Emil Post By: Henry Ouellette Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Emil Post By: Henry Ouellette Introduction I study Mathematics as a product of the human mind and not as absolute. – Emil Leon Post Emil Post By: Henry Ouellette Introduction • Emil Leon Post was born on February 11 1897 in the Russian Empire, now called Poland • Post passed away on April 21, 1954 at the age of 57 • Post was born to a Polish-Jewish family, and emigrated from Poland to New York City in 1904. • Post lost his left arm in an accident at the age of 12. This lead him onto the path of mathematics. • Post attended and graduated from Townsend Harris High School, and continued on to the City College of New York, where he graduated in 1917 with a B.S. in Mathematics. • Post would continue on to Columbia University, where he would get his PhD in Mathematics. He did post-doctorate work at Princeton from 1920 to 1921. What did he do? • Emil Post is responsible for the phenomena we study in class! He is the founding father of the Propositional Calculus. • Post also devised truth tables before they were called truth tables! • Post also produced the first Post production system, a system similar to Alan Turing’s Turing Machine. Wrap-Up • Emil Post created the systems that computability experts use daily. He is the third horseman of Computability Theory, along with Alonzo Church and Alan Turing. • Post also helped pioneer recursion theory with his “Post Problem” • This problem entailed that there may exist a recursively enumerable set that cannot be computed. This differs from the Halting Problem because the Turing Degree of the set is less than that of the Halting Problem..
Recommended publications
  • Hubert Kennedy Eight Mathematical Biographies
    Hubert Kennedy Eight Mathematical Biographies Peremptory Publications San Francisco 2002 © 2002 by Hubert Kennedy Eight Mathematical Biographies is a Peremptory Publications ebook. It may be freely distributed, but no changes may be made in it. Comments and suggestions are welcome. Please write to [email protected] . 2 Contents Introduction 4 Maria Gaetana Agnesi 5 Cesare Burali-Forti 13 Alessandro Padoa 17 Marc-Antoine Parseval des Chênes 19 Giuseppe Peano 22 Mario Pieri 32 Emil Leon Post 35 Giovanni Vailati 40 3 Introduction When a Dictionary of Scientific Biography was planned, my special research interest was Giuseppe Peano, so I volunteered to write five entries on Peano and his friends/colleagues, whose work I was investigating. (The DSB was published in 14 vol- umes in 1970–76, edited by C. C. Gillispie, New York: Charles Scribner's Sons.) I was later asked to write two more entries: for Parseval and Emil Leon Post. The entry for Post had to be done very quickly, and I could not have finished it without the generous help of one of his relatives. By the time the last of these articles was published in 1976, that for Giovanni Vailati, I had come out publicly as a homosexual and was involved in the gay liberation movement. But my article on Vailati was still discreet. If I had written it later, I would probably have included evidence of his homosexuality. The seven articles for the Dictionary of Scientific Biography have a uniform appear- ance. (The exception is the article on Burali-Forti, which I present here as I originally wrote it—with reference footnotes.
    [Show full text]
  • Global Properties of the Turing Degrees and the Turing Jump
    Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman¤ Department of Mathematics University of California, Berkeley Berkeley, CA 94720-3840, USA [email protected] Abstract We present a summary of the lectures delivered to the Institute for Mathematical Sci- ences, Singapore, during the 2005 Summer School in Mathematical Logic. The lectures covered topics on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D. 1 Introduction This note summarizes the tutorial delivered to the Institute for Mathematical Sciences, Singapore, during the 2005 Summer School in Mathematical Logic on the structure of the Turing degrees. The tutorial gave a survey on the global structure of the Turing degrees D, the countability of its automorphism group, and the definability of the Turing jump within D. There is a glaring open problem in this area: Is there a nontrivial automorphism of the Turing degrees? Though such an automorphism was announced in Cooper (1999), the construction given in that paper is yet to be independently verified. In this pa- per, we regard the problem as not yet solved. The Slaman-Woodin Bi-interpretability Conjecture 5.10, which still seems plausible, is that there is no such automorphism. Interestingly, we can assemble a considerable amount of information about Aut(D), the automorphism group of D, without knowing whether it is trivial. For example, we can prove that it is countable and every element is arithmetically definable. Further, restrictions on Aut(D) lead us to interesting conclusions concerning definability in D.
    [Show full text]
  • Annals of Pure and Applied Logic Extending and Interpreting
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Annals of Pure and Applied Logic 161 (2010) 775–788 Contents lists available at ScienceDirect Annals of Pure and Applied Logic journal homepage: www.elsevier.com/locate/apal Extending and interpreting Post's programmeI S. Barry Cooper Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK article info a b s t r a c t Article history: Computability theory concerns information with a causal – typically algorithmic – Available online 3 July 2009 structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as MSC: real numbers, and its algorithmic infrastructure. Having characterised the close connection 03-02 between the quantifier type of a real and the Turing jump operation, he looked for more 03A05 03D25 subtle ways in which information entails a particular causal context. Specifically, he wanted 03D80 to find simple relations on reals which produced richness of local computability-theoretic structure. To this extent, he was not just interested in causal structure as an abstraction, Keywords: but in the way in which this structure emerges in natural contexts. Post's programme was Computability the genesis of a more far reaching research project. Post's programme In this article we will firstly review the history of Post's programme, and look at two Ershov hierarchy Randomness interesting developments of Post's approach. The first of these developments concerns Turing invariance the extension of the core programme, initially restricted to the Turing structure of the computably enumerable sets of natural numbers, to the Ershov hierarchy of sets.
    [Show full text]
  • THERE IS NO DEGREE INVARIANT HALF-JUMP a Striking
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 10, October 1997, Pages 3033{3037 S 0002-9939(97)03915-4 THERE IS NO DEGREE INVARIANT HALF-JUMP RODNEY G. DOWNEY AND RICHARD A. SHORE (Communicated by Andreas R. Blass) Abstract. We prove that there is no degree invariant solution to Post's prob- lem that always gives an intermediate degree. In fact, assuming definable de- terminacy, if W is any definable operator on degrees such that a <W (a) < a0 on a cone then W is low2 or high2 on a cone of degrees, i.e., there is a degree c such that W (a)00 = a for every a c or W (a)00 = a for every a c. 00 ≥ 000 ≥ A striking phenomenon in the early days of computability theory was that every decision problem for axiomatizable theories turned out to be either decidable or of the same Turing degree as the halting problem (00,thecomplete computably enumerable set). Perhaps the most influential problem in computability theory over the past fifty years has been Post’s problem [10] of finding an exception to this rule, i.e. a noncomputable incomplete computably enumerable degree. The problem has been solved many times in various settings and disguises but the so- lutions always involve specific constructions of strange sets, usually by the priority method that was first developed (Friedberg [2] and Muchnik [9]) to solve this prob- lem. No natural decision problems or sets of any kind have been found that are neither computable nor complete. The question then becomes how to define what characterizes the natural computably enumerable degrees and show that none of them can supply a solution to Post’s problem.
    [Show full text]
  • Uniform Martin's Conjecture, Locally
    Uniform Martin's conjecture, locally Vittorio Bard July 23, 2019 Abstract We show that part I of uniform Martin's conjecture follows from a local phenomenon, namely that if a non-constant Turing invariant func- tion goes from the Turing degree x to the Turing degree y, then x ≤T y. Besides improving our knowledge about part I of uniform Martin's con- jecture (which turns out to be equivalent to Turing determinacy), the discovery of such local phenomenon also leads to new results that did not look strictly related to Martin's conjecture before. In particular, we get that computable reducibility ≤c on equivalence relations on N has a very complicated structure, as ≤T is Borel reducible to it. We conclude rais- ing the question Is part II of uniform Martin's conjecture implied by local phenomena, too? and briefly indicating a possible direction. 1 Introduction to Martin's conjecture Providing evidence for the intricacy of the structure (D; ≤T ) of Turing degrees has been arguably one of the main concerns of computability theory since the mid '50s, when the celebrated priority method was discovered. However, some have pointed out that if we restrict our attention to those Turing degrees that correspond to relevant problems occurring in mathematical practice, we see a much simpler structure: such \natural" Turing degrees appear to be well- ordered by ≤T , and there seems to be no \natural" Turing degree strictly be- tween a \natural" Turing degree and its Turing jump. Martin's conjecture is a long-standing open problem whose aim was to provide a precise mathemat- ical formalization of the previous insight.
    [Show full text]
  • Independence Results on the Global Structure of the Turing Degrees by Marcia J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume INDEPENDENCE RESULTS ON THE GLOBAL STRUCTURE OF THE TURING DEGREES BY MARCIA J. GROSZEK AND THEODORE A. SLAMAN1 " For nothing worthy proving can be proven, Nor yet disproven." _Tennyson Abstract. From CON(ZFC) we obtain: 1. CON(ZFC + 2" is arbitrarily large + there is a locally finite upper semilattice of size u2 which cannot be embedded into the Turing degrees as an upper semilattice). 2. CON(ZFC + 2" is arbitrarily large + there is a maximal independent set of Turing degrees of size w,). Introduction. Let ^ denote the set of Turing degrees ordered under the usual Turing reducibility, viewed as a partial order ( 6Î),< ) or an upper semilattice (fy, <,V> depending on context. A partial order (A,<) [upper semilattice (A, < , V>] is embeddable into fy (denoted A -* fy) if there is an embedding /: A -» <$so that a < ft if and only if/(a) </(ft) [and/(a) V /(ft) = /(a V ft)]. The structure of ty was first investigted in the germinal paper of Kleene and Post [2] where A -» ty for any countable partial order A was shown. Sacks [9] proved that A -» öDfor any partial order A which is locally finite (any point of A has only finitely many predecessors) and of size at most 2", or locally countable and of size at most u,. Say X C fy is an independent set of Turing degrees if, whenever x0, xx,...,xn E X and x0 < x, V x2 V • • • Vjcn, there is an / between 1 and n so that x0 = x¡; X is maximal if no proper extension of X is independent.
    [Show full text]
  • Logique Combinatoire Et Physique Quantique
    Eigenlogic Zeno Toffano [email protected] CentraleSupélec, Gif-sur-Yvette, France Laboratoire des Signaux et Systèmes, UMR8506-CNRS Université Paris-Saclay, France Zeno Toffano : “Eigenlogic” 1 UNILOG 2018 (6th World Congress and School on Universal Logic), Workshop Logic & Physics, Vichy (F), June 22, 2018 statement facts in quantum physics Quantum Physics started in 1900 with the quantification of radiation (Planck’s constant ℎ = 6.63 10−34 J.s) It is the most successful theory in physics and explains: nuclear energy, semiconductors, magnetism, lasers, quantum gravity… The theory has an increasing influence outside physics: computer science, AI, communications, biology, cognition… Nowadays there is a great quantum revival (second quantum revolution) which addresses principally: quantum entanglement (Bell inequalites, teleportation…), quantum superposition (Schrödinger cat), decoherence non-locality, non- separability, non-contextuality, non-classicality, non-… A more basic aspect is quantification: a measurement can only give one of the (real) eigenvalues of an observable. The associated eigenvector is the resulting quantum state. Measurements on non-eigenstates are indeterminate, the outcome probability is given by the Born rule. The eigenvalues are the spectrum (e.g. energies for the Hamiltonian). In physics it is natural to “work” in different representation eignespaces (of the considered observable) e.g: semiconductors “make sense” in the reciprocal lattice (momentum space 푝 , spatial Fourier transform of coordinate
    [Show full text]
  • Sets of Reals with an Application to Minimal Covers Author(S): Leo A
    A Basis Result for ∑0 3 Sets of Reals with an Application to Minimal Covers Author(s): Leo A. Harrington and Alexander S. Kechris Source: Proceedings of the American Mathematical Society, Vol. 53, No. 2 (Dec., 1975), pp. 445- 448 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2040033 . Accessed: 22/05/2013 17:17 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society. http://www.jstor.org This content downloaded from 131.215.71.79 on Wed, 22 May 2013 17:17:43 PM All use subject to JSTOR Terms and Conditions PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 2, December 1975 A BASIS RESULT FOR E3 SETS OF REALS WITH AN APPLICATION TO MINIMALCOVERS LEO A. HARRINGTON AND ALEXANDER S. KECHRIS ABSTRACT. It is shown that every Y3 set of reals which contains reals of arbitrarily high Turing degree in the hyperarithmetic hierarchy contains reals of every Turing degree above the degree of Kleene's 0. As an application it is shown that every Turing degrec above the Turing degree of Kleene's 0 is a minimal cover.
    [Show full text]
  • Algebraic Aspects of the Computably Enumerable Degrees
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 617-621, January 1995 Mathematics Algebraic aspects of the computably enumerable degrees (computability theory/recursive function theory/computably enumerable sets/Turing computability/degrees of unsolvability) THEODORE A. SLAMAN AND ROBERT I. SOARE Department of Mathematics, University of Chicago, Chicago, IL 60637 Communicated by Robert M. Solovay, University of California, Berkeley, CA, July 19, 1994 ABSTRACT A set A of nonnegative integers is computably equivalently represented by the set of Diophantine equations enumerable (c.e.), also called recursively enumerable (r.e.), if with integer coefficients and integer solutions, the word there is a computable method to list its elements. The class of problem for finitely presented groups, and a variety of other sets B which contain the same information as A under Turing unsolvable problems in mathematics and computer science. computability (<T) is the (Turing) degree ofA, and a degree is Friedberg (5) and independently Mucnik (6) solved Post's c.e. if it contains a c.e. set. The extension ofembedding problem problem by producing a noncomputable incomplete c.e. set. for the c.e. degrees Qk = (R, <, 0, 0') asks, given finite partially Their method is now known as the finite injury priority ordered sets P C Q with least and greatest elements, whether method. Restated now for c.e. degrees, the Friedberg-Mucnik every embedding ofP into Rk can be extended to an embedding theorem is the first and easiest extension of embedding result of Q into Rt. Many of the most significant theorems giving an for the well-known partial ordering of the c.e.
    [Show full text]
  • Computable Functions A
    http://dx.doi.org/10.1090/stml/019 STUDENT MATHEMATICAL LIBRARY Volume 19 Computable Functions A. Shen N. K. Vereshchagin Translated by V. N. Dubrovskii #AMS AMERICAN MATHEMATICAL SOCIETY Editorial Board Robert Devaney Carl Pomerance Daniel L. Goroff Hung-Hsi Wu David Bressoud, Chair H. K. BepemarHH, A. Illem* BMHHCJIHMME ^YHKUMM MIIHMO, 1999 Translated from the Russian by V. N. Dubrovskii 2000 Mathematics Subject Classification. Primary 03-01, 03Dxx. Library of Congress Cataloging-in-Publication Data Vereshchagin, Nikolai Konstantinovich, 1958- Computable functions / A. Shen, N.K. Vereshchagin ; translated by V.N. Dubrovskii. p. cm. — (Student mathematical library, ISSN 1520-9121 ; v. 19) Authors' names on t.p. of translation reversed from original. Includes bibliographical references and index. ISBN 0-8218-2732-4 (alk. paper) 1. Computable functions. I. Shen, A. (Alexander), 1958- II. Title. III. Se• ries. QA9.59 .V47 2003 511.3—dc21 2002038567 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294, USA. Requests can also be made by e-mail to reprint-permissionQams.org. © 2003 by the American Mathematical Society.
    [Show full text]
  • Turing Degrees of Nonabelian Groups
    TURING DEGREES OF NONABELIAN GROUPS MALGORZATA DABKOWSKA, MIECZYSLAW DABKOWSKI, VALENTINA S. HARIZANOV, AND ADAM S. SIKORA Abstract. For a countable structure , the (Turing) degree spec- trum of is the set of all Turing degreesA of its isomorphic copies. If the degreeA spectrum of has the least degree d,thenwesay that d is the (Turing) degreeA of the isomorphism type of .Sofar, degrees of the isomorphism types have been studied for abelianA and metabelian groups. Here, we focus on highly nonabelian groups. We show that there are various centerless groups whose isomor- phism types have arbitrary Turing degrees. We also show that there are various centerless groups whose isomorphism types do not have Turing degrees. 2000 Mathematics Subject Classification : 03C57, 03D45 Key words: computable, Turing degree, degree spectrum, isomor- phism, group 1. Introduction, preliminaries, and notation One of the goals of computable algebra is to use the tools and meth- ods of computability theory to measure the complexity of algebraic notions and constructions. While in algebra we identify two isomor- phic structures, from the point of view of computable algebra, they can have very different computability theoretic properties. In particular, two countable isomorphic structures can have distinct Turing degrees. Since the Turing degree of a structure is not invariant under isomor- phism, Jockusch and Richter (see [27]) introduced the following com- plexity measure of the isomorphism type of a structure. To a countable structure , they assigned the least Turing degree among all Turing degrees ofA the isomorphic copies of , and called it the degree of the isomorphism type of . A We will now give exactA definitions and specify notation.
    [Show full text]
  • An Introduction to Computability Theory
    AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of com- putability theory. Based on Robert Soare's textbook, The Art of Turing Computability: Theory and Applications, we examine concepts including the Halting problem, properties of Turing jumps and degrees, and Post's Theo- rem.1 In the paper, we will assume the reader has a conceptual understanding of computer programs. Contents 1. Basic Computability 1 2. The Halting Problem 2 3. Post's Theorem: Jumps and Quantifiers 3 3.1. Arithmetical Hierarchy 3 3.2. Degrees and Jumps 4 3.3. The Zero-Jump, 00 5 3.4. Post's Theorem 5 Acknowledgments 8 References 8 1. Basic Computability Definition 1.1. An algorithm is a procedure capable of being carried out by a computer program. It accepts various forms of numerical inputs including numbers and finite strings of numbers. Computability theory is a branch of mathematical logic that focuses on algo- rithms, formally known in this area as computable functions, and studies the degree, or level of computability that can be attributed to various sets (these concepts will be formally defined and elaborated upon below). This field was founded in the 1930s by many mathematicians including the logicians: Alan Turing, Stephen Kleene, Alonzo Church, and Emil Post. Turing first pioneered computability theory when he introduced the fundamental concept of the a-machine which is now known as the Turing machine (this concept will be intuitively defined below) in his 1936 pa- per, On computable numbers, with an application to the Entscheidungsproblem[7].
    [Show full text]