WO 2017/059411 Al 6 April 2017 (06.04.2017) W P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/059411 Al 6 April 2017 (06.04.2017) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/059411 Al 6 April 2017 (06.04.2017) W P O P C T (51) International Patent Classification: (74) Agent: BAKER, C , Hunter; Wolf, Greenfield & Sacks, C08G 77/38 (2006.01) G02B 1/04 (2006.01) P.C., 600 Atlantic Avenue, Boston, MA 02210-2206 (US). C08G 77/20 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US2016/055 136 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 3 October 2016 (03. 10.2016) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 62/236,077 1 October 201 5 (01. 10.2015) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant: MEMORIAL SLOAN-KETTERING CAN¬ CER CENTER [US/US]; 1275 York Avenue, New York, (84) Designated States (unless otherwise indicated, for every NY 10065 (US). kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (72) Inventors; and TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicants : TAN, Derek, Shieh [US/US]; 345 East 73rd TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, St., Apt. 7c, New York, NY 10021 (US). EVANS, Chris¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, topher, E.. SHARMA, Indrajeet. TONGE, Peter, James LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, [GB/GB]; 103 Gaywood Drive, Newbury, Berkshire, RG14 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 2PJ (GB). MATARLO, Joe, S.. GW, KM, ML, MR, NE, SN, TD, TG). [Continued on nextpage] (54) Title: INHIBITORS OF MENAQUINONE BIOSYNTHESIS (57) Abstract: Provided herein are compounds of Formula (I) and pharma ceuticals acceptable salts, solvates, hy drates, polymorphs, co-crystals, tau- Αγ ~ tomers, stereoisomers, and prodrugs / thereof. Also provided are pharmaceut ical compositions, kits, and methods in volving the inventive compounds for the treatment of an infectious disease o (e.g., bacterial infection (e.g., tubercu losis, methicillin- resistant Stap hy lo 7~~V X coccus aureus). Figure 1 w o 2017/059411 Al III 11 II II 11 I I 11 II III I II III II il II I II Published: INHIBITORS OF MENAQUINONE BIOSYNTHESIS RELATED APPLICATIONS [0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent application, U.S.S.N. 62/236,077, filed October 1, 2015, which is incorporated herein by reference. GOVERNMENT SUPPORT [0002] This invention was made with Government support under AI068038, GM100477, GM102864, GM073546 and CA008748 awarded by the National Institutes of Health. The Government has certain rights in the invention. BACKGROUND [0003] The spread of infections due to drug-resistant pathogenic bacteria, such as multi-drug- resistant and extensively-resistant Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA), is a serious threat to the populations of both developing and developed countries. Approximately one-third of the world's population is infected with active or latent M. tuberculosis (see, e.g., Harper, Nat. Med. (2007) 13, 309-312; Nathan, Nat. Med. (2014), 20, 121-123; Keener, Nat. Med. (2014) 20, 976-978), and community-acquired MRSA is the cause of more than 7 million hospitalizations due to skin and soft tissue infections annually in the United States alone (see, e.g., McKenna, Nature (2012) 482, 23-25; Hersh et a , Arch. Intern. Med. (2008), 168, 1585-1591). There is a need for novel therapeutic agents to treat infections of pathogenic bacteria, particularly as new drug-resistant strains continue to emerge. SUMMARY [0004] Menaquinone, also known as Vitamin K2, is a lipid-soluble electron carrier used in the electron transport chain of cellular respiration. Menaquinone consists of a 2-methyl-l,4- naphthoquinone group attached to an isoprenoid side chain. The side chain typically consists of between 4 and 13 isoprene units {i.e., n = 4-13), and the length varies based on the biosynthetic pathway utilized to produce menaquinone in a particular species. For example, in M. tuberculosis the major vitamin K2 species is MK-9, menaquinone with nine isoprene units n = 9), whereas the major species synthesized by S. aureus is menaquinone with eight isoprenes (MK-8, n = 8). (menaquinone) [0005] Bacteria of the genus Mycobacterium, most Gram-positive bacteria, and some Gram- negative bacteria rely solely on menaquinone for electron transport, and this reliance extends to all species of bacteria growing under anaerobic conditions (see, e.g., Collins et al. , J. Gen. Microbiol. (1979) 110, 127-136; Nahaie et al. J. Gen. Microbiol. (1984) 130, 2427-2437; Hiratsuka et al. Science (2008) 321, 1670-1673). The reliance of certain pathogens on menaquinone for cellular respiration thus makes menaquinone biosynthesis a target for treatments of infectious disease. Such treatments would extend to latent infections (e.g., nonreplicating M. tuberculosis), since the latent pathogen must still respire. Since humans and other hosts lack the menaquinone biosynethetic pathway, treatments that target this pathway should by highly selective for the pathogen over the host. Menaquinone is synthesized by bacteria from chorismate via a biosynthetic pathway involving at least nine distinct enzymes, including MenA, MenB, MenC, MenD, MenE, MenF, MenH, Menl, and UbiE. [0006] MenE, also known as o-succinylbenzoate-CoA synthetase, is an acyl-CoA synthetase that shares similarity with several families of adenylate-forming enyzmes. These families include acyl-CoA synthetases, aryl-CoA synthetases, firefly luciferases, and the adenylation domains of non-ribosomal peptide synthetases (NRPSs), and have been grouped into a proposed superfamily of ANL enzymes (ANL stands for Acyl-CoA synthetases, NRPS adenylation domains, and Luciferase enzymes) (see, e.g., Gulick, ACS Chem. Biol. (2009) 62, 347-352). Members of these families catalyze two partial reactions, the initial adenylation of a carboxylate to form an acyl-AMP intermediate, and the subsequent coupling of the acyl group to a nucleophile (e.g., CoA) with release of an adenylate (e.g., AMP) (see, e.g., Gulick,). MenE catalyzes adenylation of o-succinylbenzoate with ATP, and the subsequent ligation of CoA to o-succinylbenzoate with release of AMP. Figure 1 shows the menaquinone biosynthetic pathway including the steps catalyzed by MenE. [0007] MenE inhibitors have been described by Tan, Tonge, and co-workers in Lu et al. Bioorg. Med. Chem. Lett. (2008) 18, 5963-5966, Lu et al. ChemBioChem (2012) 13, 129-136, and Matarlo et al. Biochemistry (2015) 54, 6514-6524, each of which is incorporated herein by reference. Inhibitors of MenE have also been previously described by Mesecar and co workers (see Tian et al. Biochemistry (2008) 47, 12434-12447). [0008] Compounds of the present invention may be capable of inhibiting ligases and adenylate-forming enzymes. In certain embodiments, the compounds of the invention are capable of inhibiting o-succinylbenzoate synthetase (MenE). In certain embodiments, the compounds of the invention are capable of inhibiting MenA, MenB, MenC, MenD, MenF, MenH, MenI, and/or UbiE. The compounds provided are analogs of the MenE intermediate o-succinylbenzoate-adensosinemonophosphate (OSB-AMP). In certain embodiments, the analogs comprise a linker (e.g., a sulfonyl moiety) that mimics the phosphate between the o- succinylbenzoate and adenosine moieties in OSB-AMP. [0009] Compounds of the present invention are of Formula (I): wherein, in certain embodiments, the o-benzoate moiety of OSB-AMP is replaced with group Y. Group Y comprises either an aryl or bicyclic moiety as shown below: [0010] In certain embodiments, a compound provided comprises a sulfamide linker, sulfamate linker, or vinylsulfonamide linker, as shown below: [0011] In certain embodiments, a provided compound is of Formula (III), (IV), or (V): (HI), [0012] Pharmaceutical compositions of the compounds are also provided, in addition to methods of preventing and/or treating an infectious disease using the compound or compositions thereof. The infectious disease may be a bacterial infection. The methods provided may be for treatment of an infection with a Gram-positive and/or Gram-negative bacteria, such as a Staphylococcus, Bacillus, or Escherichia bacteria. The methods may be for treatment of a mycobacterial infection, such as tuberculosis. The pharmaceutical compositions and methods may be useful in the treatment of drug-resistant tuberculosis infections or drug-resistant Staphylococcus aureus infections {e.g., MRSA, VRSA). [0013] The invention also provides methods useful for inhibiting ligases and adenylate- forming enzymes {e.g., o-succinylbenzoate-CoA synthetase (MenE)) or inhibiting menaquinone biosynthesis in an infectious microorganism by contacting the microorganism with a compound provided herein. Additionally provided are methods for inhibiting o- succinylbenzoate-CoA synthetase (MenE) or inhibiting menaquinone biosynthesis in an infectious microorganism in a subject by administering to the subject a compound provided herein. [0014] The details of certain embodiments of the invention are set forth in the Detailed Description of Certain Embodiments, as described below. Other features, objects, and advantages of the invention will be apparent from the Definitions, Examples, Figures, and Claims.
Recommended publications
  • WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) A61K 38/08 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2015/031213 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 May 2015 (15.05.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/000,43 1 19 May 2014 (19.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/129,746 6 March 2015 (06.03.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : GELLER, Bruce, L.
    [Show full text]
  • Food Sample Preparation for the Determination of Sulfonamides by High-Performance Liquid Chromatography: State-Of-The-Art
    separations Review Food Sample Preparation for the Determination of Sulfonamides by High-Performance Liquid Chromatography: State-of-the-Art Dimitrios Bitas 1, Abuzar Kabir 2 ID , Marcello Locatelli 3 ID and Victoria Samanidou 1,* ID 1 Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA; akabir@fiu.edu 3 Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] * Correspondence: [email protected]; Tel.: +30-231-099-7698 Received: 30 April 2018; Accepted: 28 May 2018; Published: 4 June 2018 Abstract: Antibiotics are a common practice in veterinary medicine, mainly for therapeutic purposes. Sectors of application include livestock farming, aquacultures, and bee-keeping, where bacterial infections are frequent and can be economically damaging. However, antibiotics are usually administered in sub-therapeutic doses as prophylactic and growth promoting agents. Due to their excessive use, antibiotic residues can be present in foods of animal origin, which include meat, fish, milk, eggs, and honey, posing health risks to consumers. For this reason, authorities have set maximum residue limits (MRLs) of certain antibiotics in food matrices, while analytical methods for their determination have been developed. This work focuses on antibiotic extraction and determination, part of which was presented at the “1st Conference in Chemistry for Graduate, Postgraduate Students and PhD Candidates at the Aristotle University of Thessaloniki”. Taking a step further, this paper is a review of the most recent sample preparation protocols applied for the extraction of sulfonamide antibiotics from food samples and their determination with high-performance liquid chromatography (HPLC), covering a five-year period.
    [Show full text]
  • Rifalazil | Medchemexpress
    Inhibitors Product Data Sheet Rifalazil • Agonists Cat. No.: HY-105099 CAS No.: 129791-92-0 Molecular Formula: C₅₁H₆₄N₄O₁₃ • Molecular Weight: 941.07 Screening Libraries Target: DNA/RNA Synthesis; Bacterial Pathway: Cell Cycle/DNA Damage; Anti-infection Storage: 4°C, sealed storage, away from moisture * In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture) SOLVENT & SOLUBILITY In Vitro DMSO : 8.33 mg/mL (8.85 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 1.0626 mL 5.3131 mL 10.6262 mL Stock Solutions 5 mM 0.2125 mL 1.0626 mL 2.1252 mL 10 mM --- --- --- Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.2 mg/mL (2.34 mM); Clear solution BIOLOGICAL ACTIVITY Description Rifalazil (KRM-1648; ABI-1648), a rifamycin derivative, inhibits the bacterial DNA-dependent RNA polymerase and kills bacterial cells by blocking off the β-subunit in RNA polymerase[1]. Rifalazil (KRM-1648; ABI-1648) is an antibiotic, exhibits high potency against mycobacteria, gram-positive bacteria, Helicobacter pylori, C. pneumoniae and C. trachomatis with MIC values from 0.00025 to 0.0025 μg/ml[3]. Rifalazil (KRM-1648; ABI-1648) has the potential for the treatment of Chlamydia infection, Clostridium difficile associated diarrhea (CDAD), and tuberculosis (TB)[2].
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,097,607 B2 Cabana Et Al
    USO08097607B2 (12) United States Patent (10) Patent No.: US 8,097,607 B2 Cabana et al. (45) Date of Patent: *Jan. 17, 2012 (54) LOW DOSE RIFALAZIL COMPOSITIONS Emori et al., “Evaluation of in Vivo Therapeutic Efficacy of a New Benzoxazinorifamycin, KRM-1648, in SCID Mouse Model for Dis (76) Inventors: Bernard E. Cabana, Montgomery seminated Mycobacterium avium Complex Infection.” International Village, MD (US); Arthur F. Michaelis, Journal of Antimicrobial Agents 10(1):59 (1998). Devon, PA (US); Gary P. Magnant, Fujii et al., “In Vitro and In Vivo Antibacterial Activities of KRM Topsfield, MA (US); Chalom B. 1648 and KRM-1657, New Rifamycin Derivatives.” Antimicrobial Sayada, Luxembourg (LU) Agents and Chemotherapy 38: 1118, (1994). Gidoh et al., “Bactericidal Action at Low Doses of a New Rifamycin (*) Notice: Subject to any disclaimer, the term of this Derivative, 3'-hydroxy-5'-(4-isobutyl-1-piperazinyl) patent is extended or adjusted under 35 Benzoxazinorifamycin (KRM-1648) on Mycobacterium leprae U.S.C. 154(b) by 447 days. Inoculated into Ffootpads of Nude Mice.” Leprosy Review 63(4):319 This patent is Subject to a terminal dis (1992). claimer. Heep et al., “Detection of Rifabutin Resistance and Association of rpoB Mutation S with Resistance to Four Rifamycin Derivatives in Helicobacter pylori.” Journal of Clinical Microbiology & Infectious (21) Appl. No.: 10/668,792 Diseases 21:143 (2002). Hirara et al., “In Vitro and in Vivo Activities of the (22) Filed: Sep. 23, 2003 Benezoxazinorifamycin KRM-1648 Against Mycobacterium tuber (65) Prior Publication Data culosis,” Antimocrobial Agents and Chemotherapy 39 (10):2295 (1995). US 2004/O15784.0 A1 Aug.
    [Show full text]
  • Supplementary Material a Gene Expression Signature Associated
    Supplementary Material A Gene Expression Signature Associated With Overall Survival in Patients With Hepatocellular Carcinoma Suggests a New Treatment Strategy Jean-Pierre Gillet, Jesper B. Andersen, James P. Madigan, Sudhir Varma, Rachel K. Bagni, Katie Powell, William E. Burgan, Chung-Pu Wu, Anna Maria Calcagno, Suresh V. Ambudkar, Snorri S. Thorgeirsson, Michael M. Gottesman Journal: Molecular Pharmacology Table S1: Compounds highlighted through the Connectivity Map tool Rank for Name of drug on Connectivity Map score - Number of Connectivity Map Probability of getting Proportion of other drugs Drug signature is drug, rated Connectivity Map similarity between the experiments used score normalized an enrichment this that share this same significant for what according to gene expression signature to compute mean using scores from high if there is no signature (smaller values percent of the "n" p-value of drug and the signature similarity random selections of connection between mean that the signature is experiments? used as input genes drug signature and very specific to this input signature particular drug) Rank C-map name Mean n Enrichment p Specificity Percent non-null 1 8-azaguanine 0.916 4 0.975 0 0 100 2 adiphenine -0.765 5 -0.909 0 0.0242 100 3 trichostatin A 0.485 182 0.306 0 0.7204 73 4 tanespimycin 0.474 62 0.297 0 0.3834 72 5 apigenin 0.851 4 0.937 0.00002 0.0234 100 6 0175029-0000 0.797 6 0.86 0.00002 0.0177 100 7 thiamphenicol -0.711 5 -0.903 0.00004 0 100 8 thioguanosine 0.821 4 0.902 0.0001 0.0177 100 9 viomycin -0.723
    [Show full text]
  • European Surveillance of Healthcare-Associated Infections in Intensive Care Units
    TECHNICAL DOCUMENT European surveillance of healthcare-associated infections in intensive care units HAI-Net ICU protocol Protocol version 1.02 www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT European surveillance of healthcare- associated infections in intensive care units HAI-Net ICU protocol, version 1.02 This technical document of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Carl Suetens. In accordance with the Staff Regulations for Officials and Conditions of Employment of Other Servants of the European Union and the ECDC Independence Policy, ECDC staff members shall not, in the performance of their duties, deal with a matter in which, directly or indirectly, they have any personal interest such as to impair their independence. This is version 1.02 of the HAI-Net ICU protocol. Differences between versions 1.01 (December 2010) and 1.02 are purely editorial. Suggested citation: European Centre for Disease Prevention and Control. European surveillance of healthcare- associated infections in intensive care units – HAI-Net ICU protocol, version 1.02. Stockholm: ECDC; 2015. Stockholm, March 2015 ISBN 978-92-9193-627-4 doi 10.2900/371526 Catalogue number TQ-04-15-186-EN-N © European Centre for Disease Prevention and Control, 2015 Reproduction is authorised, provided the source is acknowledged. TECHNICAL DOCUMENT HAI-Net ICU protocol, version 1.02 Table of contents Abbreviations ...............................................................................................................................................
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • Pharmacokinetic Drug Interactions of Antimicrobial Drugs: a Systematic Review on Oxazolidinones, Rifamycines, Macrolides, Fluoroquinolones, and Beta-Lactams
    Pharmaceutics 2011, 3, 865-913; doi:10.3390/pharmaceutics3040865 OPEN ACCESS Pharmaceutics ISSN 1999-4923 www.mdpi.com/journal/pharmaceutics Review Pharmacokinetic Drug Interactions of Antimicrobial Drugs: A Systematic Review on Oxazolidinones, Rifamycines, Macrolides, Fluoroquinolones, and Beta-Lactams Mathieu S. Bolhuis *, Prashant N. Panday, Arianna D. Pranger, Jos G. W. Kosterink and Jan-Willem C. Alffenaar Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands; E-Mails: [email protected] (P.N.P.); [email protected] (A.D.P.); [email protected] (J.G.W.K.); [email protected] (J.-W.C.A.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-50-361-4071; Fax: +31-50-361-4078 Received: 15 October 2011; in revised form: 26 October 2011 / Accepted: 9 November 2011 / Published: 18 November 2011 Abstract: Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]