General Catalog & Student Handbook

Total Page:16

File Type:pdf, Size:1020Kb

General Catalog & Student Handbook Career and Community Education MMUN 1 CO I Y TY T C N O U L O Est. 1964 L C E I G R E T THOMAS SMITH Graphic Designer N O A N RT LI H CARO CI TY ADDRESS,STREET HOME L OC ATION GOES HER E YO UR EMAIL_ADD@GMAIL. CO M PHONE: +18 2767 9470 180 8 +18 9153 3990 000 8 2020-2021WW W. CO MPAN Y - NAME. CO M General Catalog & Student Handbook Proudly serving western North Carolina for more than 50 years. 2 About TCCC 2020-2021 General Catalog Tri-County Community College operates within the North Carolina Community College System. Tri-County Community College is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate degrees. Contact the Commission on Colleges at: 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4500 for questions about the accreditation of Tri-County Community College. The College is also approved by the North Carolina Board of Cosmetic Arts, the North Carolina Board of Massage and Bodywork Therapy, the North Carolina Board of Nursing, the National Automotive Technicians Education Foundation, and the Commission on Accreditation of Allied Health Education Programs. Tri-County Community College is an equal employment opportunity college. It operates in compliance with Title VI and Title VII of the Civil Rights Act of 1964, as amended by the Equal Employment Opportunity Act of 1972; Title VII and Title VIII of the Public Health Act, as amended by the Comprehensive Health Manpower Act of 1971; Title IX of the Education Amendments of 1972, Section 504 of Rehabilitation Act of 1973, and Executive Order 11246, and thus recognizes its responsibility for the development and practice of equal employment opportunities and educational services that do not discriminate against employee, student or applicant on the basis of race, color, religion, sex, age, handicap or national origin. Specific complaints of alleged discrimination under Title IX (sex) and Section 504 (handicap) should be referred to: the Vice President for Instructional Services at 828-835-4254 or the Affirmative Action Officer at 828-835-4325. Tri-County Community College does not practice or condone discrimination based on race, color, national origin, religion, sex, gender, gender identity or expression, pregnancy, disability, genetic information, age, political affiliation or veterans’ status in the administration in any of its academic programs and employment practices. Specific complaints of alleged discrimination under Title IX and Section 504 should be referred to Title IX/ Section 504 Coordinator at (828) 835-4325. Tri-County Community College is committed to providing a safe and secure environment for all members of the College’s community and visitors. The College shall comply with the Crime Awareness and Security Act of 1990, as amended by the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act. Statistics are available by contacting the Director of Facilities at (828) 835-4261 or accessed at http://ope.ed.gov/ security. Tri-County Community College Graham County Center 21 Campus Circle 145 Moose Branch Road, PO Box 1997 Murphy, North Carolina 28906 Robbinsville, North Carolina 28771 Phone: (828) 837-6810 Phone: (828) 479-9256 Fax: (828) 837-3266 Fax: (828) 479-6280 Cherokee County Center for Applied Technology 2415 Airport Road, Marble, North Carolina 28905 Phone: (828) 835-9564 Fax: (828) 835-7835 www.tricountycc.edu Published annually by Tri-County Community College as a public announcement of courses and programs. This catalog is for information purposes and does not constitute a contract. The College MMUN reserves the right to make changes in policies and regulations and to CO IT add or withdraw course offerings as needed. Y Y T C N O Tri-County Community College issues this catalog to furnish U L prospective students and other interested persons with information O about the College and its programs. Announcements contained Est. 1964 L C E herein are subject to change without notice and may not be regarded I G R as binding commitments or a contractual obligation of the College or E the State of North Carolina. Note: Not all courses listed in this catalog T are offered every semester since offerings are subject to change based on enrollment. N O A R IN TH CAROL About TCCC 3 Table of Contents About TCCC .................................................................................................................1-9 Student Success: Admissions, Registration, and Graduation ..................................10-27 Student Success: Financial Aid ...............................................................................28-34 Student Success: Academic Support .......................................................................35-45 Student Success: Student Rights and Policies .........................................................46-78 Career and Community Education ..........................................................................79-83 General Catalog ....................................................................................................84-253 General Reference .....................................................................................................254 Faculty and Staff Directory ...........................................................................256-259 Campus Maps ..............................................................................................260-262 Index ..................................................................................................................263-264 Values Integrity: We will serve as a model of integrity for our students, demonstrating accountability and committing ourselves to a high ethical standard. Community: We strive to foster a synergistic relationship with our local, national, and global communities. Excellence: Throughout all levels of our campus, we will pursue excellence in education, instruction, and service. Accessibility: We provide opportunities for students to pursue their personal, academic, and professional aspirations through our open door policy, student support services, and community enrichment efforts. Empathy: We celebrate the human connection through nurturing an inclusive environment, serving as a nonjudgmental platform for ideas, and embracing the diversity of our student body. Mission Statement What is Tri-County Community College? Tri-County Community College is an accredited, comprehensive, public-supported, two-year, post- secondary institution, which operates in accordance with North Carolina Law and the administrative policies of the North Carolina Community College System. Located in the westernmost tip of North Carolina, the College serves commuter students in a remote, rural area consisting of Cherokee, Clay, and Graham counties by providing college transfer, vocational, technical, and adult education programs. Mission Statement The mission of Tri-County Community College is to engage students in learning, help students succeed, and enrich the communities we serve. This mission is accomplished through: A. Innovative and effective teaching. B. Supportive and efficient learning environments. C. Strong local and regional partnerships. Approved by Board of Trustees - June 8, 2011; Reviewed via survey - August 31, 2016; Reviewed and reaffirmed - June 15, 2017; Reviewed and reaffirmed - May 23, 2019 4 About TCCC Board of Trustees Appointed by Cherokee County Board of Commissioners Roy Dickey – Term Expires 2020 (Murphy, NC) Larry Kernea – Term Expires 2023 (Murphy, NC) Al Lovingood – Term Expires 2022 (Murphy, NC) Leo Phillips – Term Expires 2020 (Murphy, NC) Jackie Sellers – Term Expires 2023 (Hayesville, NC) David Williams – Term Expires 2021 (Andrews, NC) Hugh Williamson – Term Expires 2022 (Murphy, NC) Appointed by Clay County Board of Commissioners Bryan Hedden – Term Expires 2021 (Hayesville, NC) Appointed by Governor Betty Anderson – Term Expires 2023 (Hayesville, NC) Steve Coleman – Term Expires 2020 (Murphy, NC) Brandon Lovin – Term Expires 2021 (Robbinsville, NC) Mike Stevenson – Term Expires 2022 (Murphy, NC) Current as of publication date. By the act of the North Carolina State Legislature, the President of Tri-County Community College’s Student Government Association is automatically a non-voting member of the Board of Trustees. Chief Executive Officers Presidents of Tri-County Community College Holland McSwain: 1964 to 1972 Vincent Crisp: 1972 to 1992 Dr. Harry Jarrett: 1992 to 1995 Dr. Norman Oglesby: 1996 to 2006 Dr. Donna Tipton-Rogers: 2007 - Present TCCC President Donna Tipton-Rogers (at left) with the on-site visiting delegation from the Southern Association of Colleges and Schools Commission on Colleges (SACSCOC) during the College’s re-accreditation process in October 2019. About TCCC 5 Message from the President Here at the beginning of the 2020-2021 academic year, I want to extend a warm and heartfelt greeting on behalf of the Tri-County Community College Board of Trustees, and the College’s faculty and staff. From its humble beginnings in 1964 as the Tri-County Technical Institute, our College has been transformed by the hard work, dedication, and generosity of thousands of individuals. During the 2019-2020 academic year, the College underwent our re-accreditation process through the Southern Association of Colleges and Schools Commission on Colleges (SACSCOC) , which occurs every 10 years. Our dedicated faculty and staff strove tirelessly to showcase the exemplary work we do every day at Tri-County Community
Recommended publications
  • Red Hat Enterprise Linux 8 Security Hardening
    Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Last Updated: 2021-09-06 Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • CIS Ubuntu Linux 18.04 LTS Benchmark
    CIS Ubuntu Linux 18.04 LTS Benchmark v1.0.0 - 08-13-2018 Terms of Use Please see the below link for our current terms of use: https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/ 1 | P a g e Table of Contents Terms of Use ........................................................................................................................................................... 1 Overview ............................................................................................................................................................... 12 Intended Audience ........................................................................................................................................ 12 Consensus Guidance ..................................................................................................................................... 13 Typographical Conventions ...................................................................................................................... 14 Scoring Information ..................................................................................................................................... 14 Profile Definitions ......................................................................................................................................... 15 Acknowledgements ...................................................................................................................................... 17 Recommendations ............................................................................................................................................
    [Show full text]
  • An Introduction to Programming in Fortran 90
    Guide 138 Version 3.0 An introduction to programming in Fortran 90 This guide provides an introduction to computer programming in the Fortran 90 programming language. The elements of programming are introduced in the context of Fortran 90 and a series of examples and exercises is used to illustrate their use. The aim of the course is to provide sufficient knowledge of programming and Fortran 90 to write straightforward programs. The course is designed for those with little or no previous programming experience, but you will need to be able to work in Linux and use a Linux text editor. Document code: Guide 138 Title: An introduction to programming in Fortran 90 Version: 3.0 Date: 03/10/2012 Produced by: University of Durham Computing and Information Services This document was based on a Fortran 77 course written in the Department of Physics, University of Durham. Copyright © 2012 University of Durham Computing and Information Services Conventions: In this document, the following conventions are used: A bold typewriter font is used to represent the actual characters you type at the keyboard. A slanted typewriter font is used for items such as filenames which you should replace with particular instances. A typewriter font is used for what you see on the screen. A bold font is used to indicate named keys on the keyboard, for example, Esc and Enter, represent the keys marked Esc and Enter, respectively. Where two keys are separated by a forward slash (as in Ctrl/B, for example), press and hold down the first key (Ctrl), tap the second (B), and then release the first key.
    [Show full text]
  • Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X
    Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X Product Brief The Flagship for High-Performance Computing Intel® Math Kernel Library 10.1 Math Software for Windows*, Linux*, and Mac OS* X Intel® Math Kernel Library (Intel® MKL) is a library of highly optimized, extensively threaded math routines for science, engineering, and financial applications that require maximum performance. Availability • Intel® C++ Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Fortran Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Cluster Toolkit Compiler Edition (Windows, Linux) • Intel® Math Kernel Library 10.1 (Windows, Linux, Mac OS X) Functionality “By adopting the • Linear Algebra—BLAS and LAPACK • Fast Fourier Transforms Intel MKL DGEMM • Linear Algebra—ScaLAPACK • Vector Math Library libraries, our standard • Linear Algebra—Sparse Solvers • Vector Random Number Generators benchmarks timing DGEMM Threaded Performance Intel® Xeon® Quad-Core Processor E5472 3.0GHZ, 8MB L2 Cache,16GB Memory Intel® Xeon® Quad-Core Processor improved between Redhat 5 Server Intel® MKL 10.1; ATLAS 3.8.0 DGEMM Function 43 percent and 71 Intel MKL - 8 Threads Intel MKL - 1 Thread ATLAS - 8 Threads 100 percent…” ATLAS - 1 Thread 90 Matt Dunbar 80 Software Developer, 70 ABAQUS, Inc. s 60 p GFlo 50 40 30 20 10 0 4 6 8 2 4 0 8 2 8 4 6 0 4 2 4 8 6 6 8 9 10 11 12 13 14 16 18 19 20 22 25 32 38 51 Matrix Size (M=20000, N=4000, K=64, ..., 512) Features and Benefits Vector Random Number Generators • Outstanding performance Intel MKL Vector Statistical Library (VSL) is a collection of 9 random number generators and 22 probability distributions • Multicore and multiprocessor ready that deliver significant performance improvements in physics, • Extensive parallelism and scaling chemistry, and financial analysis.
    [Show full text]
  • Compositional and Analytic Applications of Automated Music Notation Via Object-Oriented Programming
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Compositional and analytic applications of automated music notation via object-oriented programming Permalink https://escholarship.org/uc/item/3kk9b4rv Author Trevino, Jeffrey Robert Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Compositional and Analytic Applications of Automated Music Notation via Object-oriented Programming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Music by Jeffrey Robert Trevino Committee in charge: Professor Rand Steiger, Chair Professor Amy Alexander Professor Charles Curtis Professor Sheldon Nodelman Professor Miller Puckette 2013 Copyright Jeffrey Robert Trevino, 2013 All rights reserved. The dissertation of Jeffrey Robert Trevino is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To Mom and Dad. iv EPIGRAPH Extraordinary aesthetic success based on extraordinary technology is a cruel deceit. —-Iannis Xenakis v TABLE OF CONTENTS Signature Page .................................... iii Dedication ...................................... iv Epigraph ....................................... v Table of Contents................................... vi List of Figures .................................... ix Acknowledgements ................................. xii Vita .......................................... xiii Abstract of the Dissertation . xiv Chapter 1 A Contextualized History of Object-oriented Musical Notation . 1 1.1 What is Object-oriented Programming (OOP)? . 1 1.1.1 Elements of OOP . 1 1.1.2 ANosebleed History of OOP. 6 1.2 Object-oriented Notation for Composers . 12 1.2.1 Composition as Notation . 12 1.2.2 Generative Task as an Analytic Framework . 13 1.2.3 Computational Models of Music/Composition .
    [Show full text]
  • Trigonometry in the AIME and USA(J)MO
    AIME/USA(J)MO Handout Trigonometry in the AIME and USA(J)MO Authors: For: naman12 AoPS freeman66 Date: May 26, 2020 A K M N X Q O BC D E Y L Yet another beauty by Evan. Yes, you can solve this with trigonometry. \I was trying to unravel the complicated trigonometry of the radical thought that silence could make up the greatest lie ever told." - Pat Conroy naman12 and freeman66 (May 26, 2020) Trigonometry in the AIME and the USA(J)MO Contents 0 Acknowledgements 3 1 Introduction 4 1.1 Motivation and Goals ........................................... 4 1.2 Contact................................................... 4 2 Basic Trigonometry 5 2.1 Trigonometry on the Unit Circle ..................................... 5 2.2 Definitions of Trigonometric Functions.................................. 6 2.3 Radian Measure .............................................. 8 2.4 Properties of Trigonometric Functions.................................. 8 2.5 Graphs of Trigonometric Functions.................................... 11 2.5.1 Graph of sin(x) and cos(x)..................................... 11 2.5.2 Graph of tan(x) and cot(x)..................................... 12 2.5.3 Graph of sec(x) and csc(x)..................................... 12 2.5.4 Notes on Graphing.......................................... 13 2.6 Bounding Sine and Cosine......................................... 14 2.7 Periodicity ................................................. 14 2.8 Trigonometric Identities.......................................... 15 3 Applications to Complex Numbers 22
    [Show full text]
  • CIS Red Hat Enterprise Linux 7 Benchmark
    CIS Red Hat Enterprise Linux 7 Benchmark v2.1.1 - 01-31-2017 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License. The link to the license terms can be found at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode To further clarify the Creative Commons license related to CIS Benchmark content, you are authorized to copy and redistribute the content for use by you, within your organization and outside your organization for non-commercial purposes only, provided that (i) appropriate credit is given to CIS, (ii) a link to the license is provided. Additionally, if you remix, transform or build upon the CIS Benchmark(s), you may only distribute the modified materials if they are subject to the same license terms as the original Benchmark license and your derivative will no longer be a CIS Benchmark. Commercial use of CIS Benchmarks is subject to the prior approval of the Center for Internet Security. 1 | P a g e Table of Contents Overview ............................................................................................................................................................... 12 Intended Audience ........................................................................................................................................ 12 Consensus Guidance ..................................................................................................................................... 12 Typographical Conventions .....................................................................................................................
    [Show full text]
  • Paradigmata Objektového Programování I
    KATEDRA INFORMATIKY PRˇ´IRODOVEDECKˇ A´ FAKULTA UNIVERZITA PALACKEHO´ PARADIGMATA OBJEKTOVÉHO PROGRAMOVÁNÍ I MICHAL KRUPKA VYVOJ´ TOHOTO UCEBNˇ ´IHO TEXTU JE SPOLUFINANCOVAN´ EVROPSKYM´ SOCIALN´ ´IM FONDEM A STATN´ ´IM ROZPOCTEMˇ CESKˇ E´ REPUBLIKY Olomouc 2008 Abstrakt Obsahem textu jsou základy objektově orientovaného programování. C´ı lova´ skupina První část textu je určena studentům všech bakalářských oborů vyučovaných na katedře informatiky Příro- dovědecké fakulty UP Olomouc. Chystaná druhá část textu je určena především studentům bakalářského oboru Informatika. Obsah 1 Úvod . 6 2 Od Scheme ke Common Lispu . 8 2.1 Pozadí . 8 2.2 Terminologie . 8 2.3 Logické hodnoty a prázdný seznam . 9 2.4 Vyhodnocovací proces . 11 3 Common Lisp: základní výbava . 15 3.1 Řízení běhu . 15 3.2 Proměnné a vazby . 16 3.3 Místa . 20 3.4 Funkce . 21 3.5 Logické operace . 24 3.6 Porovnávání . 25 3.7 Čísla . 26 3.8 Páry a seznamy . 27 3.9 Chyby . 29 3.10 Textový výstup . 30 3.11 Typy . 31 3.12 Prostředí . 32 4 Třídy a objekty . 33 4.1 Třídy . 33 4.2 Třídy a instance v Common Lispu . 34 4.3 Inicializace slotů . 40 5 Zapouzdření . 43 5.1 Motivace . 43 5.2 Princip zapouzdření . 47 5.3 Úprava tříd point a circle . 48 5.4 Třída picture . 49 6 Polymorfismus . 53 6.1 Kreslení pomocí knihovny micro-graphics . 53 6.2 Kreslení grafických objektů . 57 6.3 Princip polymorfismu . 63 6.4 Další příklady . 64 7 Dědičnost . 70 7.1 Dědičnost jako nástroj redukující opakování v kódu . 70 7.2 Určení předka při definici třídy .
    [Show full text]
  • CIS 264: Computer Architecture and Assembly Language
    College of San Mateo Official Course Outline 1. COURSE ID: CIS 264 TITLE: Computer Architecture and Assembly Language C-ID: COMP 142 Units: 3.0 units Hours/Semester: 48.0-54.0 Lecture hours; and 96.0-108.0 Homework hours Method of Grading: Grade Option (Letter Grade or Pass/No Pass) Prerequisite: MATH 120, and CIS 254, or CIS 278 Recommended Preparation: Eligibility for ENGL 838 or ENGL 848 or ESL 400. 2. COURSE DESIGNATION: Degree Credit Transfer credit: CSU; UC 3. COURSE DESCRIPTIONS: Catalog Description: This course covers the internal organization and operation of digital computers at the assembly language level. Topics include the mapping of high-level language constructs into sequences of machine-level instructions; assembly language and assemblers; linkers and loaders; internal data representations and manipulations; numerical computation; input/output (I/O) and interrupts; functions calls and argument passing; and the basic elements of computer logic design. A materials fee as shown in the Schedule of Classes is payable upon registration. 4. STUDENT LEARNING OUTCOME(S) (SLO'S): Upon successful completion of this course, a student will meet the following outcomes: 1. Describe the architectural components of a computer system. 2. Convert between decimal, binary, and hexadecimal notations. 3. Write simple assembly language program segments. 4. Write and debug assembly programs that use load/store, arithmetic, logic, branches, call/return and push/pop instructions. 5. Demonstrate how fundamental high-level programming constructs are implemented at the machine-language level. 5. SPECIFIC INSTRUCTIONAL OBJECTIVES: Upon successful completion of this course, a student will be able to: 1.
    [Show full text]
  • Intel® Math Kernel Library for Windows OS ® User's Guide
    Intel® Math Kernel Library for Windows* Developer Guide Intel® MKL 2018 - Windows* Revision: 061 Legal Information Intel® Math Kernel Library for Windows* Developer Guide Contents Legal Information ................................................................................ 6 Getting Help and Support..................................................................... 7 Introducing the Intel® Math Kernel Library .......................................... 8 What's New ....................................................................................... 10 Notational Conventions...................................................................... 11 Related Information .......................................................................... 12 Chapter 1: Getting Started Checking Your Installation ........................................................................ 13 Setting Environment Variables................................................................... 13 Compiler Support .................................................................................... 14 Using Code Examples............................................................................... 15 Before You Begin Using the Intel(R) Math Kernel Library ............................... 15 Chapter 2: Structure of the Intel(R) Math Kernel Library Architecture Support................................................................................ 17 High-level Directory Structure ................................................................... 17 Layered Model
    [Show full text]
  • 02 -- Complex Numbers and Functions
    SIMG-716 Linear Imaging Mathematics I 02 - Complex Numbers and Functions 1 Complex Numbers and Functions convenient for describing: • — sinusoidal functions of space and/or time (e.g., waves) — behavior of systems used to generate images Simplify representation of sinusoidal waves by using notation based on magnitude and phase • angle Concise notation is convenient even when represented quantities are real valued • — e.g., electric-field amplitude (voltage) of a traveling sinusoidal electromagnetic wave is a vector with real-valued amplitude that varies over both temporal and spatial coordinates. Variations in time and space are related through the dispersion equation that relates the frequency and velocity of the wave. This discussion also will describe vectors constructed from complex-valued components. This extension of the vector concept will prove to be very useful when interpreting the Fourier transform. Complex numbers: generalization of imaginary numbers and often denoted by “z”. • Imaginary numbers: concept of √ 1, which has no real-valued solution, symbol i was assigned • the by Leonhard Euler in 1777: − √ 1 i = i2 = 1 − ≡ ⇒ − General complex number z is a composite number formed from sum of real and imaginary • components: z a + ib, a, b ≡ { } ∈ < a = z <{ } b = z ={ } a, b (both a and b are real valued!) ∈ < Complex conjugate z∗ of z = a + ib: multiply imaginary part by 1 : • − z a + ib = z∗ a ib ≡ ⇒ ≡ − Real/imaginary parts may be expressed in terms of z and its complex conjugate z∗ via two • relations that are easily confirmed: z + z∗ =(a + ib)+(a ib)=2a =2 z − ·<{ } z z∗ =(a + ib) (a ib)=2 ib =2i z − − − · ·={ } 1 z = (z + z∗) <{ } 2 1 1 z = (z z∗)= i (z z∗) ={ } 2i − − · 2 − 1 2 Arithmetic of Complex Numbers Given : z1 = a1 + ib1 and z2 = a2 + ib2.
    [Show full text]
  • Julia Language Documentation Release Development
    Julia Language Documentation Release development Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman, et al. September 08, 2014 Contents 1 The Julia Manual 1 1.1 Introduction...............................................1 1.2 Getting Started..............................................2 1.3 Integers and Floating-Point Numbers..................................6 1.4 Mathematical Operations......................................... 12 1.5 Complex and Rational Numbers..................................... 17 1.6 Strings.................................................. 21 1.7 Functions................................................. 32 1.8 Control Flow............................................... 39 1.9 Variables and Scoping.......................................... 48 1.10 Types................................................... 52 1.11 Methods................................................. 66 1.12 Constructors............................................... 72 1.13 Conversion and Promotion........................................ 79 1.14 Modules................................................. 84 1.15 Metaprogramming............................................ 86 1.16 Arrays.................................................. 93 1.17 Sparse Matrices............................................. 99 1.18 Parallel Computing............................................ 100 1.19 Running External Programs....................................... 105 1.20 Calling C and Fortran Code....................................... 111 1.21 Performance
    [Show full text]