The Effects of Warming on Aquatic Insects – Individual to Community Responses

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Warming on Aquatic Insects – Individual to Community Responses The Effects of Warming on Aquatic Insects – Individual to Community Responses by Dachin N. Frances A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Dachin N. Frances 2018 The Effects of Warming on Aquatic Insects – Individual to Community Responses Dachin N. Frances Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2018 Abstract Climate change is increasing temperatures globally as well as the frequency and severity of extreme events such as heat waves. Given that the majority of animals on Earth are ectothermic, and therefore physiologically linked to environmental temperatures, it is imperative to predict the impacts of future warming on species. The physiological effects of warming on ectotherms have been studied extensively, yet, species interactions can also be affected by temperature. My thesis assessed how differences in species’ responses to warming affect their interactions and ultimately the structure and dynamics of communities. I first asked if phenological and early developmental responses to warming differed among and within dragonfly species. Warming accelerated growth and developmental rates, however, differences were greater within as opposed to between species in these responses. I also examined whether differences in behavioural responses to warming among species could determine which species became the superior IG predator. Foraging and IGP rates increased with warming but activity level changes were not predictive of the outcome of these interactions. Next, I asked how the interactive effects of warming and predator presence affected prey foraging decisions. Warmer conditions appeared to have a greater impact on prey behaviour that the predator presence, even though the prey’s risk of being eaten increased with temperature. Lastly, I manipulated developmental conditions in pond mesocosms to understand how warming and heat waves affect community structure. ii Heat waves similarly increased species’ evenness in communities as warming. However, heat waves further boosted survival compared to ambient and warmed conditions, strengthening consumption on primary consumers within these food webs. Together, my thesis demonstrates the importance of understanding complex interactions between species to make more accurate predictions of the effects of future warming on communities. iii Acknowledgments First and foremost, I would like to thank my supervisor, Shannon McCauley. Her enthusiasm and passion for her work is contagious, which is what initially drew me in at the start of my PhD. Since then, her constant support and endless wisdom have been pivotal in guiding me along this academic journey. In addition, she and Steph Schneider have provided hours of conversation, humor, stories, and advice. Thank you both for your generosity, kindness, and van-shuttling! I also owe Karen Mabry a huge thank you, as she is the one who introduced me to Shannon in the first place. Thanks Karen, for hiring me as a technician my first summer after undergrad and being a great collaborator in the years following. In addition, I would like to generally thank the University of Toronto’s Department of Ecology and Evolutionary Biology for funding me all these years, the Department of Biology at the University of Toronto Mississauga for generous conference funding and support for BGSS, the office of the Vice Dean Graduate for their generous funding to graduate students, all the graduate students involved in UTMAGS who worked hard to improve graduate student life, and the American Museum of Natural History, the Animal Behavior Society for funding part of my research and trips to conferences. More specifically, I would like to thank members of my doctoral committee: Doug Currie, Benjamin Gilbert, and Marc Johnson for their feedback and advice on my PhD research. Also, thank you, Marc, for reading and commenting on my thesis while traversing the globe on sabbatical. Thanks also to Sanja Hinić-Frlog, for being a great mentor and teaching me so much about pedagogy and birds! I would also like to thank Helen Rodd for her tireless and sincere commitment to graduate students in EEB. Thank you to Darryl Gwynne for being on my appraisal committee and generally just being an interesting person to talk to. Also, thank you, Mary O’Connor, for being on my defense committee and asking thorough and excellent questions that made me think broadly about my work and how it intersects with the field. I also thank members of the McCauley lab: Sarah French, Celina Baines, Rosemary Martin, Ilia Ferzoco, Ros Murray, Chris Searcy, Shantel Catania, Tharusha Wijewardena, Tammy Duong, Jy Moon, David Przelicki, Sam Hasbum, and Rosalynn Mitchell. I feel so fortunate to be part of such a supportive, creative, and brilliant group. Thanks also to every ROP/intern/work iv study/thesis undergraduate student that put in hours of field and lab work – this thesis would have taken years longer if not for you! Next, I thank the graduate students in the department whom I have grown close with over the past few years: Audrey Reid, Laura Junker, Kyla Ercit, Michelle DiLeo, Becci Rooke, Mark McDougall, Aaron LeBlanc, Krystal Nunes, Amy Wong, Nash Turley, Yara Haridy, Lauren Barth, Ernest Prack, Ruth Rivkin, Molly Hetherington-Rauth, Diego Carmona, James Santangelo, Jessica Brown, Cylita Guy, Arjan Banerjee, Kayla Dias, Alex Paquette, Mireille Golemiec, Chris Wong, Jade Atallah, Andrew Catalano, and many more. Thank you all for making my experience here an amusing and unique time! Lastly, I’d like to thank my family. Thank you all for your constant support and unconditional love. Living in a different country than you was challenging at times, but I always looked forward to seeing you all once or twice a year and I cherish all of those memories. Of course, I can’t end the acknowledgements section without thanking my husband. Thank you, Connor, for being my foundation, my sentinel, and my number one, unwavering supporter. I am so thankful that we could do this journey together and I’m looking forward to embarking on our future path together after this chapter in our lives. v Table of Contents Acknowledgments ..................................................................................................................... iv Table of Contents ...................................................................................................................... vi List of Tables ............................................................................................................................... x List of Figures............................................................................................................................. xi List of Appendices ................................................................................................................... xiii General Introduction ..................................................................................................1 1 Introduction ........................................................................................................................1 1.1 Present and future climate change...............................................................................1 1.1.1 Species responses to climate change ...................................................................2 1.1.2 Phenological shifts ...............................................................................................3 1.1.3 Range shifts .........................................................................................................3 1.1.4 Shifts in body size – The temperature-size rule ....................................................4 1.2 Study system ................................................................................................................5 1.2.1 Odonate responses to climate change .................................................................6 1.2.2 Odonates as structuring agents of communities ..................................................8 1.3 Thesis overview ..........................................................................................................11 1.3.1 Chapter 2 ...........................................................................................................11 1.3.2 Chapter 3 ...........................................................................................................12 1.3.3 Chapter 4 ...........................................................................................................12 1.3.4 Chapter 5 ...........................................................................................................13 1.4 References .................................................................................................................13 Effects of warming on early life history ...................................................................19 2 Abstract ............................................................................................................................19 vi 2.1 Introduction ...............................................................................................................19 2.2 Materials and methods ..............................................................................................23 2.2.1 Study system ......................................................................................................23
Recommended publications
  • Biodiversity Work Group Report: Appendices
    Biodiversity Work Group Report: Appendices A: Initial List of Important Sites..................................................................................................... 2 B: An Annotated List of the Mammals of Albemarle County........................................................ 5 C: Birds ......................................................................................................................................... 18 An Annotated List of the Birds of Albemarle County.............................................................. 18 Bird Species Status Tables and Charts...................................................................................... 28 Species of Concern in Albemarle County............................................................................ 28 Trends in Observations of Species of Concern..................................................................... 30 D. Fish of Albemarle County........................................................................................................ 37 E. An Annotated Checklist of the Amphibians of Albemarle County.......................................... 41 F. An Annotated Checklist of the Reptiles of Albemarle County, Virginia................................. 45 G. Invertebrate Lists...................................................................................................................... 51 H. Flora of Albemarle County ...................................................................................................... 69 I. Rare
    [Show full text]
  • Effects of Removal Or Reduced Density of the Malaria Mosquito, Anopheles
    Medical and Veterinary Entomology (2018), doi: 10.1111/mve.12327 REVIEW ARTICLE Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems C. M. COLLINS1 , J. A. S. BONDS2, M. M. QUINLAN1 and J. D. MUMFORD1 1Centre for Environmental Policy, Imperial College London, London, U.K. and 2Bonds Consulting Group LLC, Panama City Beach, Florida, U.S.A. Abstract. New genetic control methods for mosquitoes may reduce vector species without direct effects on other species or the physical environment common with insecticides or drainage. Effects on predators and competitors could, however, be a concern as Anopheles gambiae s.l. is preyed upon in all life stages. We overview the literature and assess the strength of the ecological interactions identified. Most predators identified consume many other insect species and there is no evidence that anyspecies preys exclusively on any anopheline mosquito. There is one predatory species with a specialisation on blood-fed mosquitoes including An. gambiae s.l.. Evarcha culicivora is a jumping spider, known as the vampire spider, found around Lake Victoria. There is no evidence that these salticids require Anopheles mosquitoes and will readily consume blood-fed Culex. Interspecific competition studies focus on other mosquitoes of larval habitats. Many of these take place in artificial cosms and give contrasting results to semi-field studies. This may limit their extrapolation regarding the potential impact of reduced An. gambiae numbers. Previous mosquito control interventions are informative and identify competitive release and niche opportunism; so while the identity and relative abundance of the species present may change, the biomass available to predators may not.
    [Show full text]
  • ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
    ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland.
    [Show full text]
  • A Survey of Odonata of the Patoka River National Wildlife Refuge and Management Area
    2012. Proceedings of the Indiana Academy of Science 121(1):54–61 A SURVEY OF ODONATA OF THE PATOKA RIVER NATIONAL WILDLIFE REFUGE AND MANAGEMENT AREA Donald L. Batema* and Amanda Bellian: Department of Chemistry, Environmental Studies Program, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722 USA Lindsey Landowski: Mingo National Wildlife Refuge, Puxico, MO. 63960 USA ABSTRACT. The Patoka River National Wildlife Refuge and Management Area (hereafter Patoka River Refuge or the Refuge) represents one of the largest intact bottomland hardwood forests in southern Indiana, with meandering oxbows, marshes, ponds, managed moist-soil units, and constructed wetlands that provide diverse and suitable habitat for wildlife. Refuge personnel strive to protect, restore, and manage this bottomland hardwood ecosystem and associated habitats for a variety of wildlife. The Patoka River National Wildlife Refuge Comprehensive Conservation Plan (CCP) lists many species of management priority (McCoy 2008), but Odonata are not included, even though they are known to occur on the Refuge. The absence of Odonata from the CCP is the result of lack of information about this ecologically important group of organisms. Therefore, we conducted a survey, from May to October 2009, to document their presence, with special attention being paid to rare, threatened, and endangered species. A total of 43 dragonfly and damselfly species were collected and identified. No threatened or endangered species were found on the Refuge, but three species were found that are considered imperiled in Indiana based on Nature Serve Ranks (Stein 2002). Additionally, 19 new odonate records were documented for Pike County, Indiana. The results of this survey will be used by Refuge personnel to assist in management decisions and to help establish priorities for the Patoka River Refuge activities and land acquisition goals.
    [Show full text]
  • Using Dragonflies As Common, Flexible, and Charismatic Subjects for Teaching the Scientific Process
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences 1-1-2007 Using dragonflies sa common, flexible, and charismatic subjects for teaching the scientific process Paul Switzer Eastern Illinois University, [email protected] Follow this and additional works at: https://thekeep.eiu.edu/bio_fac Part of the Behavior and Ethology Commons, Entomology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Switzer, P.V. (2007). Using dragonflies as common, flexible, and charismatic subjects for teaching the scientific process. The American Biology Teacher 69(3): 158-162. This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. as Common, Flexible & Charismatic Subjects Using forDragonflies Teaching the Scientific Process P AUL V. S WI T ZER See this article with its beautiful images in full color online at: http://www.nabt.org/sites/S1/File/pdf/069-03-0158.pdf. iology laboratories are usually designed around eat other invertebrates in the jar . Adults are a bit more wary, convenientB and available subjects . For example, for animal yet if students avoid sudden movements or approaches, laboratories Daphnia magna, Drosophila melanogaster, frogs, they can get within inches of many common species . rats, and mice are common animals that are relatively easy Capture requires no more exotic equipment than either to obtain, relatively cheap, and consequently lend them- aerial (for adults) or aquatic (for larvae) nets, and adults can selves well to laboratory experimentation .
    [Show full text]
  • 2010 Animal Species of Concern
    MONTANA NATURAL HERITAGE PROGRAM Animal Species of Concern Species List Last Updated 08/05/2010 219 Species of Concern 86 Potential Species of Concern All Records (no filtering) A program of the University of Montana and Natural Resource Information Systems, Montana State Library Introduction The Montana Natural Heritage Program (MTNHP) serves as the state's information source for animals, plants, and plant communities with a focus on species and communities that are rare, threatened, and/or have declining trends and as a result are at risk or potentially at risk of extirpation in Montana. This report on Montana Animal Species of Concern is produced jointly by the Montana Natural Heritage Program (MTNHP) and Montana Department of Fish, Wildlife, and Parks (MFWP). Montana Animal Species of Concern are native Montana animals that are considered to be "at risk" due to declining population trends, threats to their habitats, and/or restricted distribution. Also included in this report are Potential Animal Species of Concern -- animals for which current, often limited, information suggests potential vulnerability or for which additional data are needed before an accurate status assessment can be made. Over the last 200 years, 5 species with historic breeding ranges in Montana have been extirpated from the state; Woodland Caribou (Rangifer tarandus), Greater Prairie-Chicken (Tympanuchus cupido), Passenger Pigeon (Ectopistes migratorius), Pilose Crayfish (Pacifastacus gambelii), and Rocky Mountain Locust (Melanoplus spretus). Designation as a Montana Animal Species of Concern or Potential Animal Species of Concern is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to make proactive decisions regarding species conservation and data collection priorities in order to avoid additional extirpations.
    [Show full text]
  • Species of Greatest Conservation Need
    APPENDIX A. VIRGINIA SPECIES OF GREATEST CONSERVATION NEED Taxa Common Scientific Name Tier Cons. Opp. Habitat Descriptive Habitat Notes Name Ranking Amphibians Barking Hyla gratiosa II a Forest Forests near or within The Virginia Fish and Wildlife Information System indicates treefrog shallow wetlands the loss suitable wetlands constitute the greatest threats to this species. DGIF recommends working to maintain or restore forested buffers surrounding occupied wetlands. These needs are consistent with action plan priorities to conserve and restore wetland habitats and associated buffers. Recently discovered populations within its known range, may indicate this species is more abundant than previously believed. An in-depth investigation into its status may warrant delisting. This species will be prioritized as Tier 2a. Amphibians Blue Ridge Desmognathus IV c Forest High elevation seeps, This species' distribution is very limited. Other than limiting dusky orestes streams, wet rock faces, logging activity in the occupied areas, no conservation salamander and riparian forests actions have been identified. Unless other threats or actions are identified, this species will be listed as Tier 4c. Amphibians Blue Ridge Eurycea III a Wetland Mountain streams and The needs of this species are consistent with priorities for two-lined wilderae adjacent riparian areas maintaining and enhancing riparian forests and aquatic salamander with mixed hardwood or habitats. This species will be listed as Tier 3a. spruce-fir forests up to 6000 feet. Amphibians Carpenter Lithobates III a Wetland Freshwater wetlands with The needs of this species are consistent with action plan frog virgatipes sphagnum moss priorities to preserve and restore aquatic and wetland habitats and water quality.
    [Show full text]
  • Variations in the Dragonfly Microbiome Through Life Stages and Its Ability to Harbor Antibiotic Resistant Bacteria
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2019 Variations in the Dragonfly Microbiome Through Life stages and Its Ability to Harbor Antibiotic Resistant Bacteria Sarah Russell University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Russell, Sarah, "Variations in the Dragonfly Microbiome Through Life stages and Its Ability to Harbor Antibiotic Resistant Bacteria" (2019). Electronic Theses and Dissertations. 1678. https://egrove.olemiss.edu/etd/1678 This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. VARIATIONS IN THE DRAGONFLY MICROBIOME THROUGH LIFESTAGES AND ITS ABILITY TO HARBOR ANTIBIOTIC RESISTANT BACTERIA A Thesis presented in partial fulfillment of requirements for the degree of Master’s of Science in the Biology Department The University of Mississippi by Sarah Russell May 2019 Copyright Ó 2019 by Sarah Russell All rights reserved Abstract Juvenile dragonflies (nymphs) may possess the ability to pass their microbiome to the adult life stage through metamorphosis. If this is so, the environment in which the nymph develops may have an effect on the adult microbiome. In this study, the gut microbiomes of 13 species of dragonfly were compared across life stages and when collected from environments at different levels of urbanization. The gut of each dragonfly was removed, DNA extracted, and a portion of the bacterial 16S rRNA gene amplified and sequenced.
    [Show full text]
  • The Proventriculus of Immature Anisoptera (Odonata) with Reference to Its Use in Taxonomy
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1955 The rP oventriculus of Immature Anisoptera (Odonata) With Reference to Itsuse in Taxonomy. Alice Howard Ferguson Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ferguson, Alice Howard, "The rP oventriculus of Immature Anisoptera (Odonata) With Reference to Itsuse in Taxonomy." (1955). LSU Historical Dissertations and Theses. 103. https://digitalcommons.lsu.edu/gradschool_disstheses/103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. THE PROTENTRICULUS OF IMMATURE ANISOPTERA (ODONATA) WITH REFERENCE TO ITS USE IN TAXONOMY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology, Physiology, and Entomology Alice Howard Ferguson B. S., Southern Methodist University, 193& M. S., Southern Methodist University, I9U0 June, 1955 EXAMINATION AND THESIS REPORT Candidate: Miss Alice Ferguson Major Field: Entomology Title of Thesis: The Proventriculus of Immature Anisoptera (Odonata) with Reference to its Use in Taxonomy Approved: Major Professor and Chairman Deanpf-tfio Graduate School EXAMINING COMMITTEE: m 1.1 ^ ----------------------------- jJ------- --- 7 ------ Date of Examination: May6 , 195$ PiKC t U R D C N ACKNOWLEDGEMENT I want to express ny appreciation to the members of ny committee, especially to J.
    [Show full text]
  • © 2016 David Paul Moskowitz ALL RIGHTS RESERVED
    © 2016 David Paul Moskowitz ALL RIGHTS RESERVED THE LIFE HISTORY, BEHAVIOR AND CONSERVATION OF THE TIGER SPIKETAIL DRAGONFLY (CORDULEGASTER ERRONEA HAGEN) IN NEW JERSEY By DAVID P. MOSKOWITZ A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Entomology Written under the direction of Dr. Michael L. May And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey January, 2016 ABSTRACT OF THE DISSERTATION THE LIFE HISTORY, BEHAVIOR AND CONSERVATION OF THE TIGER SPIKETAIL DRAGONFLY (CORDULEGASTER ERRONEA HAGEN) IN NEW JERSEY by DAVID PAUL MOSKOWITZ Dissertation Director: Dr. Michael L. May This dissertation explores the life history and behavior of the Tiger Spiketail dragonfly (Cordulegaster erronea Hagen) and provides recommendations for the conservation of the species. Like most species in the genus Cordulegaster and the family Cordulegastridae, the Tiger Spiketail is geographically restricted, patchily distributed with its range, and a habitat specialist in habitats susceptible to disturbance. Most Cordulegastridae species are also of conservation concern and the Tiger Spiketail is no exception. However, many aspects of the life history of the Tiger Spiketail and many other Cordulegastridae are poorly understood, complicating conservation strategies. In this dissertation, I report the results of my research on the Tiger Spiketail in New Jersey. The research to investigate life history and behavior included: larval and exuvial sampling; radio- telemetry studies; marking-resighting studies; habitat analyses; observations of ovipositing females and patrolling males, and the presentation of models and insects to patrolling males.
    [Show full text]
  • Happy 75Th Birthday, Nick
    ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 19 12 December 2007 Number 4 Happy 75th Birthday, Nick Published by the Dragonfly Society of the Americas The Dragonfly Society Of The Americas Business address: c/o John Abbott, Section of Integrative Biology, C0930, University of Texas, Austin TX, USA 78712 Executive Council 2007 – 2009 President/Editor in Chief J. Abbott Austin, Texas President Elect B. Mauffray Gainesville, Florida Immediate Past President S. Krotzer Centreville, Alabama Vice President, United States M. May New Brunswick, New Jersey Vice President, Canada C. Jones Lakefield, Ontario Vice President, Latin America R. Novelo G. Jalapa, Veracruz Secretary S. Valley Albany, Oregon Treasurer J. Daigle Tallahassee, Florida Regular Member/Associate Editor J. Johnson Vancouver, Washington Regular Member N. von Ellenrieder Salta, Argentina Regular Member S. Hummel Lake View, Iowa Associate Editor (BAO Editor) K. Tennessen Wautoma, Wisconsin Journals Published By The Society ARGIA, the quarterly news journal of the DSA, is devoted to non-technical papers and news items relating to nearly every aspect of the study of Odonata and the people who are interested in them. The editor especially welcomes reports of studies in progress, news of forthcoming meetings, commentaries on species, habitat conservation, noteworthy occurrences, personal news items, accounts of meetings and collecting trips, and reviews of technical and non-technical publications. Membership in DSA includes a subscription to Argia. Bulletin Of American Odonatology is devoted to studies of Odonata of the New World. This journal considers a wide range of topics for publication, including faunal synopses, behavioral studies, ecological studies, etc.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]