Investigation of Driver's FOV and Related Ergonomics Using Laser Shadowgraphy from Automotive Interior
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blind Spot Warning Interface Adapted to Older Drivers with Early Stage Visual Impairment
BLIND SPOT WARNING INTERFACE ADAPTED TO OLDER DRIVERS WITH EARLY STAGE VISUAL IMPAIRMENT Julien Adrian Streetlab, Institut de la Vision France Julie Pieyre Streetlab, Institut de la Vision France Johan Lebrun Streetlab, Institut de la Vision France Saddek Mohand-Said CHNO Quinze-Vingts, CIC Inserm France Emmanuel Gutman Streetlab, Institut de la Vision France Paper Number 17-0190 ABSTRACT Research Question/Objective Advanced driver assistance systems (ADAS) are found increasingly commonly in modern day cars. These systems should have their interfaces adapted to the target population to be completely effective and help prevent accidents. Our study is focused on the improvement in interface design of Blind Spot Warnings (BSWs). This ADAS is particularly relevant to issues with older driver’s physical limitations, errors with blind-spot checking and accident characteristics. However, the standard blind spot detection interface is often designed without taking into account age related visual impairment. Methods and Data Sources A BSWs interface adapted to major visual impairment was developed and studied. A driving simulator study was conducted, in which 14 participants aged from 62 to 76 took part, to compare our BSWs interface with a conventional BSWs interface. Participants performed two series of lane change tasks, with potential side collision scenarios, for each interface. Both subjective and objective data (oculometry, vehicle parameters) were collected. Results The results show that driving performance and comfort are enhanced by our dedicated interface. Drivers spend more time concentrating on the road with fewer fixations on the interface. It helps the driver keep their vision on the road by providing information in their peripheral vision. -
Photography and Photomontage in Landscape and Visual Impact Assessment
Photography and Photomontage in Landscape and Visual Impact Assessment Landscape Institute Technical Guidance Note Public ConsuDRAFTltation Draft 2018-06-01 To the recipient of this draft guidance The Landscape Institute is keen to hear the views of LI members and non-members alike. We are happy to receive your comments in any form (eg annotated PDF, email with paragraph references ) via email to [email protected] which will be forwarded to the Chair of the working group. Alternatively, members may make comments on Talking Landscape: Topic “Photography and Photomontage Update”. You may provide any comments you consider would be useful, but may wish to use the following as a guide. 1) Do you expect to be able to use this guidance? If not, why not? 2) Please identify anything you consider to be unclear, or needing further explanation or justification. 3) Please identify anything you disagree with and state why. 4) Could the information be better-organised? If so, how? 5) Are there any important points that should be added? 6) Is there anything in the guidance which is not required? 7) Is there any unnecessary duplication? 8) Any other suggeDRAFTstions? Responses to be returned by 29 June 2018. Incidentally, the ##’s are to aid a final check of cross-references before publication. Contents 1 Introduction Appendices 2 Background Methodology App 01 Site equipment 3 Photography App 02 Camera settings - equipment and approaches needed to capture App 03 Dealing with panoramas suitable images App 04 Technical methodology template -
Field of View - Wikipedia, the Free Encyclopedia
Field of view - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Field_of_view From Wikipedia, the free encyclopedia The field of view (also field of vision, abbreviated FOV) is the extent of the observable world that is seen at any given moment. In case of optical instruments or sensors it is a solid angle through which a detector is sensitive to electromagnetic radiation. 1 Humans and animals 2 Conversions Horizontal Field of View 3 Machine vision 4 Remote sensing 5 Astronomy 6 Photography 7 Video games 8 See also 9 References In the context of human vision, the term “field of view” is typically used in the sense of a restriction Vertical Field of View to what is visible by external apparatus, like spectacles[2] or virtual reality goggles. Note that eye movements do not change the field of view. If the analogy of the eye’s retina working as a sensor is drawn upon, the corresponding concept in human (and much of animal vision) is the visual field. [3] It is defined as “the number of degrees of visual angle during stable fixation of the eyes”.[4]. Note that eye movements are excluded in the definition. Different animals have different visual fields, depending, among others, on the placement of the eyes. Humans have an almost 180-degree forward-facing horizontal diameter of their visual field, while some birds have a complete or nearly complete 360-degree Angle of view can be measured visual field. The vertical range of the visual field in humans is typically horizontally, vertically, or diagonally. -
Here's an Overview of the Tips on Breaking in a New Car from Our Experts at Bmw.Com on Things to Do Before Your First Drive I
HERE’S AN OVERVIEW OF THE TIPS ON BREAKING IN A NEW CAR FROM OUR EXPERTS AT BMW.COM ON THINGS TO DO BEFORE YOUR FIRST DRIVE IN YOUR NEW AUTOMOBILE: Things you need to know about your new car: Service: Where do I top up the fuel, engine oil, wiper fluid, engine coolant, and AdBlue? Where can I find the owner’s manual? Where can I find the spare wheel, breakdown kit, and vehicle toolkit? And where do I look for details about the tire pressure? Safety: What driver assistance systems are available and where can I find the buttons to use them? The best way to set up your new car: Connect your cell phone and save it in the system. Save your home address in the navigation system. Enter your preferred climate control settings. Configure the driver assistance systems to suit your personal needs. To ensure the optimum seat position: Set the distance from the seat to the pedals so that when you step on the brake or clutch, your knees are slightly bent. Select a seat height that gives you a good view of the road and the on-board instruments. Ensure that the backrest is as upright as possible. Make sure your head is not far from the headrest, your shoulders are in contact with the backrest, and you don’t need to stretch out your arms. It’s important that there’s a distance of about 12 inches between the steering wheel and your chest. When your wrist is on the upper rim of the steering wheel, your shoulders should still be touching the backrest. -
12 Considerations for Thermal Infrared Camera Lens Selection Overview
12 CONSIDERATIONS FOR THERMAL INFRARED CAMERA LENS SELECTION OVERVIEW When developing a solution that requires a thermal imager, or infrared (IR) camera, engineers, procurement agents, and program managers must consider many factors. Application, waveband, minimum resolution, pixel size, protective housing, and ability to scale production are just a few. One element that will impact many of these decisions is the IR camera lens. USE THIS GUIDE AS A REFRESHER ON HOW TO GO ABOUT SELECTING THE OPTIMAL LENS FOR YOUR THERMAL IMAGING SOLUTION. 1 Waveband determines lens materials. 8 The transmission value of an IR camera lens is the level of energy that passes through the lens over the designed waveband. 2 The image size must have a diameter equal to, or larger than, the diagonal of the array. 9 Passive athermalization is most desirable for small systems where size and weight are a factor while active 3 The lens should be mounted to account for the back athermalization makes more sense for larger systems working distance and to create an image at the focal where a motor will weigh and cost less than adding the plane array location. optical elements for passive athermalization. 4 As the Effective Focal Length or EFL increases, the field 10 Proper mounting is critical to ensure that the lens is of view (FOV) narrows. in position for optimal performance. 5 The lower the f-number of a lens, the larger the optics 11 There are three primary phases of production— will be, which means more energy is transferred to engineering, manufacturing, and testing—that can the array. -
17-2021 CAMI Pilot Vision Brochure
Visual Scanning with regular eye examinations and post surgically with phoria results. A pilot who has such a condition could progress considered for medical certification through special issuance with Some images used from The Federal Aviation Administration. monofocal lenses when they meet vision standards without to seeing double (tropia) should they be exposed to hypoxia or a satisfactory adaption period, complete evaluation by an eye Helicopter Flying Handbook. Oklahoma City, Ok: US Department The probability of spotting a potential collision threat complications. Multifocal lenses require a brief waiting certain medications. specialist, satisfactory visual acuity corrected to 20/20 or better by of Transportation; 2012; 13-1. Publication FAA-H-8083. Available increases with the time spent looking outside, but certain period. The visual effects of cataracts can be successfully lenses of no greater power than ±3.5 diopters spherical equivalent, at: https://www.faa.gov/regulations_policies/handbooks_manuals/ techniques may be used to increase the effectiveness of treated with a 90% improvement in visual function for most One prism diopter of hyperphoria, six prism diopters of and by passing an FAA medical flight test (MFT). aviation/helicopter_flying_handbook/. Accessed September 28, 2017. the scan time. Effective scanning is accomplished with a patients. Regardless of vision correction to 20/20, cataracts esophoria, and six prism diopters of exophoria represent series of short, regularly-spaced eye movements that bring pose a significant risk to flight safety. FAA phoria (deviation of the eye) standards that may not be A Word about Contact Lenses successive areas of the sky into the central visual field. Each exceeded. -
Nikon Binocular Handbook
THE COMPLETE BINOCULAR HANDBOOK While Nikon engineers of semiconductor-manufactur- FINDING THE ing equipment employ our optics to create the world’s CONTENTS PERFECT BINOCULAR most precise instrumentation. For Nikon, delivering a peerless vision is second nature, strengthened over 4 BINOCULAR OPTICS 101 ZOOM BINOCULARS the decades through constant application. At Nikon WHAT “WATERPROOF” REALLY MEANS FOR YOUR NEEDS 5 THE RELATIONSHIP BETWEEN POWER, Sport Optics, our mission is not just to meet your THE DESIGN EYE RELIEF, AND FIELD OF VIEW The old adage “the better you understand some- PORRO PRISM BINOCULARS demands, but to exceed your expectations. ROOF PRISM BINOCULARS thing—the more you’ll appreciate it” is especially true 12-14 WHERE QUALITY AND with optics. Nikon’s goal in producing this guide is to 6-11 THE NUMBERS COUNT QUANTITY COUNT not only help you understand optics, but also the EYE RELIEF/EYECUP USAGE LENS COATINGS EXIT PUPIL ABERRATIONS difference a quality optic can make in your appre- REAL FIELD OF VIEW ED GLASS AND SECONDARY SPECTRUMS ciation and intensity of every rare, special and daily APPARENT FIELD OF VIEW viewing experience. FIELD OF VIEW AT 1000 METERS 15-17 HOW TO CHOOSE FIELD FLATTENING (SUPER-WIDE) SELECTING A BINOCULAR BASED Nikon’s WX BINOCULAR UPON INTENDED APPLICATION LIGHT DELIVERY RESOLUTION 18-19 BINOCULAR OPTICS INTERPUPILLARY DISTANCE GLOSSARY DIOPTER ADJUSTMENT FOCUSING MECHANISMS INTERNAL ANTIREFLECTION OPTICS FIRST The guiding principle behind every Nikon since 1917 product has always been to engineer it from the inside out. By creating an optical system specific to the function of each product, Nikon can better match the product attri- butes specifically to the needs of the user. -
Field of View in Passenger Car Mirrors
UMTRI-2000-23 FIELD OF VIEW IN PASSENGER CAR MIRRORS Matthew P. Reed Michelle M. Lehto Michael J. Flannagan June 2000 FIELD OF VIEW IN PASSENGER CAR MIRRORS Matthew P. Reed Michelle M. Lehto Michael J. Flannagan The University of Michigan Transportation Research Institute Ann Arbor, Michigan 48109-2150 U.S.A. Report No. UMTRI-2000-23 June 2000 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. UMTRI-2000-23 4. Title and Subtitle 5. Report Date Field of View in Passenger Car Mirrors June 2000 6. Performing Organization Code 302753 7. Author(s) 8. Performing Organization Report No. Reed, M.P., Lehto, M.M., and Flannagan, M.J. UMTRI-2000-23 9. Performing Organization Name and Address 10. Work Unit no. (TRAIS) The University of Michigan Transportation Research Institute 11. Contract or Grant No. 2901 Baxter Road Ann Arbor, Michigan 48109-2150 U.S.A. 12. Sponsoring Agency Name and Address 13. Type of Report and Period The University of Michigan Covered Industry Affiliation Program for Human Factors in Transportation Safety 14. Sponsoring Agency Code 15. Supplementary Notes The Affiliation Program currently includes Adac Plastics, AGC America, Automotive Lighting, BMW, Britax International, Corning, DaimlerChrysler, Denso, Donnelly, Federal-Mogul Lighting Products, Fiat, Ford, GE, GM NAO Safety Center, Guardian Industries, Guide Corporation, Hella, Ichikoh Industries, Koito Manufacturing, Libbey- Owens-Ford, Lumileds, Magna International, Meridian Automotive Systems, North American Lighting, OSRAM Sylvania, Pennzoil-Quaker State, Philips Lighting, PPG Industries, Reflexite, Reitter & Schefenacker, Stanley Electric, Stimsonite, TEXTRON Automotive, Valeo, Visteon, Yorka, 3M Personal Safety Products, and 3M Traffic Control Materials. -
The Camera Versus the Human Eye
The Camera Versus the Human Eye Nov 17, 2012 ∙ Roger Cicala This article was originally published as a blog. Permission was granted by Roger Cicala to re‐ publish the article on the CTI website. It is an excellent article for those police departments considering the use of cameras. This article started after I followed an online discussion about whether a 35mm or a 50mm lens on a full frame camera gives the equivalent field of view to normal human vision. This particular discussion immediately delved into the optical physics of the eye as a camera and lens — an understandable comparison since the eye consists of a front element (the cornea), an aperture ring (the iris and pupil), a lens, and a sensor (the retina). Despite all the impressive mathematics thrown back and forth regarding the optical physics of the eyeball, the discussion didn’t quite seem to make sense logically, so I did a lot of reading of my own on the topic. There won’t be any direct benefit from this article that will let you run out and take better photographs, but you might find it interesting. You may also find it incredibly boring, so I’ll give you my conclusion first, in the form of two quotes from Garry Winogrand: A photograph is the illusion of a literal description of how the camera ‘saw’ a piece of time and space. Photography is not about the thing photographed. It is about how that thing looks photographed. Basically in doing all this research about how the human eye is like a camera, what I really learned is how human vision is not like a photograph. -
Digital Light Field Photography
DIGITAL LIGHT FIELD PHOTOGRAPHY a dissertation submitted to the department of computer science and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Ren Ng July © Copyright by Ren Ng All Rights Reserved ii IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Patrick Hanrahan Principal Adviser IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Marc Levoy IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Mark Horowitz Approved for the University Committee on Graduate Studies. iii iv Acknowledgments I feel tremendously lucky to have had the opportunity to work with Pat Hanrahan, Marc Levoy and Mark Horowitz on the ideas in this dissertation, and I would like to thank them for their support. Pat instilled in me a love for simulating the flow of light, agreed to take me on as a graduate student, and encouraged me to immerse myself in something I had a passion for.Icouldnothaveaskedforafinermentor.MarcLevoyistheonewhooriginallydrewme to computer graphics, has worked side by side with me at the optical bench, and is vigorously carrying these ideas to new frontiers in light field microscopy. Mark Horowitz inspired me to assemble my camera by sharing his love for dismantling old things and building new ones. I have never met a professor more generous with his time and experience. I am grateful to Brian Wandell and Dwight Nishimura for serving on my orals commit- tee. Dwight has been an unfailing source of encouragement during my time at Stanford. I would like to acknowledge the fine work of the other individuals who have contributed to this camera research. Mathieu Brédif worked closely with me in developing the simulation system, and he implemented the original lens correction software. -
2008 Nissan Altima Driver Side Mirror Replacement
2008 nissan altima driver side mirror replacement $ - Nissan Altima Side View Mirror Assembly / Cover / Glass Replacement - Left Driver Side - (L L4 Coupe) Paint To Match; Assembly;. OE Replacement Nissan/Datsun Altima Driver Side Mirror Outside Rear View 4 Cyl L; Nissan Altima S; 4 Cyl L; Nissan Altima SL;. Buy TYC Nissan Altima Driver Side Power Non-Heated Replacement Mirror: Automotive - ✓ FREE DELIVERY possible on eligible. Nissan Datsun Altima LKQ Parts Mirror - Complete Assembly, Part Number: NI Part Number: NI; Notes: Driver side Find a high-quality Altima side mirror replacement at AutoZone stores or our website, where you Nissan/Datsun Altima Mirror - Complete Assembly · Nissan/Datsun Altima. NISSAN ALTIMA DRIVER SIDE MIRROR POWER HEATED 1 x Driver Side Power Heated Replacement Mirror DTL00, Replaces. ALTIMA Passenger Side View Replacement Glass Mirror. $ Kool Vue Power Mirror For Nissan Altima Driver Side .. FOR NISSAN ALTIMA CHROME SIDE MIRROR. Replacing Passenger Mirror on Nissan Altima. Nissan Altima side mirror replacement Disclaimer: This video is not meant to Hi, Despite possibly having. Nissan Altima Replacement Mirror Information They are available for the following Nissan Altima years: , , , , , , , , , , , 15 Nissan Altima Mirror Left - Driver Side Action Crash. What could be better than a high-quality Nissan Altima Mirror offered with an amazing Aside from the usual safety features, including the driver and passenger air bags, rear view mirror and the side mirrors, also often called exterior rearview mirrors or side-view mirrors. Auto Repair · Car Care · Classic Cars · Driving. Specifically, this is for a Nissan Altima, but could be applied to And he shows you the passenger side mirror (the driver's side mirror is. -
Embargoed Until April 17 at 10:45 ET New 2020 Hyundai Sonata Makes
Embargoed until April 17 at 10:45 ET New 2020 Hyundai Sonata Makes Its North American Debut at the New York International Auto Show The all-new Sonata embodies Hyundai’s Sensuous Sportiness design language with a sophisticated four-door-coupe look Hyundai’s third-generation vehicle platform enables improvements in design, safety, efficiency and driving performance Hyundai First: Sonata’s Digital Key allows the vehicle to be unlocked, started and driven without a physical key, via a smartphone Hyundai First: Hidden Lighting Lamps turn chrome when off and lit when on NEW YORK, April 17, 2019 – Hyundai today introduced its all-new 2020 Sonata at the New York International Auto Show, marking the North American debut of Hyundai’s longest-standing and most successful model. The eighth-generation Sonata is unlike any of its predecessors, showcasing Hyundai’s Sensuous Sportiness design philosophy, an all-new Smartstream G2.5 GDI engine and segment-first technology that can be personalized. Production of the 2020 Sonata starts in September at Hyundai Motor Manufacturing Alabama and retail sales begin in October. 1 “Sonata is our signature product,” said Mike O’Brien, vice president, product, corporate and digital planning, Hyundai Motor America. “Having been one of our first and most successful nameplates, Sonata is our legacy, and it needs to be special and memorable in all attributes. Sonata signifies our vision for future Hyundai designs, great active safety systems and cutting-edge technology that is effortless.” The new-generation Sonata is the first sedan designed with Hyundai’s Sensuous Sportiness design language. It is a fully transformed vehicle showcasing a sporty four-door-coupe look.