Algebraic Aspects of the Computably Enumerable Degrees
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 617-621, January 1995 Mathematics Algebraic aspects of the computably enumerable degrees (computability theory/recursive function theory/computably enumerable sets/Turing computability/degrees of unsolvability) THEODORE A. SLAMAN AND ROBERT I. SOARE Department of Mathematics, University of Chicago, Chicago, IL 60637 Communicated by Robert M. Solovay, University of California, Berkeley, CA, July 19, 1994 ABSTRACT A set A of nonnegative integers is computably equivalently represented by the set of Diophantine equations enumerable (c.e.), also called recursively enumerable (r.e.), if with integer coefficients and integer solutions, the word there is a computable method to list its elements. The class of problem for finitely presented groups, and a variety of other sets B which contain the same information as A under Turing unsolvable problems in mathematics and computer science. computability (<T) is the (Turing) degree ofA, and a degree is Friedberg (5) and independently Mucnik (6) solved Post's c.e. if it contains a c.e. set. The extension ofembedding problem problem by producing a noncomputable incomplete c.e. set. for the c.e. degrees Qk = (R, <, 0, 0') asks, given finite partially Their method is now known as the finite injury priority ordered sets P C Q with least and greatest elements, whether method. Restated now for c.e. degrees, the Friedberg-Mucnik every embedding ofP into Rk can be extended to an embedding theorem is the first and easiest extension of embedding result of Q into Rt. Many of the most significant theorems giving an for the well-known partial ordering of the c.e.
[Show full text]