Many-Valued Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hubert Kennedy Eight Mathematical Biographies
Hubert Kennedy Eight Mathematical Biographies Peremptory Publications San Francisco 2002 © 2002 by Hubert Kennedy Eight Mathematical Biographies is a Peremptory Publications ebook. It may be freely distributed, but no changes may be made in it. Comments and suggestions are welcome. Please write to [email protected] . 2 Contents Introduction 4 Maria Gaetana Agnesi 5 Cesare Burali-Forti 13 Alessandro Padoa 17 Marc-Antoine Parseval des Chênes 19 Giuseppe Peano 22 Mario Pieri 32 Emil Leon Post 35 Giovanni Vailati 40 3 Introduction When a Dictionary of Scientific Biography was planned, my special research interest was Giuseppe Peano, so I volunteered to write five entries on Peano and his friends/colleagues, whose work I was investigating. (The DSB was published in 14 vol- umes in 1970–76, edited by C. C. Gillispie, New York: Charles Scribner's Sons.) I was later asked to write two more entries: for Parseval and Emil Leon Post. The entry for Post had to be done very quickly, and I could not have finished it without the generous help of one of his relatives. By the time the last of these articles was published in 1976, that for Giovanni Vailati, I had come out publicly as a homosexual and was involved in the gay liberation movement. But my article on Vailati was still discreet. If I had written it later, I would probably have included evidence of his homosexuality. The seven articles for the Dictionary of Scientific Biography have a uniform appear- ance. (The exception is the article on Burali-Forti, which I present here as I originally wrote it—with reference footnotes. -
The Unintended Interpretations of Intuitionistic Logic
THE UNINTENDED INTERPRETATIONS OF INTUITIONISTIC LOGIC Wim Ruitenburg Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53233 Abstract. We present an overview of the unintended interpretations of intuitionis- tic logic that arose after Heyting formalized the “observed regularities” in the use of formal parts of language, in particular, first-order logic and Heyting Arithmetic. We include unintended interpretations of some mild variations on “official” intuitionism, such as intuitionistic type theories with full comprehension and higher order logic without choice principles or not satisfying the right choice sequence properties. We conclude with remarks on the quest for a correct interpretation of intuitionistic logic. §1. The Origins of Intuitionistic Logic Intuitionism was more than twenty years old before A. Heyting produced the first complete axiomatizations for intuitionistic propositional and predicate logic: according to L. E. J. Brouwer, the founder of intuitionism, logic is secondary to mathematics. Some of Brouwer’s papers even suggest that formalization cannot be useful to intuitionism. One may wonder, then, whether intuitionistic logic should itself be regarded as an unintended interpretation of intuitionistic mathematics. I will not discuss Brouwer’s ideas in detail (on this, see [Brouwer 1975], [Hey- ting 1934, 1956]), but some aspects of his philosophy need to be highlighted here. According to Brouwer mathematics is an activity of the human mind, a product of languageless thought. One cannot be certain that language is a perfect reflection of this mental activity. This makes language an uncertain medium (see [van Stigt 1982] for more details on Brouwer’s ideas about language). In “De onbetrouwbaarheid der logische principes” ([Brouwer 1981], pp. -
Intuitionistic Three-Valued Logic and Logic Programming Informatique Théorique Et Applications, Tome 25, No 6 (1991), P
INFORMATIQUE THÉORIQUE ET APPLICATIONS J. VAUZEILLES A. STRAUSS Intuitionistic three-valued logic and logic programming Informatique théorique et applications, tome 25, no 6 (1991), p. 557-587 <http://www.numdam.org/item?id=ITA_1991__25_6_557_0> © AFCET, 1991, tous droits réservés. L’accès aux archives de la revue « Informatique théorique et applications » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Informatique théorique et Applications/Theoretical Informaties and Applications (vol. 25, n° 6, 1991, p. 557 à 587) INTUITIONISTIC THREE-VALUED LOGIC AMD LOGIC PROGRAMM1NG (*) by J. VAUZEILLES (*) and A. STRAUSS (2) Communicated by J. E. PIN Abstract. - In this paper, we study the semantics of logic programs with the help of trivalued hgic, introduced by Girard in 1973. Trivalued sequent calculus enables to extend easily the results of classical SLD-resolution to trivalued logic. Moreover, if one allows négation in the head and in the body of Hom clauses, one obtains a natural semantics for such programs regarding these clauses as axioms of a theory written in the intuitionistic fragment of that logic. Finally^ we define in the same calculus an intuitionistic trivalued version of Clark's completion, which gives us a déclarative semantics for programs with négation in the body of the clauses, the évaluation method being SLDNF-resolution. Resumé. — Dans cet article, nous étudions la sémantique des programmes logiques à l'aide de la logique trivaluée^ introduite par Girard en 1973. -
Logique Combinatoire Et Physique Quantique
Eigenlogic Zeno Toffano [email protected] CentraleSupélec, Gif-sur-Yvette, France Laboratoire des Signaux et Systèmes, UMR8506-CNRS Université Paris-Saclay, France Zeno Toffano : “Eigenlogic” 1 UNILOG 2018 (6th World Congress and School on Universal Logic), Workshop Logic & Physics, Vichy (F), June 22, 2018 statement facts in quantum physics Quantum Physics started in 1900 with the quantification of radiation (Planck’s constant ℎ = 6.63 10−34 J.s) It is the most successful theory in physics and explains: nuclear energy, semiconductors, magnetism, lasers, quantum gravity… The theory has an increasing influence outside physics: computer science, AI, communications, biology, cognition… Nowadays there is a great quantum revival (second quantum revolution) which addresses principally: quantum entanglement (Bell inequalites, teleportation…), quantum superposition (Schrödinger cat), decoherence non-locality, non- separability, non-contextuality, non-classicality, non-… A more basic aspect is quantification: a measurement can only give one of the (real) eigenvalues of an observable. The associated eigenvector is the resulting quantum state. Measurements on non-eigenstates are indeterminate, the outcome probability is given by the Born rule. The eigenvalues are the spectrum (e.g. energies for the Hamiltonian). In physics it is natural to “work” in different representation eignespaces (of the considered observable) e.g: semiconductors “make sense” in the reciprocal lattice (momentum space 푝 , spatial Fourier transform of coordinate -
Intuitionistic Logic
Intuitionistic Logic Nick Bezhanishvili and Dick de Jongh Institute for Logic, Language and Computation Universiteit van Amsterdam Contents 1 Introduction 2 2 Intuitionism 3 3 Kripke models, Proof systems and Metatheorems 8 3.1 Other proof systems . 8 3.2 Arithmetic and analysis . 10 3.3 Kripke models . 15 3.4 The Disjunction Property, Admissible Rules . 20 3.5 Translations . 22 3.6 The Rieger-Nishimura Lattice and Ladder . 24 3.7 Complexity of IPC . 25 3.8 Mezhirov's game for IPC . 28 4 Heyting algebras 30 4.1 Lattices, distributive lattices and Heyting algebras . 30 4.2 The connection of Heyting algebras with Kripke frames and topologies . 33 4.3 Algebraic completeness of IPC and its extensions . 38 4.4 The connection of Heyting and closure algebras . 40 5 Jankov formulas and intermediate logics 42 5.1 n-universal models . 42 5.2 Formulas characterizing point generated subsets . 44 5.3 The Jankov formulas . 46 5.4 Applications of Jankov formulas . 47 5.5 The logic of the Rieger-Nishimura ladder . 52 1 1 Introduction In this course we give an introduction to intuitionistic logic. We concentrate on the propositional calculus mostly, make some minor excursions to the predicate calculus and to the use of intuitionistic logic in intuitionistic formal systems, in particular Heyting Arithmetic. We have chosen a selection of topics that show various sides of intuitionistic logic. In no way we strive for a complete overview in this short course. Even though we approach the subject for the most part only formally, it is good to have a general introduction to intuitionism. -
The Proper Explanation of Intuitionistic Logic: on Brouwer's Demonstration
The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm, Mark van Atten To cite this version: Göran Sundholm, Mark van Atten. The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem. van Atten, Mark Heinzmann, Gerhard Boldini, Pascal Bourdeau, Michel. One Hundred Years of Intuitionism (1907-2007). The Cerisy Conference, Birkhäuser, pp.60- 77, 2008, 978-3-7643-8652-8. halshs-00791550 HAL Id: halshs-00791550 https://halshs.archives-ouvertes.fr/halshs-00791550 Submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm Philosophical Institute, Leiden University, P.O. Box 2315, 2300 RA Leiden, The Netherlands. [email protected] Mark van Atten SND (CNRS / Paris IV), 1 rue Victor Cousin, 75005 Paris, France. [email protected] Der … geführte Beweis scheint mir aber trotzdem . Basel: Birkhäuser, 2008, 60–77. wegen der in seinem Gedankengange enthaltenen Aussagen Interesse zu besitzen. (Brouwer 1927B, n. 7)1 Brouwer’s demonstration of his Bar Theorem gives rise to provocative ques- tions regarding the proper explanation of the logical connectives within intu- itionistic and constructivist frameworks, respectively, and, more generally, re- garding the role of logic within intuitionism. -
Three New Genuine Five-Valued Logics
Three new genuine five-valued logics Mauricio Osorio1 and Claudia Zepeda2 1 Universidad de las Am´ericas-Puebla, 2 Benem´eritaUniversidad At´onomade Puebla fosoriomauri,[email protected] Abstract. We introduce three 5-valued paraconsistent logics that we name FiveASP1, FiveASP2 and FiveASP3. Each of these logics is genuine and paracomplete. FiveASP3 was constructed with the help of Answer Sets Programming. The new value is called e attempting to model the notion of ineffability. If one drops e from any of these logics one obtains a well known 4-valued logic introduced by Avron. If, on the other hand one drops the \implication" connective from any of these logics, one obtains Priest logic FDEe. We present some properties of these logics. Keywords: many-valued logics, genuine paraconsistent logic, ineffabil- ity. 1 Introduction Belnap [16] claims that a 4-valued logic is a suitable framework for computer- ized reasoning. Avron in [3,2,4,1] supports this thesis. He shows that a 4-valued logic naturally express true, false, inconsistent or uncertain information. Each of these concepts is represented by a particular logical value. Furthermore in [3] he presents a sound and complete axiomatization of a family of 4-valued logics. On the other hand, Priest argues in [22] that a 4-valued logic models very well the four possibilities explained before, but here in the context of Buddhist meta-physics, see for instance [26]. This logic is called FDE, but such logic fails to satisfy the well known Modus Ponens inference rule. If one removes the im- plication connective in this logic, it corresponds to the corresponding fragment of any of the logics studied by Avron. -
Computable Functions A
http://dx.doi.org/10.1090/stml/019 STUDENT MATHEMATICAL LIBRARY Volume 19 Computable Functions A. Shen N. K. Vereshchagin Translated by V. N. Dubrovskii #AMS AMERICAN MATHEMATICAL SOCIETY Editorial Board Robert Devaney Carl Pomerance Daniel L. Goroff Hung-Hsi Wu David Bressoud, Chair H. K. BepemarHH, A. Illem* BMHHCJIHMME ^YHKUMM MIIHMO, 1999 Translated from the Russian by V. N. Dubrovskii 2000 Mathematics Subject Classification. Primary 03-01, 03Dxx. Library of Congress Cataloging-in-Publication Data Vereshchagin, Nikolai Konstantinovich, 1958- Computable functions / A. Shen, N.K. Vereshchagin ; translated by V.N. Dubrovskii. p. cm. — (Student mathematical library, ISSN 1520-9121 ; v. 19) Authors' names on t.p. of translation reversed from original. Includes bibliographical references and index. ISBN 0-8218-2732-4 (alk. paper) 1. Computable functions. I. Shen, A. (Alexander), 1958- II. Title. III. Se• ries. QA9.59 .V47 2003 511.3—dc21 2002038567 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294, USA. Requests can also be made by e-mail to reprint-permissionQams.org. © 2003 by the American Mathematical Society. -
Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science Series
BOOK REVIEW: CARNIELLI, W., CONIGLIO, M. Paraconsistent Logic: Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science Series. (New York: Springer, 2016. ISSN: 2214-9775.) Henrique Antunes Vincenzo Ciccarelli State University of Campinas State University of Campinas Department of Philosophy Department of Philosophy Campinas, SP Campinas, SP Brazil Brazil [email protected] [email protected] Article info CDD: 160 Received: 01.12.2017; Accepted: 30.12.2017 DOI: http://dx.doi.org/10.1590/0100-6045.2018.V41N2.HV Keywords: Paraconsistent Logic LFIs ABSTRACT Review of the book 'Paraconsistent Logic: Consistency, Contradiction and Negation' (2016), by Walter Carnielli and Marcelo Coniglio The principle of explosion (also known as ex contradictione sequitur quodlibet) states that a pair of contradictory formulas entails any formula whatsoever of the relevant language and, accordingly, any theory regimented on the basis of a logic for which this principle holds (such as classical and intuitionistic logic) will turn out to be trivial if it contains a pair of theorems of the form A and ¬A (where ¬ is a negation operator). A logic is paraconsistent if it rejects the principle of explosion, allowing thus for the possibility of contradictory and yet non-trivial theories. Among the several paraconsistent logics that have been proposed in the literature, there is a particular family of (propositional and quantified) systems known as Logics of Formal Inconsistency (LFIs), developed and thoroughly studied Manuscrito – Rev. Int. Fil. Campinas, v. 41, n. 2, pp. 111-122, abr.-jun. 2018. Henrique Antunes & Vincenzo Ciccarelli 112 within the Brazilian tradition on paraconsistency. A distinguishing feature of the LFIs is that although they reject the general validity of the principle of explosion, as all other paraconsistent logics do, they admit a a restrcited version of it known as principle of gentle explosion. -
Understanding Intuitionism
Understanding Intuitionism by Edward Nelson Department of Mathematics Princeton University http:==www.math.princeton.edu= nelson=papers.html ∼ Intuitionism was the creation of L. E. J. Brouwer [Br], and I like to think that classical mathematics was the creation of Pythagoras. Imag- ine a conversation between a classical mathematician and an intuitionist, say a woman and a man respectively. She speaks first: I have just proved xA. Congratulations! What9 is it? I don't know. I assumed x A and derived a contradiction. Oh. You proved x A.8 : That's what I said.:8 : Or another: I have proved A B. Good. Which did_ you prove? What? You said you proved A or B; which did you prove? Neither; I assumed A & B and derived a contradiction. Oh, you proved [ :A & :B]. That's right. It's: another: : way of putting the same thing. But he does not agree with her last statement; they have a different semantics and a different notion of proof. This paper is an attempt to understand the differences between them. I am grateful to Mitsuru Yasuhara for stimulating discussions of this material and for pinpointing errors and obscurities in earlier drafts. I also wish to thank Simon Kochen and Per Martin-L¨offor helpful comments. 1. Incomplete communications For a classical mathematician, a closed formula, true in a given structure, is a complete communication. It expresses an objective state of affairs in the universe of discourse; it is an ontological assertion. But 1 2 1. INCOMPLETE COMMUNICATIONS to an intuitionist, a closed true formula may be an incomplete communi- cation. -
Efficient Paraconsistent Reasoning with Ontologies and Rules
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) Efficient Paraconsistent Reasoning with Ontologies and Rules∗ Tobias Kaminski and Matthias Knorr and Joao˜ Leite NOVA LINCS Departamento de Informatica´ Universidade NOVA de Lisboa 2829-516 Caparica, Portugal Abstract Krotzsch¨ et al., 2011], others follow a hybrid combination of ontologies with nonmonotonic rules, either providing a Description Logic (DL) based ontologies and non- modular approach where rules and ontologies use their own monotonic rules provide complementary features semantics, and allowing limited interaction between them whose combination is crucial in many applications. [Eiter et al., 2008], or defining a unifying framework for both In hybrid knowledge bases (KBs), which combine components [Motik and Rosati, 2010; Knorr et al., 2011]. both formalisms, for large real-world applications, Equipped with semantics that are faithful to their constituting often integrating knowledge originating from dif- parts, these proposals allow for the specification of so-called ferent sources, inconsistencies can easily occur. hybrid knowledge bases (hybrid KBs) either from scratch, These commonly trivialize standard reasoning and benefiting from the added expressivity, or by combining ex- prevent us from drawing any meaningful conclu- isting ontologies and rule bases. sions. When restoring consistency by changing the The complex interactions between the ontology component KB is not possible, paraconsistent reasoning offers and the rule component of these hybrid KBs – even more so an alternative by allowing us to obtain meaningful when they result from combining existing ontologies and rule conclusions from its consistent part. bases independently developed – can easily lead to contra- In this paper, we address the problem of efficiently dictions, which, under classical semantics, trivialize standard obtaining meaningful conclusions from (possibly reasoning and prevent us from drawing any meaningful con- inconsistent) hybrid KBs. -
Paraconsistency and Duality
Paraconsistency and duality: between ontological and 1 epistemological views 1 2 WALTER CARNIELLI AND ABILIO RODRIGUES 2 Abstract: The aim of this paper is to show how an epistemic approach to paraconsistency may be philosophically justified based on the duality be- tween paraconsistency and paracompleteness. The invalidity of excluded middle in intuitionistic logic may be understood as expressing that no con- 3 structive proof of a pair of propositions A and :A is available. Analogously, in order to explain the invalidity of the principle of explosion in paraconsis- tent logics, it is not necessary to consider that A and :A are true, but rather that there are conflicting and non-conclusive evidence for both. Keywords: Paraconsistent logic, Philosophy of paraconsistency, Evidence, Intuitionistic logic 4 1 Introduction 5 Paraconsistent logics have been assuming an increasingly important place 6 in contemporary philosophical debate. Although from the strictly techni- 7 cal point of view paraconsistent formal systems have reached a point of 8 remarkable development, there are still some aspects of their philosophi- 9 cal significance that have not been fully explored yet. The distinctive fea- 10 ture of paraconsistent logics is that the principle of explosion, according to 11 which anything follows from a contradiction, does not hold, thus allowing 12 for the presence of contradictions without deductive triviality. Dialetheism 13 is the view according to which there are true contradictions (cf. e.g. Priest 14 1The first author acknowledges support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, thematic project LogCons) and from a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research grant.