Exploring Languages with Interpreters and Functional Programming Chapter 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Purerl-Cookbook Documentation
purerl-cookbook Documentation Rob Ashton Jun 17, 2021 Contents 1 The build process 3 1.1 Purerl (Server) Build...........................................3 1.2 Erlang (Server) Build..........................................3 1.3 Purescript (Client) Build.........................................4 2 Editors 9 2.1 Other editors...............................................9 3 Skeleton 13 3.1 Erlang.................................................. 13 3.2 Purerl................................................... 15 3.3 Purescript................................................. 17 4 Basic OTP 19 4.1 OTP Entry Point............................................. 19 4.2 OTP Supervisor............................................. 20 4.3 OTP Gen server............................................. 22 4.4 Dynamic Supervision Trees....................................... 23 5 Web Server 25 5.1 Stetson.................................................. 25 5.2 Stetson Routing............................................. 26 5.3 Stetson Handlers............................................. 28 5.4 Stetson Websockets........................................... 29 5.5 Stetson Streaming............................................ 30 6 Logging 33 6.1 Lager................................................... 33 6.2 Logger.................................................. 34 7 Messaging 37 7.1 Subscribing to Incoming messages (pseudo-example).......................... 37 7.2 Sending Outgoing Messages (pseudo example)............................. 38 8 Interop 47 8.1 -
Typology of Programming Languages E Early Languages E
Typology of programming languages e Early Languages E Typology of programming languages Early Languages 1 / 71 The Tower of Babel Typology of programming languages Early Languages 2 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 3 / 71 IBM Mathematical Formula Translator system Fortran I, 1954-1956, IBM 704, a team led by John Backus. Typology of programming languages Early Languages 4 / 71 IBM 704 (1956) Typology of programming languages Early Languages 5 / 71 IBM Mathematical Formula Translator system The main goal is user satisfaction (economical interest) rather than academic. Compiled language. a single data structure : arrays comments arithmetics expressions DO loops subprograms and functions I/O machine independence Typology of programming languages Early Languages 6 / 71 FORTRAN’s success Because: programmers productivity easy to learn by IBM the audience was mainly scientific simplifications (e.g., I/O) Typology of programming languages Early Languages 7 / 71 FORTRAN I C FIND THE MEAN OF N NUMBERS AND THE NUMBER OF C VALUES GREATER THAN IT DIMENSION A(99) REAL MEAN READ(1,5)N 5 FORMAT(I2) READ(1,10)(A(I),I=1,N) 10 FORMAT(6F10.5) SUM=0.0 DO 15 I=1,N 15 SUM=SUM+A(I) MEAN=SUM/FLOAT(N) NUMBER=0 DO 20 I=1,N IF (A(I) .LE. MEAN) GOTO 20 NUMBER=NUMBER+1 20 CONTINUE WRITE (2,25) MEAN,NUMBER 25 FORMAT(11H MEAN = ,F10.5,5X,21H NUMBER SUP = ,I5) STOP TypologyEND of programming languages Early Languages 8 / 71 Fortran on Cards Typology of programming languages Early Languages 9 / 71 Fortrans Typology of programming languages Early Languages 10 / 71 Table of Contents 1 Fortran 2 ALGOL 3 COBOL 4 The second wave 5 The finale Typology of programming languages Early Languages 11 / 71 ALGOL, Demon Star, Beta Persei, 26 Persei Typology of programming languages Early Languages 12 / 71 ALGOL 58 Originally, IAL, International Algebraic Language. -
Oral History of Winifred Mitchell Baker
........ Computer • History Museum Oral History of Winifred Mitchell Baker Interviewed by: Marc Weber Recorded: December 10, 2014 Mountain View, California CHM Reference number: X7311.2015 © 2015 Computer History Museum Oral History of Winifred Mitchell Baker Marc Weber: I'm Marc Weber of the Computer History Museum. And I'm here with Mitchell Baker, Chairwoman of Mozilla. Thank you so much for doing this interview. Winifred Mitchell Baker: Thanks, Marc. I'm happy to be here. The museum has been a bright spot for a long time, so I'm honored as well. Weber: Thank you. As am I. So start with a bit of your background. What is your full name? And when and where were you born? Baker: My full name is Winifred Mitchell Baker. My mom was a little eccentric though, and she never wanted me to use Winifred. So it's my first name. But in her mind, I was always Mitchell. So that's what I go by. And I was born in Berkeley in California in 1959. Weber: And tell me a little bit about your family and where you grew up. Baker: I grew up in Oakland, so the East Bay across from San Francisco. It borders Berkeley. My parents were born and raised on the East Coast and moved west, as people did in the '50s, where it seemed [like] starting a new life. They were each eccentric. And each had their own view of their world and really clear opinions. And I think some of that has rubbed off actually. Weber: So eccentric in what way? What did they do? Baker: Well, my dad was a classic entrepreneur. -
Object-Oriented Programming in Scheme with First-Class Modules
Ob jectOriented Programming in Scheme with FirstClass Mo dules and Op eratorBased Inheritance Guruduth Banavar Gary Lindstrom Department of Computer Science University of Utah Salt LakeCityUT Abstract Wecharacterize ob jectoriented programming as structuring and manipulating a uniform space of rstclass values representing modules a distillation of the notion of classes Op erators over mo dules individually achieve eects such as encapsulation sharing and static binding A variety of idioms of OO programming nd convenient expression within this mo del including several forms of single and multiple inheritance abstract classes class variables inheritance hierarchy combination and reection Weshow that this programming style simplies OO programming via enhanced uniformity and supp orts a exible mo del of ob jectorientation that provides an attractive alternative to metaprogramming Finallyweshow that these notions of OO programming are language indep endent by implementing a Mo dular Scheme prototyp e as a completion of a generic OO framework for mo dularity Pap er Category Research Topic Area Language design and implementation Intro duction Classbased ob jectoriented programming is usually thought of as creating a graph structured inher itance hierarchy of classes instantiating some of these classes and computing with these instances Instances are typically rstclass values in the language ie they can b e created stored accessed and passed into and out of functions Classes on the other hand are usually not rstclass values and inheritance is -
Marcelo Camargo (Haskell Camargo) – Résumé Projects
Marcelo Camargo (Haskell Camargo) – Résumé https://github.com/haskellcamargo [email protected] http://coderbits.com/haskellcamargo Based in Joinville / SC – Brazil Knowledge • Programming languages domain: ◦ Ada, AdvPL, BASIC, C, C++, C#, Clipper, Clojure, CoffeeScript, Common LISP, Elixir, Erlang, F#, FORTRAN, Go, Harbour, Haskell, Haxe, Hy, Java, JavaScript, Ink, LiveScript, Lua, MATLAB, Nimrod, OCaml, Pascal, PHP, PogoScript, Processing, PureScript, Python, Ruby, Rust, Self, Shell, Swift, TypeScript, VisualBasic [.NET], Whip, ZPL. • Markup, style and serialization languages: ◦ Markdown, reStructuredText, [X] HTML, XML, CSS, LESS, SASS, Stylus, Yaml, JSON, DSON. • Database management systems: ◦ Oracle, MySQL, SQL Server, IBM DB2, PostgreSQL. • Development for operating systems: ◦ Unix based, Windows (CE mobile included), Android, Firefox OS. • Parsers and compilers: ◦ Macros: ▪ Sweet.js, preprocessor directives. ◦ Parser and scanner generators: ▪ ANTLR, PEG.js, Jison, Flex, re2c, Lime. • Languages: ◦ Portuguese (native) ◦ English (native) ◦ Spanish (fluent) ◦ French (fluent) ◦ Turkish (intermediate) ◦ Chinese (mandarin) (intermediate) ◦ Esperanto (intermediate) Projects • Prelude AdvPL – a library that implements functional programming in AdvPL and extends its syntax to a more expressive one; it's a port of Haskell's Prelude; • Frida – a LISP dialect that runs on top of Node.js; • PHPP – A complete PHP preprocessor with a grammar able to identify and replace tokens and extend/modify the language syntax, meant to be implemented -
Functional Languages
Functional Programming Languages (FPL) 1. Definitions................................................................... 2 2. Applications ................................................................ 2 3. Examples..................................................................... 3 4. FPL Characteristics:.................................................... 3 5. Lambda calculus (LC)................................................. 4 6. Functions in FPLs ....................................................... 7 7. Modern functional languages...................................... 9 8. Scheme overview...................................................... 11 8.1. Get your own Scheme from MIT...................... 11 8.2. General overview.............................................. 11 8.3. Data Typing ...................................................... 12 8.4. Comments ......................................................... 12 8.5. Recursion Instead of Iteration........................... 13 8.6. Evaluation ......................................................... 14 8.7. Storing and using Scheme code ........................ 14 8.8. Variables ........................................................... 15 8.9. Data types.......................................................... 16 8.10. Arithmetic functions ......................................... 17 8.11. Selection functions............................................ 18 8.12. Iteration............................................................. 23 8.13. Defining functions ........................................... -
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book)
A Politico-Social History of Algolt (With a Chronology in the Form of a Log Book) R. w. BEMER Introduction This is an admittedly fragmentary chronicle of events in the develop ment of the algorithmic language ALGOL. Nevertheless, it seems perti nent, while we await the advent of a technical and conceptual history, to outline the matrix of forces which shaped that history in a political and social sense. Perhaps the author's role is only that of recorder of visible events, rather than the complex interplay of ideas which have made ALGOL the force it is in the computational world. It is true, as Professor Ershov stated in his review of a draft of the present work, that "the reading of this history, rich in curious details, nevertheless does not enable the beginner to understand why ALGOL, with a history that would seem more disappointing than triumphant, changed the face of current programming". I can only state that the time scale and my own lesser competence do not allow the tracing of conceptual development in requisite detail. Books are sure to follow in this area, particularly one by Knuth. A further defect in the present work is the relatively lesser availability of European input to the log, although I could claim better access than many in the U.S.A. This is regrettable in view of the relatively stronger support given to ALGOL in Europe. Perhaps this calmer acceptance had the effect of reducing the number of significant entries for a log such as this. Following a brief view of the pattern of events come the entries of the chronology, or log, numbered for reference in the text. -
The Machine That Builds Itself: How the Strengths of Lisp Family
Khomtchouk et al. OPINION NOTE The Machine that Builds Itself: How the Strengths of Lisp Family Languages Facilitate Building Complex and Flexible Bioinformatic Models Bohdan B. Khomtchouk1*, Edmund Weitz2 and Claes Wahlestedt1 *Correspondence: [email protected] Abstract 1Center for Therapeutic Innovation and Department of We address the need for expanding the presence of the Lisp family of Psychiatry and Behavioral programming languages in bioinformatics and computational biology research. Sciences, University of Miami Languages of this family, like Common Lisp, Scheme, or Clojure, facilitate the Miller School of Medicine, 1120 NW 14th ST, Miami, FL, USA creation of powerful and flexible software models that are required for complex 33136 and rapidly evolving domains like biology. We will point out several important key Full list of author information is features that distinguish languages of the Lisp family from other programming available at the end of the article languages and we will explain how these features can aid researchers in becoming more productive and creating better code. We will also show how these features make these languages ideal tools for artificial intelligence and machine learning applications. We will specifically stress the advantages of domain-specific languages (DSL): languages which are specialized to a particular area and thus not only facilitate easier research problem formulation, but also aid in the establishment of standards and best programming practices as applied to the specific research field at hand. DSLs are particularly easy to build in Common Lisp, the most comprehensive Lisp dialect, which is commonly referred to as the “programmable programming language.” We are convinced that Lisp grants programmers unprecedented power to build increasingly sophisticated artificial intelligence systems that may ultimately transform machine learning and AI research in bioinformatics and computational biology. -
Maelstrom Web Browser Free Download
maelstrom web browser free download 11 Interesting Web Browsers (That Aren’t Chrome) Whether it’s to peruse GitHub, send the odd tweetstorm or catch-up on the latest Netflix hit — Chrome’s the one . But when was the last time you actually considered any alternative? It’s close to three decades since the first browser arrived; chances are it’s been several years since you even looked beyond Chrome. There’s never been more choice and variety in what you use to build sites and surf the web (the 90s are back, right?) . So, here’s a run-down of 11 browsers that may be worth a look, for a variety of reasons . Brave: Stopping the trackers. Brave is an open-source browser, co-founded by Brendan Eich of Mozilla and JavaScript fame. It’s hoping it can ‘save the web’ . Available for a variety of desktop and mobile operating systems, Brave touts itself as a ‘faster and safer’ web browser. It achieves this, somewhat controversially, by automatically blocking ads and trackers. “Brave is the only approach to the Web that puts users first in ownership and control of their browsing data by blocking trackers by default, with no exceptions.” — Brendan Eich. Brave’s goal is to provide an alternative to the current system publishers employ of providing free content to users supported by advertising revenue. Developers are encouraged to contribute to the project on GitHub, and publishers are invited to become a partner in order to work towards an alternative way to earn from their content. Ghost: Multi-session browsing. -
Typed Embedding of a Relational Language in Ocaml
Typed Embedding of a Relational Language in OCaml Dmitrii Kosarev Dmitry Boulytchev Saint Petersburg State University Saint Petersburg State University Saint Petersburg, Russia Saint Petersburg, Russia [email protected] [email protected] We present an implementation of the relational programming language miniKanren as a set of combi- nators and syntax extensions for OCaml. The key feature of our approach is polymorphic unification, which can be used to unify data structures of arbitrary types. In addition we provide a useful generic programming pattern to systematically develop relational specifications in a typed manner, and ad- dress the problem of integration of relational subsystems into functional applications. 1 Introduction Relational programming [11] is an attractive technique, based on the idea of constructing programs as relations. As a result, relational programs can be “queried” in various “directions”, making it possible, for example, to simulate reversed execution. Apart from being interesting from a purely theoretical standpoint, this approach may have a practical value: some problems look much simpler when considered as queries to some relational specification [5]. There are a number of appealing examples confirming this observation: a type checker for simply typed lambda calculus (and, at the same time, a type inferencer and solver for the inhabitation problem), an interpreter (capable of generating “quines” — programs producing themselves as a result) [7], list sorting (capable of producing all permutations), etc. Many logic programming languages, such as Prolog, Mercury [21], or Curry [13] to some extent can be considered relational. We have chosen miniKanren1 as a model language, because it was specifically designed as a relational DSL, embedded in Scheme/Racket. -
Red Hat Enterprise Linux 8 Security Hardening
Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Last Updated: 2021-09-06 Red Hat Enterprise Linux 8 Security hardening Securing Red Hat Enterprise Linux 8 Legal Notice Copyright © 2021 Red Hat, Inc. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/ . In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project. -
Modular Programming with Functions
CHAPTER 4 MODULAR PROGRAMMING WITH FUNCTIONS Copyright © 2013 Pearson Education, Inc. Modularity •A program may also contain other functions, and it may refer to functions in another file or in a library. These functions , or modules , are sets of statements that perform an operation or compute a value •To maintain simplicity and readability in long and complex programs, we use a short main, and other functions instead of using one long main function. •By separating a solution into a group of modules, each module is easier to understand, thus adhering to the basic guidelines of structured programming Copyright © 2013 Pearson Education, Inc. Modularity •Braking a problem into a set of modules has many advantages: 1. Every module can be written and tested separately from the rest of the program 2. A module is smaller than a complete program, so testing is easier 3. Once a module has been tested, it can be used in new program without having to retest it ( reusability ) 4. Use of modules ( modularity ) usually reduces the overall length of programs 5. Several programmers can work on the same project if it is separated into modules Copyright © 2013 Pearson Education, Inc. Modularity Main Modules Copyright © 2013 Pearson Education, Inc. Function Definition •A function consists of a definition statement followed by declarations and statements. The general form of a function is: return_type function_name(parameter_declarations) { declarations; statements; return expression; } •The parameter declarations represent the information passed to the function •Additional variables used by the function are defined in declarations statement •All functions should include a return statement Copyright © 2013 Pearson Education, Inc.