Notes for Math 112: Trigonometry Instructor's Version

Total Page:16

File Type:pdf, Size:1020Kb

Notes for Math 112: Trigonometry Instructor's Version Notes for Math 112: Trigonometry Instructor’s Version written by: Dr. Randall Paul Further problems refer to: Precalculus: Mathematics for Calculus, 4th ed. by Stewart, Redlin, and Watson December 19, 2015 c March 2015 Randall Paul This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The essence of the license is that You are free: to Share to copy, distribute and transmit the work • to Remix to adapt the work • Under the following conditions: Attribution You must attribute the work in the manner specified by the author (but • not in any way that suggests that they endorse you or your use of the work). Please contact the author at [email protected] to determine how best to make any attribution. Noncommercial You may not use this work for commercial purposes. • Share Alike If you alter, transform, or build upon this work, you may distribute the • resulting work only under the same or similar license to this one. With the understanding that: Waiver Any of the above conditions can be waived if you get permission from the • copyright holder. Public Domain Where the work or any of its elements is in the public domain under • applicable law, that status is in no way affected by the license. Other Rights In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights, or other applicable copyright exceptions and ⋄ limitations; The author’s moral rights; ⋄ Rights other persons may have either in the work itself or in how the work is used, ⋄ such as publicity or privacy rights. Notice For any reuse or distribution, you must make clear to others the license terms • of this work. The best way to do this is with a link to the web page below. To view a full copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Contents 1 Angles 5 1.1 DegreesandRadians ............................... 6 1.1.1 Co-terminalAngles............................ 8 1.2 RadianFormulas ................................. 11 1.2.1 Arc-length................................. 11 1.2.2 AngularSpeed .............................. 12 1.2.3 SectorArea ................................ 14 2 Trigonometric Functions 17 2.1 AcuteAngles ................................... 17 2.2 UnitCircle..................................... 22 2.2.1 ReferenceAngle.............................. 25 2.2.2 Definition of the Other Trig Functions . 27 2.2.3 PythagoreanIdentities . .. .. 27 2.3 GraphsofSineandCosine ............................ 31 2.3.1 AmplitudeandPeriod .......................... 32 2.3.2 PhaseShiftandVerticalShift . 37 2.4 OtherTrigGraphs ................................ 46 2.5 InverseTrigFunctions .............................. 53 2.5.1 InverseFunctionReview . .. .. 53 2.5.2 InverseSine ................................ 55 2.5.3 InverseCosine............................... 58 2.5.4 InverseTangent.............................. 60 2.5.5 InverseApplications ........................... 61 2.6 TrigonometricEquations ............................. 63 2.6.1 Simple Trigonometric Equations . 63 2.6.2 More Complicated Trig Equations . 66 3 Formulas 71 3.1 Identities...................................... 71 3.2 SumandDifferenceFormulas .......................... 75 3.2.1 Writing a Sum as a Single Function . 78 3.2.2 Product-to-sum and Sum-to-product Formulas . ... 81 3.2.3 DoubleAngleFormulas.......................... 83 3.2.4 HalfAngleFormulas ........................... 86 3 3.3 ComplexNumbers ................................ 91 3.3.1 TrigonometricForm............................ 91 3.3.2 Product,Quotient,andPower . 94 3.3.3 Roots ................................... 96 4 Trigonometric Geometry 101 4.1 LawofSines.................................... 101 4.1.1 AmbiguousCase ............................. 103 4.2 LawofCosines .................................. 107 4.2.1 TriangleArea ............................... 111 4.3 Vectors....................................... 113 4.3.1 TrigonometricForm............................ 115 4.3.2 Static Equilibrium . 119 4 Chapter 1 Angles Angles measure “turning”. Counterclockwise turns are described by positive angles, and clockwise turns negative angles. Angles are described as a rotation taking one ray (called the ‘initial side’) to another ray (called the ‘terminal side’). Example 1.1: A positive angle θ. Example 1.2: A negative angle φ. terminal side initial side terminal side θ φ initial side Notice that, though they have the same initial and terminal sides, θ and φ are different angles. Definition: An angle is in standard position if its initial side is along the positive x-axis. Example 1.3: Below is the angle θ from example 1.1 in standard position. (Same rotation, different initial and terminal sides.) terminal side θ initial side 5 The x and y axes divide the plane into four quadrants. If an angle is in standard position, then its terminal side determines what quadrant the angle is in. For instance θ from example 1.3 is in quadrant II. Quadrant II Quadrant I Quadrant III Quadrant IV 1.1 Degrees and Radians There are two main units used to measure angles. In degrees a single, complete, counter- clockwise rotation is 360◦. In radians it is 2π. θ = 360◦ =2π (radians) 1 1 π Thus a positive one quarter rotation would be: 4 360◦ = 90◦ = 4 2π = 2 1 1 While a backwards one half rotation would be: 360◦ = 180◦ = 2π = π − 2 − − 2 − π 90◦ = 180◦ = π 2 − − 6 Draw the following angles in standard position. 5π 135◦ 3 (radians) 2 − When changing from degrees to radians or vice versa just remember that degrees/360 is the same fraction of a circle as radians/2π. So if an angle is x degrees and y radians, then: x y ◦ = 360◦ 2π Solving we have the formulas: 180◦ πx◦ x◦ = y and y = π 180◦ Example 1.4: What is 45◦ in radians? π45 π y = ◦ = 180◦ 4 3π Example 1.5: What is 2 in degrees? 180◦ 3π x◦ = = 270◦ π 2 Example 1.6: Approximately what is 1 radian in degrees? Solution: 180◦ x◦ = 1 57.3◦ π ≈ 7 1.1.1 Co-terminal Angles Definition: Two angles are said to be co-terminal if, when in standard position, they have the same terminal side. Example 1.7: The three angles below are co-terminal. If measured in degrees then the angles θ and φ are co-terminal if and only if: θ = φ + 360◦n for some integer n. If measured in radians then the angles θ and φ are co-terminal if and only if: θ = φ +2πn for some integer n. Example 1.8: Write three positive angles and three negative angles co- terminal to 110◦. Solution: n =0: 110◦+ 0◦ = 110◦ n =1: 110◦+ 360◦ = 470◦ n =2: 110◦+ 2 360◦ = 830◦ · n = 1: 110◦ 360◦ = 250◦ − − − n = 2: 110◦ 2 360◦ = 610◦ − − · − n = 3: 110◦ 3 360◦ = 970◦ − − · − 8 Example 1.9: Write three positive angles and three negative angles co- 7π terminal to 6 . Solution: 7π 7π n = 0 : 6 + 0= 6 7π 12π 19π n = 1 : 6 + 6 = 6 7π 24π 31π n = 2 : 6 + 6 = 6 n = 1 : 7π 12π = 5π − 6 − 6 − 6 n = 2 : 7π 24π = 17π − 6 − 6 − 6 n = 3 : 7π 36π = 29π − 6 − 6 − 6 Notice we can also tell if two given angles are co-terminal since we know φ and θ are co-terminal if and only if φ θ = 360◦n (or 2πn if in radians). − Example 1.10: Determine which, if any, of the angles below are co-terminal. 220◦, 600◦, 500◦ − Solution: 220◦ 600◦ = 380◦ = 360◦n so 220◦ and 600◦ are not co-terminal. − − What about the others? 220◦ ( 500◦) = 720◦ = 2(360◦) − − So, yes, 220◦ is coterminal to 500◦. − 600◦ ( 500◦) = 1100◦ = n(360◦) − − So, no, 600◦ is not coterminal to 500◦. − 9 Homework 1.1 1. Draw the following angles (the turn- 4. The measure of an angle in standard ings, not just the terminal side). position is given. Find two positive and two negative angles that are co-terminal (a) 3π (e) π 2 − 8 to the given angle. 4π 3π (b) 3 (f) 8 5π 13π (c) 4 (g) 8 (a) 50◦ (d) 13π (h) 23π 3 8 3π (b) 4 2. Convert the following angles measured π in degrees to angles measured in radi- (c) − 6 ans. (a) 135◦ 5. Determine whether the angles are co- (b) 400◦ terminal. (c) 250◦ − 3. Convert the following angles measured (a) 70◦ and 430◦. in radians to angles measured in de- (b) 30◦ and 330◦. grees. − 17π 5π 3π (c) 6 and 6 . (a) 8 25π (d) 32π and 11π . (b) 6 3 3 (c) 16 (approximately) − (e) 155◦ and 875◦. Further practice: Page 480 (sec 6.1) #1-40 Solutions: 3π 4π 2 3 1. (a) (b) 10 5π 3π 4 8 (c) (f) 13π 13π 3 8 (d) (g) 23π π 8 − 8 (e) (h) 2. (a) 3π (b) 20π (c) 25π 4 9 − 18 3. (a) 67.5◦ (b) 750◦ (c) 916.7◦ − 11π 19π 5π 13π 11π 23π 13π 19π 4. (a) 410◦, 770◦, 310◦, 670◦ (b) , , − , − (c) , , − , − − − 4 4 4 4 6 6 6 6 5. (a) 70◦ 430◦ = 360◦ coterminal (b)70◦ 430◦ = 360◦ coterminal (c) 17π −5π = 12π−=2π coterminal (d) 32π − 11π = 21−π =7π Not coterminal 6 − 6 6 3 − 3 3 (e)155◦ 875◦ =( 2)360◦ coterminal − − 1.2 Radian Formulas Degrees are the oldest way to measure angles, but in many ways radians are the better way to measure angles. Many formulas from calculus assume that all angles are given in radians (and this is important). The formulas below also assume angles are given in radians. 1.2.1 Arc-length In general the arc-length is the distance along a curving path. In this class we only consider the distance along a circular path. If we consider the fraction of the circle s swept out by the angle θ and recall the cir- cumference of a circle is 2πr, then we have r θ s θ = r 2π 2πr which we solve to get the Arc-length Formula.
Recommended publications
  • Red Hat Enterprise Linux 8 Security Hardening
    Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Last Updated: 2021-09-06 Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • CIS Ubuntu Linux 18.04 LTS Benchmark
    CIS Ubuntu Linux 18.04 LTS Benchmark v1.0.0 - 08-13-2018 Terms of Use Please see the below link for our current terms of use: https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/ 1 | P a g e Table of Contents Terms of Use ........................................................................................................................................................... 1 Overview ............................................................................................................................................................... 12 Intended Audience ........................................................................................................................................ 12 Consensus Guidance ..................................................................................................................................... 13 Typographical Conventions ...................................................................................................................... 14 Scoring Information ..................................................................................................................................... 14 Profile Definitions ......................................................................................................................................... 15 Acknowledgements ...................................................................................................................................... 17 Recommendations ............................................................................................................................................
    [Show full text]
  • An Introduction to Programming in Fortran 90
    Guide 138 Version 3.0 An introduction to programming in Fortran 90 This guide provides an introduction to computer programming in the Fortran 90 programming language. The elements of programming are introduced in the context of Fortran 90 and a series of examples and exercises is used to illustrate their use. The aim of the course is to provide sufficient knowledge of programming and Fortran 90 to write straightforward programs. The course is designed for those with little or no previous programming experience, but you will need to be able to work in Linux and use a Linux text editor. Document code: Guide 138 Title: An introduction to programming in Fortran 90 Version: 3.0 Date: 03/10/2012 Produced by: University of Durham Computing and Information Services This document was based on a Fortran 77 course written in the Department of Physics, University of Durham. Copyright © 2012 University of Durham Computing and Information Services Conventions: In this document, the following conventions are used: A bold typewriter font is used to represent the actual characters you type at the keyboard. A slanted typewriter font is used for items such as filenames which you should replace with particular instances. A typewriter font is used for what you see on the screen. A bold font is used to indicate named keys on the keyboard, for example, Esc and Enter, represent the keys marked Esc and Enter, respectively. Where two keys are separated by a forward slash (as in Ctrl/B, for example), press and hold down the first key (Ctrl), tap the second (B), and then release the first key.
    [Show full text]
  • Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X
    Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X Product Brief The Flagship for High-Performance Computing Intel® Math Kernel Library 10.1 Math Software for Windows*, Linux*, and Mac OS* X Intel® Math Kernel Library (Intel® MKL) is a library of highly optimized, extensively threaded math routines for science, engineering, and financial applications that require maximum performance. Availability • Intel® C++ Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Fortran Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Cluster Toolkit Compiler Edition (Windows, Linux) • Intel® Math Kernel Library 10.1 (Windows, Linux, Mac OS X) Functionality “By adopting the • Linear Algebra—BLAS and LAPACK • Fast Fourier Transforms Intel MKL DGEMM • Linear Algebra—ScaLAPACK • Vector Math Library libraries, our standard • Linear Algebra—Sparse Solvers • Vector Random Number Generators benchmarks timing DGEMM Threaded Performance Intel® Xeon® Quad-Core Processor E5472 3.0GHZ, 8MB L2 Cache,16GB Memory Intel® Xeon® Quad-Core Processor improved between Redhat 5 Server Intel® MKL 10.1; ATLAS 3.8.0 DGEMM Function 43 percent and 71 Intel MKL - 8 Threads Intel MKL - 1 Thread ATLAS - 8 Threads 100 percent…” ATLAS - 1 Thread 90 Matt Dunbar 80 Software Developer, 70 ABAQUS, Inc. s 60 p GFlo 50 40 30 20 10 0 4 6 8 2 4 0 8 2 8 4 6 0 4 2 4 8 6 6 8 9 10 11 12 13 14 16 18 19 20 22 25 32 38 51 Matrix Size (M=20000, N=4000, K=64, ..., 512) Features and Benefits Vector Random Number Generators • Outstanding performance Intel MKL Vector Statistical Library (VSL) is a collection of 9 random number generators and 22 probability distributions • Multicore and multiprocessor ready that deliver significant performance improvements in physics, • Extensive parallelism and scaling chemistry, and financial analysis.
    [Show full text]
  • Compositional and Analytic Applications of Automated Music Notation Via Object-Oriented Programming
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Compositional and analytic applications of automated music notation via object-oriented programming Permalink https://escholarship.org/uc/item/3kk9b4rv Author Trevino, Jeffrey Robert Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Compositional and Analytic Applications of Automated Music Notation via Object-oriented Programming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Music by Jeffrey Robert Trevino Committee in charge: Professor Rand Steiger, Chair Professor Amy Alexander Professor Charles Curtis Professor Sheldon Nodelman Professor Miller Puckette 2013 Copyright Jeffrey Robert Trevino, 2013 All rights reserved. The dissertation of Jeffrey Robert Trevino is approved, and it is acceptable in quality and form for publication on mi- crofilm and electronically: Chair University of California, San Diego 2013 iii DEDICATION To Mom and Dad. iv EPIGRAPH Extraordinary aesthetic success based on extraordinary technology is a cruel deceit. —-Iannis Xenakis v TABLE OF CONTENTS Signature Page .................................... iii Dedication ...................................... iv Epigraph ....................................... v Table of Contents................................... vi List of Figures .................................... ix Acknowledgements ................................. xii Vita .......................................... xiii Abstract of the Dissertation . xiv Chapter 1 A Contextualized History of Object-oriented Musical Notation . 1 1.1 What is Object-oriented Programming (OOP)? . 1 1.1.1 Elements of OOP . 1 1.1.2 ANosebleed History of OOP. 6 1.2 Object-oriented Notation for Composers . 12 1.2.1 Composition as Notation . 12 1.2.2 Generative Task as an Analytic Framework . 13 1.2.3 Computational Models of Music/Composition .
    [Show full text]
  • Trigonometry in the AIME and USA(J)MO
    AIME/USA(J)MO Handout Trigonometry in the AIME and USA(J)MO Authors: For: naman12 AoPS freeman66 Date: May 26, 2020 A K M N X Q O BC D E Y L Yet another beauty by Evan. Yes, you can solve this with trigonometry. \I was trying to unravel the complicated trigonometry of the radical thought that silence could make up the greatest lie ever told." - Pat Conroy naman12 and freeman66 (May 26, 2020) Trigonometry in the AIME and the USA(J)MO Contents 0 Acknowledgements 3 1 Introduction 4 1.1 Motivation and Goals ........................................... 4 1.2 Contact................................................... 4 2 Basic Trigonometry 5 2.1 Trigonometry on the Unit Circle ..................................... 5 2.2 Definitions of Trigonometric Functions.................................. 6 2.3 Radian Measure .............................................. 8 2.4 Properties of Trigonometric Functions.................................. 8 2.5 Graphs of Trigonometric Functions.................................... 11 2.5.1 Graph of sin(x) and cos(x)..................................... 11 2.5.2 Graph of tan(x) and cot(x)..................................... 12 2.5.3 Graph of sec(x) and csc(x)..................................... 12 2.5.4 Notes on Graphing.......................................... 13 2.6 Bounding Sine and Cosine......................................... 14 2.7 Periodicity ................................................. 14 2.8 Trigonometric Identities.......................................... 15 3 Applications to Complex Numbers 22
    [Show full text]
  • CIS Red Hat Enterprise Linux 7 Benchmark
    CIS Red Hat Enterprise Linux 7 Benchmark v2.1.1 - 01-31-2017 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License. The link to the license terms can be found at https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode To further clarify the Creative Commons license related to CIS Benchmark content, you are authorized to copy and redistribute the content for use by you, within your organization and outside your organization for non-commercial purposes only, provided that (i) appropriate credit is given to CIS, (ii) a link to the license is provided. Additionally, if you remix, transform or build upon the CIS Benchmark(s), you may only distribute the modified materials if they are subject to the same license terms as the original Benchmark license and your derivative will no longer be a CIS Benchmark. Commercial use of CIS Benchmarks is subject to the prior approval of the Center for Internet Security. 1 | P a g e Table of Contents Overview ............................................................................................................................................................... 12 Intended Audience ........................................................................................................................................ 12 Consensus Guidance ..................................................................................................................................... 12 Typographical Conventions .....................................................................................................................
    [Show full text]
  • Paradigmata Objektového Programování I
    KATEDRA INFORMATIKY PRˇ´IRODOVEDECKˇ A´ FAKULTA UNIVERZITA PALACKEHO´ PARADIGMATA OBJEKTOVÉHO PROGRAMOVÁNÍ I MICHAL KRUPKA VYVOJ´ TOHOTO UCEBNˇ ´IHO TEXTU JE SPOLUFINANCOVAN´ EVROPSKYM´ SOCIALN´ ´IM FONDEM A STATN´ ´IM ROZPOCTEMˇ CESKˇ E´ REPUBLIKY Olomouc 2008 Abstrakt Obsahem textu jsou základy objektově orientovaného programování. C´ı lova´ skupina První část textu je určena studentům všech bakalářských oborů vyučovaných na katedře informatiky Příro- dovědecké fakulty UP Olomouc. Chystaná druhá část textu je určena především studentům bakalářského oboru Informatika. Obsah 1 Úvod . 6 2 Od Scheme ke Common Lispu . 8 2.1 Pozadí . 8 2.2 Terminologie . 8 2.3 Logické hodnoty a prázdný seznam . 9 2.4 Vyhodnocovací proces . 11 3 Common Lisp: základní výbava . 15 3.1 Řízení běhu . 15 3.2 Proměnné a vazby . 16 3.3 Místa . 20 3.4 Funkce . 21 3.5 Logické operace . 24 3.6 Porovnávání . 25 3.7 Čísla . 26 3.8 Páry a seznamy . 27 3.9 Chyby . 29 3.10 Textový výstup . 30 3.11 Typy . 31 3.12 Prostředí . 32 4 Třídy a objekty . 33 4.1 Třídy . 33 4.2 Třídy a instance v Common Lispu . 34 4.3 Inicializace slotů . 40 5 Zapouzdření . 43 5.1 Motivace . 43 5.2 Princip zapouzdření . 47 5.3 Úprava tříd point a circle . 48 5.4 Třída picture . 49 6 Polymorfismus . 53 6.1 Kreslení pomocí knihovny micro-graphics . 53 6.2 Kreslení grafických objektů . 57 6.3 Princip polymorfismu . 63 6.4 Další příklady . 64 7 Dědičnost . 70 7.1 Dědičnost jako nástroj redukující opakování v kódu . 70 7.2 Určení předka při definici třídy .
    [Show full text]
  • CIS 264: Computer Architecture and Assembly Language
    College of San Mateo Official Course Outline 1. COURSE ID: CIS 264 TITLE: Computer Architecture and Assembly Language C-ID: COMP 142 Units: 3.0 units Hours/Semester: 48.0-54.0 Lecture hours; and 96.0-108.0 Homework hours Method of Grading: Grade Option (Letter Grade or Pass/No Pass) Prerequisite: MATH 120, and CIS 254, or CIS 278 Recommended Preparation: Eligibility for ENGL 838 or ENGL 848 or ESL 400. 2. COURSE DESIGNATION: Degree Credit Transfer credit: CSU; UC 3. COURSE DESCRIPTIONS: Catalog Description: This course covers the internal organization and operation of digital computers at the assembly language level. Topics include the mapping of high-level language constructs into sequences of machine-level instructions; assembly language and assemblers; linkers and loaders; internal data representations and manipulations; numerical computation; input/output (I/O) and interrupts; functions calls and argument passing; and the basic elements of computer logic design. A materials fee as shown in the Schedule of Classes is payable upon registration. 4. STUDENT LEARNING OUTCOME(S) (SLO'S): Upon successful completion of this course, a student will meet the following outcomes: 1. Describe the architectural components of a computer system. 2. Convert between decimal, binary, and hexadecimal notations. 3. Write simple assembly language program segments. 4. Write and debug assembly programs that use load/store, arithmetic, logic, branches, call/return and push/pop instructions. 5. Demonstrate how fundamental high-level programming constructs are implemented at the machine-language level. 5. SPECIFIC INSTRUCTIONAL OBJECTIVES: Upon successful completion of this course, a student will be able to: 1.
    [Show full text]
  • Intel® Math Kernel Library for Windows OS ® User's Guide
    Intel® Math Kernel Library for Windows* Developer Guide Intel® MKL 2018 - Windows* Revision: 061 Legal Information Intel® Math Kernel Library for Windows* Developer Guide Contents Legal Information ................................................................................ 6 Getting Help and Support..................................................................... 7 Introducing the Intel® Math Kernel Library .......................................... 8 What's New ....................................................................................... 10 Notational Conventions...................................................................... 11 Related Information .......................................................................... 12 Chapter 1: Getting Started Checking Your Installation ........................................................................ 13 Setting Environment Variables................................................................... 13 Compiler Support .................................................................................... 14 Using Code Examples............................................................................... 15 Before You Begin Using the Intel(R) Math Kernel Library ............................... 15 Chapter 2: Structure of the Intel(R) Math Kernel Library Architecture Support................................................................................ 17 High-level Directory Structure ................................................................... 17 Layered Model
    [Show full text]
  • 02 -- Complex Numbers and Functions
    SIMG-716 Linear Imaging Mathematics I 02 - Complex Numbers and Functions 1 Complex Numbers and Functions convenient for describing: • — sinusoidal functions of space and/or time (e.g., waves) — behavior of systems used to generate images Simplify representation of sinusoidal waves by using notation based on magnitude and phase • angle Concise notation is convenient even when represented quantities are real valued • — e.g., electric-field amplitude (voltage) of a traveling sinusoidal electromagnetic wave is a vector with real-valued amplitude that varies over both temporal and spatial coordinates. Variations in time and space are related through the dispersion equation that relates the frequency and velocity of the wave. This discussion also will describe vectors constructed from complex-valued components. This extension of the vector concept will prove to be very useful when interpreting the Fourier transform. Complex numbers: generalization of imaginary numbers and often denoted by “z”. • Imaginary numbers: concept of √ 1, which has no real-valued solution, symbol i was assigned • the by Leonhard Euler in 1777: − √ 1 i = i2 = 1 − ≡ ⇒ − General complex number z is a composite number formed from sum of real and imaginary • components: z a + ib, a, b ≡ { } ∈ < a = z <{ } b = z ={ } a, b (both a and b are real valued!) ∈ < Complex conjugate z∗ of z = a + ib: multiply imaginary part by 1 : • − z a + ib = z∗ a ib ≡ ⇒ ≡ − Real/imaginary parts may be expressed in terms of z and its complex conjugate z∗ via two • relations that are easily confirmed: z + z∗ =(a + ib)+(a ib)=2a =2 z − ·<{ } z z∗ =(a + ib) (a ib)=2 ib =2i z − − − · ·={ } 1 z = (z + z∗) <{ } 2 1 1 z = (z z∗)= i (z z∗) ={ } 2i − − · 2 − 1 2 Arithmetic of Complex Numbers Given : z1 = a1 + ib1 and z2 = a2 + ib2.
    [Show full text]
  • Julia Language Documentation Release Development
    Julia Language Documentation Release development Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman, et al. September 08, 2014 Contents 1 The Julia Manual 1 1.1 Introduction...............................................1 1.2 Getting Started..............................................2 1.3 Integers and Floating-Point Numbers..................................6 1.4 Mathematical Operations......................................... 12 1.5 Complex and Rational Numbers..................................... 17 1.6 Strings.................................................. 21 1.7 Functions................................................. 32 1.8 Control Flow............................................... 39 1.9 Variables and Scoping.......................................... 48 1.10 Types................................................... 52 1.11 Methods................................................. 66 1.12 Constructors............................................... 72 1.13 Conversion and Promotion........................................ 79 1.14 Modules................................................. 84 1.15 Metaprogramming............................................ 86 1.16 Arrays.................................................. 93 1.17 Sparse Matrices............................................. 99 1.18 Parallel Computing............................................ 100 1.19 Running External Programs....................................... 105 1.20 Calling C and Fortran Code....................................... 111 1.21 Performance
    [Show full text]