wepp Model Applications for Evaluations of Best Management Practices
    WEPP MODEL APPLICATIONS FOR EVALUATIONS OF BEST MANAGEMENT PRACTICES D.C. FLANAGAN 1, W.J. ELLIOT 2, J.R. FRANKENBERGER 3, C. HUANG 4 1USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] 2USDA-Forest Service, Rocky Mountain Research Station, 1221 S. Main St., Moscow, ID, USA. 83843. Phone: +01 208-883-2338, FAX: +01 208-883-2318, email: [email protected] 3USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] 4USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] Summary The Water Erosion Prediction Project (WEPP) model is a process-based erosion prediction technology for application to small watersheds and hillslope profiles, under agricultural, forested, rangeland, and other land management conditions. Developed by the United States Department of Agriculture (USDA) over the past 25 years, WEPP simulates many of the physical processes that are important when estimating runoff, soil erosion, and sediment delivery at a location having unique climate, topography, soils, and plants/tillage/management. A variety of user interfaces and databases make the model very easy to apply and use, particularly within the United States. The USDA Agricultural Research Service (ARS) has developed a stand-alone Windows WEPP system, as well as internet web-based hillslope and GIS watershed interfaces.
    [Show full text]
  • WEPP Model Be Improved to Allow Access to Sub-Daily Time Scale Results So That It Can Be Better Integrated with Other Watershed Models
    A COUPLED UPLAND-EROSION AND INSTREAM HYDRODYNAMIC-SEDIMENT TRANSPORT MODEL FOR EVALUATING SEDIMENT TRANSPORT IN FORESTED WATERSHEDS W. J. Conroy, R. H. Hotchkiss, W. J. Elliot ABSTRACT. This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of spatiotemporally varied forest management practices on sediment yield and delivery at hillslope to watershed scales in a single simulation. The modeling system consists of four components: (1) the TOpographic ParameteriZation (TOPAZ) model for discretizing hillslope and channel elements, (2) the Water Erosion Prediction Project (WEPP) model for evaluating hillslope-scale surface erosion processes, (3) the National Center for Computational Hydrodynamics and Engineering’s one-dimensional (CCHE1D) hydrodynamic-sediment transport model, and (4) an interface program to manage relational databases and data transfer between modules. The coupled models were calibrated and validated with observed flow and sediment load data from the North Fork Caspar Creek Experimental Watershed in coastal northern California. The coupled models’ predictions of peak flow rate and total flow volume were not significantly different from observed values. Predicted sediment concentrations were significantly different from observed values, but within typical ranges for sediment transport equations. We recommend that the WEPP model be improved to allow access to sub-daily time scale results so that it can be better integrated with other watershed models. Keywords. Erosion modeling, Hydrodynamic modeling, Watershed models, TMDLs, CCHE1D, WEPP.
    [Show full text]
  • The Water Erosion Prediction Project (WEPP) Model
    WEPP Model Background, Status, and Current Projects Dennis C. Flanagan Research Agricultural Engineer USDA-Agricultural Research Service Adjunct Professor Purdue Univ., Dept. of Agric. & Biol. Eng. National Soil Erosion Research Laboratory West Lafayette, Indiana, USA “The NSERL – to provide the knowledge and technology needed by land users to conserve soil for future generations.” Building dedicated 1/15/1982 Presentation Outline Erosion Prediction History WEPP Model Background Model Status – 2015 Current Projects Summary Scales of interest 0.01 to 1 ha – Hillslope scale Hillslope profiles in 1 to 1000 ha – Field, farm scale agricultural fields, forested areas, rangeland parcels, Small watersheds in landfills, mines, highways, agricultural fields, on farms, construction sites, etc. in forested catchments, construction sites, etc. Important Processes at these Scales Precipitation (and weather in general) – rainfall occurrence, volume, storm duration, intensity Surface hydrology – infiltration, pondage, ET, runoff Subsurface hydrology – percolation, seepage, lateral flow Hillslope erosion processes – detachment by rainfall, shallow flow transport, rill detachment by flow shear stress, sediment transport, sediment deposition. Channel erosion processes – detachment by flow shear stress, sediment transport, downcutting to a nonerodible layer, sediment deposition. Hillslope region from a small watershed Erosion Prediction History Early tools developed in the 1940’s-1970’s were all empirically-based. Universal Soil Loss Equation (USLE) and revisions Beginning in late 1970’s, efforts began to focus on process-based modeling. ANSWERS and CREAMS models were first distributed parameter hillslope/watershed models with some physical processes represented. They still used USLE for sediment generation. In 1985, the Water Erosion Prediction Project (WEPP) was initiated by USDA, at a meeting in Lafayette, Indiana.
    [Show full text]
  • Lake Tahoe West Science Symposium Day 1: Tuesday May 19, 9:00 Am – 2:00 Pm Day 2: Friday May 29, 9:00 Am – 2:30 Pm Zoom Features
    Lake Tahoe West Science Symposium Day 1: Tuesday May 19, 9:00 am – 2:00 pm Day 2: Friday May 29, 9:00 am – 2:30 pm Zoom Features • Participants are in listen-only mode • Click on the Q&A icon to submit questions • Use the Chat feature if you need technical assistance – send messages to All Panelists • Let us know who is online: please use the Chat feature to introduce yourself! • We recommend joining through phone + computer if your audio or internet is poor Symposium Goals and Audience • Primary Goal: Present and discuss findings from the LTW modeling effort and how they inform future resilience of the Lake Tahoe basin landscape. • Additionally, highlight how modeling results informed the LTW Landscape Restoration Strategy and may inform future environmental analysis • Diverse Audience Symposium Format • Each presentation will be followed by Q&A • Participants submit questions using the Zoom Q&A feature • Moderator will select questions for presenters and panelists • Final panel will discuss overall take-homes Morning agenda Lake Tahoe West TIME AGENDA ITEM PRESENTER 9:00 am Welcome, Zoom Overview, Agenda Review, Introductions Sarah Di Vittorio, Science Symposium National Forest Foundation 9:10 am Introduction to Today’s Workshop Pat Manley, PSW Orientation to today’s talks and associated science Jonathan Long, PSW products 9:20 am Effects of treatment in aspen-conifer stands on fire Chad Hoffman and Justin behavior and stand structure Ziegler, Colorado State 15-minute presentation followed by 5-minute Q&A University 9:40 am Effects of
    [Show full text]
  • Assessment of Soil Loss Using WEPP Model and Geographical Information System
    Journal of Spatial Hydrology Volume 11 Number 1 Article 2 2011 Assessment of Soil Loss Using WEPP Model and Geographical Information System Follow this and additional works at: https://scholarsarchive.byu.edu/josh BYU ScholarsArchive Citation (2011) "Assessment of Soil Loss Using WEPP Model and Geographical Information System," Journal of Spatial Hydrology: Vol. 11 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/josh/vol11/iss1/2 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Spatial Hydrology by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Journal of Spatial Hydrology Vol.11, No.1 Spring 2011 Assessment of Soil Loss Using WEPP Model and Geographical Information System A. Landi1, A.R. Barzegar1,*, J. Sayadi1 and A. Khademalrasoul1 Abstract Severe soil erosion has generally been regarded as a major cause of land degradation in arid and semi arid regions. A quantitative assessment of soil loss intensity is still scanty for developing appropriate soil erosion control measures in these regions. This article used the combined Water Erosion Prediction Project (WEPP) and Geographic Information System (GIS) models to estimate the average soil loss in the Halahijan watershed in Khuzestan Province, one of the priority areas for soil erosion control in Iran. Also, the sediment yield estimated by the WEPP was compared with that estimated by Modified Pacific Southwest Interagency Committee (MPSIAC) model. The MPSIAC model is used to estimate erosion yield and erosion intensity using nine factors consisting of, geological characteristics, soil, climate, runoff, topography, vegetation cover, land use and present soil erosion.
    [Show full text]
  • BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications
    EPA/600/R-11/123a November, 2011 BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications NOTICE THIS DOCUMENT IS A DRAFT. This document is distributed solely for the purpose of pre- dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use Global Change Research Program National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 Draft – Do not cite or quote DISCLAIMER This document is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Draft – Do not cite or quote 2 FOREWORD Draft – Do not cite or quote 3 AUTHORS AND REVIEWERS The National Center for Environmental Assessment (NCEA), Office of Research and Development, was responsible for preparing this external review draft report. Preparation of an earlier draft report was conducted by AQUA TERRA Consultants, under EPA Contract EP-C-06-029. AUTHORS AQUA TERRA Consultants, Decatur, GA Paul Hummel Paul Duda Tong Zhai Elizabeth Wolfram U.S. Environmental Protection Agency, National Center for Environmental Assessment, Global Change Research Program, Washington, DC Thomas Johnson Meredith Warren REVIEWERS We are very grateful for the many excellent comments and suggestions about improving this report provided by EPA reviewers Steve Kramer, Philip Morefield, Julie Reichert, and Christopher Weaver.
    [Show full text]
  • Chapter 14. SURFACE IMPOUNDMENT ELEMENT MODEL DESCRIPTION
    14.1 Chapter 14. SURFACE IMPOUNDMENT ELEMENT MODEL DESCRIPTION M.R. Lindley, B.J. Barfield and B.N. Wilson 14.1 Introduction User requirements dictate that the WEPP Surface Impoundment Element (WEPPSIE) must simulate several types of impoundments: farm ponds, terraces, culverts, filter fences, and check dams (Foster and Lane, 1987). In order to determine the impact of sediment-laden runoff, the user needs to know: 1. Peak outflow rate and outflow volume. 2. Peak effluent sediment concentration and total sediment yield. 3. Time to fill an impoundment with sediment. To meet these requirements, the WEPPSIE code includes five sections: a front-end interface, daily input, hydraulic simulation, sedimentation simulation, and daily output. A flow chart illustrating how the WEPPSIE code is integrated into the overall WEPP model is shown in Fig. 14.1.1. Start WEPP Main Program Initialization Define watershed (Location, size, shape, slope, land use, supporting practices, channels, etc.) WEPPSIE Front End Interface Compute coefficients for stage discharge functions Compute coefficients for stage-area function Compute coefficients for stage-length function Set particle size subclasses Initialize variables WEPP Main Program Daily Simulation Run climate generator Run hillslope routines Run channel routines WEPPSIE Daily Simulation Read Inputs Perform hydraulic routing Determine deposition and sedimentation Write to output files Figure 14.1.1. Flow chart for WEPPSIE. July 1995 14.2 The front-end interface is run only once at the beginning of a WEPP simulation. Within the front- end interface, the coefficients of continuous stage-discharge relationships are determined from information entered by the user, describing each outflow structure present in a given impoundment.
    [Show full text]