Evaluation of Cellulases and Xylanases Production from Bacillus Spp
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identification and Sequence Analyses of Novel Lipase Encoding Novel
Shahinyan et al. BMC Microbiology (2017) 17:103 DOI 10.1186/s12866-017-1016-4 RESEARCH ARTICLE Open Access Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs Grigor Shahinyan1, Armine Margaryan1,2, Hovik Panosyan2 and Armen Trchounian1,2* Abstract Background: Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. Results: In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5–70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98–99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. Conclusions: The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. -
Biochemical Characterization and 16S Rdna Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect IERI Procedia 5 ( 2013 ) 258 – 264 2013 International Conference on Agricultural and Natural Resources Engineering Biochemical Characterization and 16S rDNA Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia a a a a M.J., Norashirene , H., Umi Sarah , M.H, Siti Khairiyah and S., Nurdiana aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Abstract Thermophiles are well known as organisms that can withstand extreme temperature. Thermoenzymes from thermophiles have numerous potential for biotechnological applications due to their integral stability to tolerate extreme pH and elevated temperature. Because of the industrial importance of lipases, there is ongoing interest in the isolation of new bacterial strain producing lipases. Six isolates of lipases producing thermophiles namely K7S1T53D5, K7S1T53D6, K7S1T53D11, K7S1T53D12, K7S2T51D14 and K7S2T51D19 were isolated from the Selayang Hot Spring, Malaysia. The sampling site is neutral in pH with a highest recorded temperature of 53°C. For the screening and isolation of lipolytic thermopiles, selective medium containing Tween 80 was used. Thermostability and the ability to degrade the substrate even at higher temperature was proved and determined by incubation of the positive isolates at temperature 53°C. Colonies with circular borders, convex in elevation with an entire margin and opaque were obtained. 16S rDNA gene amplification and sequence analysis were done for bacterial identification. The isolate of K7S1T53D6 was derived of genus Bacillus that is the spore forming type, rod shaped, aerobic, with the ability to degrade lipid. -
Patterns of Horizontal Gene Transfer Into the Geobacillus Clade
Imperial College London London Institute of Medical Sciences Patterns of Horizontal Gene Transfer into the Geobacillus Clade Alexander Dmitriyevich Esin September 2018 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London For my grandmother, Marina. Without you I would have never been on this path. Your unwavering strength, love, and fierce intellect inspired me from childhood and your memory will always be with me. 2 Declaration I declare that the work presented in this submission has been undertaken by me, including all analyses performed. To the best of my knowledge it contains no material previously published or presented by others, nor material which has been accepted for any other degree of any university or other institute of higher learning, except where due acknowledgement is made in the text. 3 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 4 Abstract Horizontal gene transfer (HGT) is the major driver behind rapid bacterial adaptation to a host of diverse environments and conditions. Successful HGT is dependent on overcoming a number of barriers on transfer to a new host, one of which is adhering to the adaptive architecture of the recipient genome. -
Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions
pathogens Article Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions Handi Dahmana 1,2 , Didier Raoult 1,2, Florence Fenollar 2,3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; [email protected] (H.D.); [email protected] (D.R.) 2 IHU-Méditerranée Infection, 13005 Marseille, France; fl[email protected] 3 IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France * Correspondence: [email protected]; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)4-13-73-24-02 Received: 15 May 2020; Accepted: 17 June 2020; Published: 18 June 2020 Abstract: Mosquitoes can transmit to humans devastating and deadly pathogens. As many chemical insecticides are banned due to environmental side effects or are of reduced efficacy due to resistance, biological control, including the use of bacterial strains with insecticidal activity, is of increasing interest and importance. The urgent actual need relies on the discovery of new compounds, preferably of a biological nature. Here, we explored the phenomenon of natural larvae mortality in larval breeding sites to identify potential novel compounds that may be used in biological control. From there, we isolated 14 bacterial strains of the phylum Firmicutes, most of the order Bacillales. Cultures were carried out under controlled conditions and were separated on supernatant and pellet fractions. The two fractions and a 1:1 mixture of the two fractions were tested on L3 and early L4 Aedes albopictus. Two concentrations were tested (2 and 6 mg/L). -
Variability of Rrna Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem
ORIGINAL RESEARCH published: 05 January 2016 doi: 10.3389/fmicb.2015.01486 Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem Jorge A. Valdivia-Anistro1, Luis E. Eguiarte-Fruns1, Gabriela Delgado-Sapién2, Pedro Márquez-Zacarías3, Jaime Gasca-Pineda1, Jennifer Learned4, James J. Elser4, Gabriela Olmedo-Alvarez5 and Valeria Souza1* 1 Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico, 2 Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Mexico, 3 School of Biology, Georgia Institute of Technology, Atlanta, GA, USA, 4 School of Life Sciences, Arizona State University, Tempe, AZ, USA, 5 Laboratorio de Bacteriología Molecular, Departamento de Ingeniería Genética, CINVESTAV – Unidad Irapuato, Irapuato, Mexico The ribosomal RNA (rrn) operon is a key suite of genes related to the production Edited by: of protein synthesis machinery and thus to bacterial growth physiology. Experimental Roland Hatzenpichler, evidence has suggested an intrinsic relationship between the number of copies of this California Institute of Technology, USA operon and environmental resource availability, especially the availability of phosphorus Reviewed by: (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons Sebastian Kopf, Princeton University, USA and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic Albert Leopold Mueller, ecosystem that contains an unusually high microbial diversity that is able to persist Stanford University, USA under highly oligotrophic conditions. These environmental conditions impose a variety *Correspondence: Valeria Souza of strong selective pressures that shape the genome dynamics of their inhabitants. -
Antioxidant Activity and Mineral Content of Rocket (Eruca Sativa) Plant from Italian and Bulgarian Origins
ANTIOXIDANT ACTIVITY AND MINERAL CONTENT OF ROCKET (ERUCA SATIVA) PLANT FROM ITALIAN AND BULGARIAN ORIGINS Georgi Matev1,2, Petya Dimitrova2, Nadezhda Petkova3, Ivan Ivanov3 and Dasha Mihaylova4* Address(es): 1 Executive Environment Agency (ExEA), Regional Laboratory - Plovdiv, Bulgaria. 2 Department of Analytical Chemistry and Physicochemistry, University of Food Technologies, Plovdiv, Bulgaria. 3 Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, Plovdiv, Bulgaria. 4 Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria. *Corresponding author: [email protected] doi: 10.15414/jmbfs.2018.8.2.756-759 ARTICLE INFO ABSTRACT Received 3. 5. 2018 Rocket plant (Eruca sativa) is a green leafy vegetable with significant levels of bioactive active components. Although, this plant is Revised 31. 7. 2018 known in Bulgaria, scanty data concerning chemical composition of representatives with Bulgarian origin is available. The aim of this Accepted 7. 8. 2018 study was to evaluate and to compare the biological potential of Italian and Bulgarian rockets in terms of their antioxidant activity, total Published 1. 10. 2018 phenolic content and total hydroxycinnamic acid derivatives. The micro- and macro elements were evaluated as well. The highest content of total phenolic content was detected in Bulgarian rocket – 4.45 mg gallic acid equivalent per g dry weight, while in Italian samples dominated the total hydroxycinnamic acid derivatives – 1.52 mg chlorogenic acid equivalent per g dry weight. The antioxidant Regular article activity was not significantly different in both samples. The presence Co and Al was reported for the first time, as in our study their values were higher in a rocket from Italian origin (75.6 and 595 mg/kg). -
Analysis of Bacteria Associated with Honeys of Different Geographical
RESEARCH ARTICLE Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique 1 1 1,2 1,2 Paweø PomastowskiID *, Michaø ZøochID , Agnieszka Rodzik , Magda Ligor , Markus Kostrzewa3, Bogusøaw Buszewski1,2 a1111111111 1 Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland, 2 Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus a1111111111 University in Torun, Torun, Poland, 3 Bruker Daltonik GmbH, Bremen, Germany a1111111111 a1111111111 * [email protected] a1111111111 Abstract In the presented work identification of microorganisms isolated from various types of honeys OPEN ACCESS was performed. Martix-assisted laser desorption/ionization time-of-flight mass spectrometry Citation: Pomastowski P, Zøoch M, Rodzik A, Ligor (MALDI-TOF MS) and 16S rDNA sequencing were applied to study environmental bacteria M, Kostrzewa M, Buszewski B (2019) Analysis of bacteria associated with honeys of different strains.With both approches, problematic spore-forming Bacillus spp, but also Staphylococ- geographical and botanical origin using two cus spp., Lysinibacillus spp., Micrococcus spp. and Brevibacillus spp were identified. How- different identification approaches: MALDI-TOF MS ever, application of spectrometric technique allows for an unambiguous distinction between and 16S rDNA PCR technique. PLoS ONE 14(5): species/species groups e.g.B. subtilis or B. cereus groups. MALDI TOF MS and 16S rDNA e0217078. https://doi.org/10.1371/journal. pone.0217078 sequencing allow for construction of phyloproteomic and phylogenetic trees of identified bacterial species. Furthermore, the correlation beetween physicochemical properties, geo- Editor: Doralyn S. Dalisay, University of San Agustin, PHILIPPINES graphical and botanical origin and the presence bacterial species in honey samples were investigated. -
Evaluating Efficacy of Plant Growth Promoting Rhizobacteria for Promoting Growth and Preventing Disease in Both Fish and Plants
Evaluating Efficacy of Plant Growth Promoting Rhizobacteria for Promoting Growth and Preventing Disease in both Fish and Plants by Malachi Astor Williams A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 2, 2020 Keywords: PGPR, disease control, Probiotic, Bacillus spp., Nile Tilapia, Channel Catfish Copyright 2020 by Malachi Astor Williams Approved by Mark R. Liles, Chair, Professor of Biological Sciences Joseph W. Kloepper, Professor of Entomology and Plant Pathology Jeffery S. Terhune, Associate Professor of Fisheries, Aquaculture and Aquatic Sciences Scott R. Santos, Professor of Biological Sciences Abstract Plant growth promoting rhizobacteria (PGPR), are bacteria residing within the rhizosphere of a plant, that elicit health benefits to the plant (Kloepper and Schroth, 1978; Kloepper et al., 2004). To understand the growth promoting and disease-inhibiting activities of PGPR strains, the genomes of 12 different PGPR strains affiliated with the B. subtilis group were sequenced. These B. subtilis strains exhibited high genomic diversity, whereas the genomes of Bacillus amyloliquefaciens strains (a member of the B. subtilis group) and B. velezensis strains (formerly B. amyloliquefaciens subsp. plantarum, now a part of the B. amyloliquefaciens clade (Fan et. al., 2017)) are highly conserved. A total of 2,839 genes were consistently present within the core genome of B. velezensis. Comparative genomic analyses of B. amyloliquefaciens and B. velezensis strains identified conserved genes that have been linked with biological control and colonization of roots or leaves. There were 73 genes uniquely associated with B. velezensis strains with predicted functions related to signaling, transportation, secondary metabolite production, and carbon source utilization. -
Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions
pathogens Article Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions Handi Dahmana 1,2 , Didier Raoult 1,2, Florence Fenollar 2,3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; [email protected] (H.D.); [email protected] (D.R.) 2 IHU-Méditerranée Infection, 13005 Marseille, France; fl[email protected] 3 IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France * Correspondence: [email protected]; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)4-13-73-24-02 Received: 15 May 2020; Accepted: 17 June 2020; Published: 18 June 2020 Abstract: Mosquitoes can transmit to humans devastating and deadly pathogens. As many chemical insecticides are banned due to environmental side effects or are of reduced efficacy due to resistance, biological control, including the use of bacterial strains with insecticidal activity, is of increasing interest and importance. The urgent actual need relies on the discovery of new compounds, preferably of a biological nature. Here, we explored the phenomenon of natural larvae mortality in larval breeding sites to identify potential novel compounds that may be used in biological control. From there, we isolated 14 bacterial strains of the phylum Firmicutes, most of the order Bacillales. Cultures were carried out under controlled conditions and were separated on supernatant and pellet fractions. The two fractions and a 1:1 mixture of the two fractions were tested on L3 and early L4 Aedes albopictus. Two concentrations were tested (2 and 6 mg/L). -
Analysis of Anoxybacillus Genomes from the Aspects of Lifestyle Adaptations, Prophage Diversity, and Carbohydrate Metabolism
Analysis of Anoxybacillus Genomes from the Aspects of Lifestyle Adaptations, Prophage Diversity, and Carbohydrate Metabolism Kian Mau Goh1*, Han Ming Gan2, Kok-Gan Chan3, Giek Far Chan4, Saleha Shahar1, Chun Shiong Chong1, Ummirul Mukminin Kahar1, Kian Piaw Chai1 1 Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, 2 Monash School of Science, Monash University Sunway Campus, Petaling Jaya, Selangor, Malaysia, 3 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 4 School of Applied Science, Temasek Polytechnic, Singapore Abstract Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. -
Assessment of Biotechnological Potentials of Strains Isolated from Repasso Olive Pomace in Tunisia
Annals of Microbiology (2019) 69:1177–1190 https://doi.org/10.1007/s13213-019-01499-y ORIGINAL ARTICLE Assessment of biotechnological potentials of strains isolated from repasso olive pomace in Tunisia Leila Jmeii 1,4 & Leila Soufi1 & Nabil Abid3 & Mouna Mahjoubi1 & Sevastianos Roussos2 & Hadda I. Ouzari 5 & Ameur Cherif1 & Haikel Garna1 Received: 1 February 2019 /Accepted: 10 July 2019 /Published online: 10 August 2019 # Università degli studi di Milano 2019 Abstract Purpose The agri-food industry generates significant amounts of byproducts, among them repasso olive pomace (ROP) which are rejected and can constitute a serious environmental problem. Our study aimed to investigate the diversity of microbiota isolated from ROP and screen for their biotechnological potentials. Methods A collection of 102 strains (88 bacteria and 14 fungi) was obtained from a ROP sample. The diversity of the bacterial collection was evaluated by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS- PCR) and by 16S rRNA sequencing. Fungal identification was performed by polymerase chain reaction (PCR) amplification of the ITS1–5.8S–ITS2 ribosomal DNA region. The specific enzymatic screening of the detected microorganisms was tested. Result Partial 16S rRNA gene sequencing performed on 44 isolates showed a high level of identity with known strains. Fungal strains identification showed that they belong to four families: Trichocomaceae, Pleurostomataceae, Mucoraceae,and Bionectriaceae. Our results demonstrated that Gram-positive bacteria were mostly active, particularly for protease, lipase, amylase, cellulase laccase, and for biosurfactant production. From the 88 isolated bacteria, Firmicutes were the most prevalent and microdiverse. Bacillus and Paenibacillus, together with some other Gram-negative bacteria such as Pseudocitrobacter anthropi,andAcinetobacter johnsonii showed significant hydrolytic activities and biosurfactant production. -
Microbiological Research 223–225 (2019) 58–62
Microbiological Research 223–225 (2019) 58–62 Contents lists available at ScienceDirect Microbiological Research journal homepage: www.elsevier.com/locate/micres Short Communication Bacterial seed endophyte community of annual plants modulated by plant photosynthetic pathways T ⁎ ⁎ Ruben Girsowicza, Itumeleng Moroenyaneb, , Yosef Steinbergera, a The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel b Institut National Recherche Scientifique, Centre-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada ARTICLE INFO ABSTRACT Keywords: Climate change is predicted to have adverse impacts on terrestrial ecosystems and uncertainties exist on how Endophyte these systems will respond. Terrestrial plant ecosystems can be divided by how they fix atmospheric carbon- C3, Photosynthetic pathway C4 and CAM photosynthesis pathways. However, as for now, no clear answers could be given regarding the Israel future global repartition of the C3, C4 and CAM plants. As seeds are the reproductive and dispersal unit of the Seed microbiome plants and endophytes play a central role in their preservation; here it is suggested that a better knowledge 16S regarding the seeds endophytic community is needed when studying the future repartition of C3, C4 and CAM rRNA gene plant seeds. Bacterial endophyte communities inhabiting seeds belonging to C3, C4 and CAM annual plants were analysed by culture-dependent methods and 16S rRNA gene sequencing. Results indicated there were differences in the relative abundance of bacterial phyla within and across all photosynthetic pathways. Indicating some level of niche partitioning, and each of the three photosynthetic pathways could be characterized by a specific en- dophytic composition of Firmicutes, corresponding to the adaptation capacity of each group.