Impacts of the Invasive Tree Acacia Mearnsii on Riparian and Instream Aquatic Environments in the Cape Floristic Region, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of the Invasive Tree Acacia Mearnsii on Riparian and Instream Aquatic Environments in the Cape Floristic Region, South Africa Impacts of the invasive tree Acacia mearnsii on riparian and instream aquatic environments in the Cape Floristic Region, South Africa By Moegamad Zaid Railoun Thesis presented in fulfilment of the requirements for the degree of Master of Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisors: Dr. John Simaika and Dr. Shayne Jacobs Department of Conservation Ecology and Entomology Faculty of AgriSciences Stellenbosch University March 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the thesis entitled “Impacts of the invasive tree Acacia mearnsii on riparian and instream aquatic environments in the Cape Floristic Region, South Africa”. I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2018 M. Zaid Railoun Copyright © 2018 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za SUMMARY In this study, I compared the notoriously invasive wattle species Acacia mearnsii, to two native woody species in terms of patterns leaf litterfall and nutrient resorption in riparian environments, and the decomposition of the leaf litter in aquatic environments and in stream macroinvertebrate communities in mountain streams in the Fynbos biome of the CFR. More explicitly, the study assessed: (1) leaf litter fall between A. mearnsii and co-occuring native species on an monthly basis (2) the nutrient (N and C) concentrations dropped in leaf litter inputs monthly (3) the amount of nutrients (N and P) resorbed between species before senescence (4) the decomposition rates between A. mearnsii and fynbos species in away and home environments to test the Home Field Advantage (HFA) hypothesis and, finally (5) the macroinvertebrate assemblages in different leaf bags in home and away environments to test macroinvertebrate litter affinity effects instream. The results in the study indicate that A. mearnsii had seven to times times higher leaf litterfall rates in the Wit and Du Toit‟s River compared to co-occuring native species in invaded and near pristine riparian zones. Acacia mearnsii had two peaks in litterfall, one at the end of the dry season in mid-autumn, and the other in mid-summer. A. mearnsii also kept a higher foliar N concentration than co-occuring native species, which gives the wattle species a competitive advantage. Native species exhibited low nitrogen concentrations which are reflected annually. In addition, the results indicated that co-occuring natives efficiently recycles nutrients before leaf abscission, for instance through high P resorption efficiencies. Acacia mearnsii was not as efficient in recycling nutrients, most notably N, but was more efficient in recycling P, suggesting it may require more P than can be readily supplied from the soil. The results indicate that the studied species had high resorption parameters (proficiency, A. mearnsii and efficiency in native species), which indicated a P limited landscape. This can be an important reason in the success of Acacia spp. in South African landscapes and particularly in riparian zones. The results also indicated that A. mearnsii and fynbos species differed locally at all sites in instream decomposition rates, with A. mearnsii decaying at a much faster rate. The difference in decay rates was attributed to differences in litter quality characteristics between native and invasive species (N concentration and C:N ratio). The faster decay rates in A. mearnsii due to leaf litter with high N and P can have a detrimental effect on in stream functionality therefore affect the species diversity of aquatic biota. The macroinvertebrate litter affinity effects were tested and showed no preference to home turf litter or introduced littertype regardless of the local environment at each invasion status. Functional feeding groups increased at both Wit River site, as macroinvertebrates were season-dependent on iii Stellenbosch University https://scholar.sun.ac.za leaf litter and additionally resources A. mearnsii site may hold. Conversely, at the Du Toit‟s River low invertebrate diversity and abundances and was regulated by stream characteristics and site geomorphology at both reaches. Furthermore, seasonal hydrological regime could have accounted for macroinvertebrate species abundance and diversity at each river as there was a selective pressure on communities to utilize resources. The research contributes to a more comprehensive understanding of nutrient cycling, acquisition and conservation strategies of native compared to invasive species in the Fynbos biome in South Africa. Additionally it also gives insight into how invading species could potentially modify aquatic ecosystems and change macroinvertebrate communities in disturbed environments. Invaders can strongly affect multiple services in an ecosystem therefore it is imperative that these mulitiple roles should be asssed and managed as environmental change (i.e, drought) could cause a long lasting effect on ecosystems holistically (riparian areas, in stream biogeochemistry and aquatic assemblages). iv Stellenbosch University https://scholar.sun.ac.za OPSOMMING In hierdie studie het ek die berugte indringende wattle spesie Acacia mearnsii teenoor twee inheemse boom spesies in term van patrone van blare val en voedingstowwe resorpsie in rivieroewers omgewings en ontbinding proses van blare in akwatiese en makro- ongewerweldes gemeenskappe binne bergagtige strome in die Fynbos bioom van die KFO. Meer uitdruklik, die studie beoordeel: (1) blaar val patrone tussen die A. mearnsii en mede- voorkomende inheemse spesies op n maandelikse bases (2) die voedingstowwe (N en C) konsentrasies in blaar val maandeliks (3) die hoeveelheid voedingstowwe (N en P) wat geabosrbeer word tussen blaar spesies voor veroudering (4) en die ontbinding tariewe of proses tussen A. mearnsii en fynbos spesies in naby tuis omgewings en weg van n tuis omgewing om die Home Field Advantage (HFA) hipotese te toets en uiteindelik die makroongewerweldes versameling in verskillende blaar sakkies in tuis en weg van die tuis omgewings om die makro-ongewerweldes blare affiniteit binne stroom te toets. Die resultate in die studie dui aan dat A. mearnsii sewe tot tien keer hoër blaar val hoeveelheid in beide die Wit en Du Toit‟s Rivier in vergelyking met die mede-voorkomende inheemse boom spesies binne indringende en byna ongerepte rivieroewers omgewingssone. Acacia mearnsii het twee pieke in blaar val, waar een voorkom aan die einde van die droe seisoen in middel herfs en die ander een middel somer in Desember. Acacia mearnsii het hou ook n relatiewe hoër blaar N konsentrasie as die mede- voorkomende inheemse spesies wat die wattle spesies n mededingende voordeel gee. Die inheemse spesies stal uit n laer stikstof konsentrasie wat aan gedui word maandeliks. Daarbenewens, die resultate dui aan dat die mede-voorkomende inheemse spesies doeltreffend voedingstowwe herwin voor blaar afsnyding, byvoorbeeld deur hoe P resorpsie doeltreffend te gebruik. A. mearnsii was nie so doeltreffend in die herwinning van voedingstowwe veral N, maar was meer doeltreffend in die herwinning van P wat aandui dat die spesie meer P vereis as wat dit beskikbaar is van die rivieroewers omgewing. Die resultate dui ook aan dat die bestudeerde spesie „n hoër resorpsie grens het veral in vaardigheid in die A. mearnsii and doeltreffendheid in die inheemse boom spesies, wat aandui „n P limitasie in die rivieroewers omgewing. Dit kan uiters die belangrikste rede wees vir die sukses van die Acacia spp. in Suid Afrika rivieroewers omgewings. Die resultate dui ook aan dat A. mearnsii en fynbos species verskillend plaaslik by al die studie plekke in die ontbinding proses binne in die stroom gebiede met die A. mearnsii specie wat die vinnigste ontbind oor tyd. Die verskille in die ontbindings van die blaar spesies was aangedui deur die verskille in blaar kwaliteit tussen die inheemse en die indringende spesies (N konsentrasie en C:N verhoudings). Die vinnige ontbinding proses in v Stellenbosch University https://scholar.sun.ac.za die A. mearnsii weens die blaar val wat hoë N en P inhoud besit kan dalk n nadelige impak het op binne stroom funksie en as gevolg van dit mag die spesie se diversiteit en akwatiese biota affekteer of beinvloed. Die makroongewerweldes blare affiniteit was ook getoets en die resultate wys geen voorkeur vir blaar tipe van sy tuis omgewing of van die blaar tiepe wat voorgestel was in die omgewing nie. Die funksionele voedings groepe het vermeerder by beide, Wit Rivier studie plekke omdat die makroongewerweldes was seisoenaal afhanklik van die blaar val asook die hulpbronne wat A. mearnsii indringende plekke hou. By die Du Toit‟s Rivier was lae nommers van ongewerweldes diversiteit en verspreidings gereguleer deur stroom eienskappe en die verskillende plekke se geomorfologie. Die seisoenale hidrologiese patron kan dalk verantwoordelik wees vir die makro-ongewerweldes spesies se verspreiding en diversiteit by beide riviere as gevolg van n selektiewe drukking deur gemeenskappe om hulpbronne te gebruik. Die navorsing dra by tot „n meer omvattende begrip van die voedingstowwe siklus, verkryging en bewaring strategië van die mede-voorkomende inheemse boom spesies in vergelyking teen die indringende
Recommended publications
  • Technical Note 37: Identification, Ecology, Use, and Culture of Sitka
    TECHNICAL NOTES _____________________________________________________________________________________________ US DEPT. OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE Portland, OR April 2005 PLANT MATERIALS No. 37 Identification, Ecology, Use and Culture of Sitka Alder Dale C. Darris, Conservation Agronomist, Corvallis Plant Materials Center Introduction Sitka alder [Alnus viridis (Vill.) Lam. & DC. subsp. sinuata (Regel) A.& D. Löve] is a native deciduous shrub or small tree that grows to height of 20 ft, occasionally taller. Although a non-crop species, it has several characteristics useful for reclamation, forestry, and erosion control. The species is known for abundant leaf litter production, the fixation of atmospheric nitrogen in association with Frankia bacteria, and a strong fibrous root system. Where locally abundant, it naturally colonizes landslide chutes, areas of stream scour and deposition, soil slumps, and other drastic disturbances resulting in exposed minerals soils. These characteristics make Sitka alder particularly useful for streambank stabilization and soil building on impoverished sites. In addition, its low height and early slowdown in growth rate makes it potentially more desirable than red alder (Alnus rubra) to interplant with conifers such as Douglas fir (Pseudotsuga menzieii) and lodgepole pine (Pinus contorta) where soil fertility is moderate to low. However, high densities can hinder forest regeneration efforts. The species may also be useful as a fast growing shrub row in field windbreaks. Sitka alder is most abundant at mid to subalpine elevations. Low elevation seed sources (below 100 m) are uncommon but probably provide the best material for reclamation and erosion control projects on valley floors and terraces. Distribution and Identification Sitka alder (Alnus viridis subsp. sinuata) is a native deciduous shrub or small tree that grows to a height of 1-6 m (3-19 ft) in the mountains and 6-12 m (19-37ft) at low elevations.
    [Show full text]
  • The Prosopis Juliflora - Prosopis Pallida Complex: a Monograph
    DFID DFID Natural Resources Systems Programme The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA - the organic organisation The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA Coventry UK 2001 organic organisation i The Prosopis juliflora - Prosopis pallida Complex: A Monograph Correct citation Pasiecznik, N.M., Felker, P., Harris, P.J.C., Harsh, L.N., Cruz, G., Tewari, J.C., Cadoret, K. and Maldonado, L.J. (2001) The Prosopis juliflora - Prosopis pallida Complex: A Monograph. HDRA, Coventry, UK. pp.172. ISBN: 0 905343 30 1 Associated publications Cadoret, K., Pasiecznik, N.M. and Harris, P.J.C. (2000) The Genus Prosopis: A Reference Database (Version 1.0): CD ROM. HDRA, Coventry, UK. ISBN 0 905343 28 X. Tewari, J.C., Harris, P.J.C, Harsh, L.N., Cadoret, K. and Pasiecznik, N.M. (2000) Managing Prosopis juliflora (Vilayati babul): A Technical Manual. CAZRI, Jodhpur, India and HDRA, Coventry, UK. 96p. ISBN 0 905343 27 1. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. (R7295) Forestry Research Programme. Copies of this, and associated publications are available free to people and organisations in countries eligible for UK aid, and at cost price to others. Copyright restrictions exist on the reproduction of all or part of the monograph.
    [Show full text]
  • Wattles of the City of Whittlesea
    Wattles of the City of Whittlesea PROTECTING BIODIVERSITY ON PRIVATE LAND SERIES Wattles of the City of Whittlesea Over a dozen species of wattle are indigenous to the City of Whittlesea and many other wattle species are commonly grown in gardens. Most of the indigenous species are commonly found in the forested hills and the native forests in the northern parts of the municipality, with some species persisting along country roadsides, in smaller reserves and along creeks. Wattles are truly amazing • Wattles have multiple uses for Australian plants indigenous peoples, with most species used for food, medicine • There are more wattle species than and/or tools. any other plant genus in Australia • Wattle seeds have very hard coats (over 1000 species and subspecies). which mean they can survive in the • Wattles, like peas, fix nitrogen in ground for decades, waiting for a the soil, making them excellent cool fire to stimulate germination. for developing gardens and in • Australia’s floral emblem is a wattle: revegetation projects. Golden Wattle (Acacia pycnantha) • Many species of insects (including and this is one of Whittlesea’s local some butterflies) breed only on species specific species of wattles, making • In Victoria there is at least one them a central focus of biodiversity. wattle species in flower at all times • Wattle seeds and the insects of the year. In the Whittlesea attracted to wattle flowers are an area, there is an indigenous wattle important food source for most bird in flower from February to early species including Black Cockatoos December. and honeyeaters. Caterpillars of the Imperial Blue Butterfly are only found on wattles RB 3 Basic terminology • ‘Wattle’ = Acacia Wattle is the common name and Acacia the scientific name for this well-known group of similar / related species.
    [Show full text]
  • Acacia Mearnsii) in the Tsomo Valley in Eastern Cape: Consequences on the Water Recharge and Soil Dynamics (An Ongoing Study)
    Grassroots: Newsletter of the Grassland Society of Southern Africa ▪ May 2009 ▪ Vol. 9 ▪ No. 2 Impact of the removal of black wattle (Acacia mearnsii) in the Tsomo Valley in Eastern Cape: Consequences on the water recharge and soil dynamics (an ongoing study) HPM Moyo, S Dube and AO Fatunbi Department of Livestock and Pasture Sciences, University of Fort Hare Email: [email protected] lack wattle (Acacia mearnsii) (Galatowitsch and Richardson is a fast growing leguminous 2004). Acacia mearnsii ranks first in B (nitrogen fixing) tree and it is water use among invasive species, often used as a commercial source using 25% of the total amount, and of tannins and a source of fire wood is estimated to reduce mean annual for local communities (DWAF 1997). runoff by 7% in South Africa (Dye Riparian ecosystems are widely re- and Jarmain 2004). The invasive garded as being highly prone to in- ability of this species is partly due to vasion by alien plants, especially A. its ability to produce large numbers mearnsii, largely because of their of long-lived seeds (which may be dynamic hydrology, nutrient levels, triggered to germinate by fires) and and ability to disperse propagules the development of a large crown (Galatowitsch and Richardson that shades other vegetation (Nyoka 2004). Disturbing native vegetation 2003). also causes invasion as this often Acacia mearnsii threatens na- prepares a seed bed for invader spe- tive habitats by competing with in- cies (DWAF 1997). Native fynbos digenous vegetation, replacing grass tree species lack mycorrhyzal asso- communities; reducing native biodi- ciates and therefore are less efficient versity and increasing water loss at nutrient uptake (Smita 1998), from the riparian zones (Nyoka leading to them being out-competed 2003).
    [Show full text]
  • Marketing Brochure (Updated 2021)
    DSA MARKETING MATE RI ALS DSA 2019-2020 Catalogue SKU: 3017 Price: No Charge Wynstellar Collection Catalogue SKU: 3021 Price: No Charge DSA 2021 Price Guide SKU: 3018 Price: No Charge PRINTED PRICE 2021 PRICE GUIDE COMING SOON! PDF 2021 Price Guide available now Stain Sample Keyring SKU: /DSA STAIN SAMP Price: No Charge 2-1/4” X 4” Stain Samples Finishes: Coco, Russet, Chestnut Wood Species: Mahogany & Knotty Alder 6 total stain samples Wynstellar Sample Keyring SKU: /DSA STAIN SAMP Price: No Charge 3” X 4” Stain Samples Finishes: Ebony & CInnamon Bark Wood Species: Accoya 2 total stain samples Glass Sample SKU: GLASS SAMPLE Price: $20.00 Shipping Cost: $15.00 Ships Via: UPS 3” X 3” Panes Overall Size: 13” X 6-3/4” Glass Types: Rain, Flemish, Clear Beveled, Sandblasted, Gluechip, Grain IG Low E, White Laminated, and Fluted IG Low E Miniature Wynstellar Bi Fold Door SKU: 3037-FD Price: $900.00 Crating Cost: $100.00 Shipping Cost: $175.00 ShipsVia: Averrit *can be shipped with existing order to avoid seperate S&H - crating still applies 13” X 27” Door Panels Dual-Finished : Ebony & Primed (back) Timber: Accoya Clear Ig Low E Glass Overall Size: 48” X 36” Mahogany Pre-Hung Sample SKU: 3006 Price: $100 Shipping Cost: $50 Ships Via: UPS 17-3/4” X 19-1/2” Frame Size Timber: Mahoghany Knotty Alder Pre-Hung Sample SKU: 3006 Price: $100 Shipping Cost: $50 Ships Via: UPS 17-3/4” X 19-1/2” Frame Size Timber: Knotty Alder Mahogany Corner Cut Samples SKU: 3001 Price: $40 Shipping Cost: $30 Ships Via: UPS 12” X 12” Sample Timber: Mahogany Coco, Russet,
    [Show full text]
  • A Case Study on the Potential of the Multipurpose Prosopis Tree
    23 Underutilised crops for famine and poverty alleviation: a case study on the potential of the multipurpose Prosopis tree N.M. Pasiecznik, S.K. Choge, A.B. Rosenfeld and P.J.C. Harris In its native Latin America, the Prosopis tree (also known as Mesquite) has multiple uses as a fuel wood, timber, charcoal, animal fodder and human food. It is also highly drought-resistant, growing under conditions where little else will survive. For this reason, it has been introduced as a pioneer species into the drylands of Africa and Asia over the last two centuries as a means of reclaiming desert lands. However, the knowledge of its uses was not transferred with it, and left in an unmanaged state it has developed into a highly invasive species, where it encroaches on farm land as an impenetrable, thorny thicket. Attempts to eradicate it are proving costly and largely unsuccessful. In 2006, the problem of Prosopis was hitting the headlines on an almost weekly basis in Kenya. Yet amidst calls for its eradication, a pioneering team from the Kenya Forestry Research Institute (KEFRI) and HDRA’s International Programme set out to demonstrate its positive uses. Through a pilot training and capacity building programme in two villages in Baringo District, people living with this tree learned for the first time how to manage and use it to their benefit, both for food security and income generation. Results showed that the pods, milled to flour, would provide a crucial, nutritious food supplement in these famine-prone desert margins. The pods were also used or sold as animal fodder, with the first international order coming from South Africa by the end of the year.
    [Show full text]
  • COMÚN INGLÉS COMÚN ESPAÑOL NOMBRE CIENTÍFICO Alder Aliso
    COMÚN INGLÉS COMÚN ESPAÑOL NOMBRE CIENTÍFICO Alder Aliso Alnus spp. Alligator juniper Tascate Juniperus deppeana Almond Almendro Prunus dulcis Anaqua Manzanillo Ehretia anacua Apricot Albaricoquero Prunus armeniaca Ash Fresno, plumero Fraxinus spp. Ashe juniper Sabino Juniperus ashei Basswood Tilo Tilia spp. Ball moss Gallitos Tillandsia recurvata Beech Haya Fagus spp. Birch Abedul Betula spp. Black cherry Cerezo Prunus serotina Black locust Algarrobo Robinia pseudoacacia Boxelder Negundo Acer negundo Buckeye Castaño de Indias Aesculus spp. Buckthorn Rhamnus Rhamnus spp. Bumelia Coma Bumelia spp. Catalpa Catalpa Catalpa spp. Catclaw acacia Uña de gato Acacia greggii Cedar Cedro Cedrus spp. Chestnut Castaño Castanea spp. Chinaberry Canelo, lila de China, paraiso, jaboncillo Melia azedarach Common apple Manzano Malus x domestica Common edible fig Higo Ficus carica Common olive Olivo Olea europaea Cottonwood/aspen Álamo/ álamo temblón Populus spp. Crape myrtle Crespón, reina de las flores Langerstroemia spp. Cypress Ciprés Cupressus spp. Desert willow Flor de mimbre Chilopsis linearis Dogwood Cornejo Cornus spp. Eastern red cedar Cedro rojo, enebro Juniperus virginiana Ebony Ébano Diospyros spp. Elm Olmo Ulmus spp. Eucalyptus Eucalipto Eucalyptus spp. Evergreen sumac Lantrisco, lentisco Rhus sempervirens Filbert nut tree Avellano Corylus avellana Fir Abeto Abies spp. Ginkgo, maidenhair Gingo Ginkgo biloba Grape Parra, uva Vitis spp. Hackberry Palo blanco Celtis spp. Hemlock Cicuta Tsuga spp. Hickory Nogal americano Carya spp. Holly Acebo Ilex spp. Juniper Enebro Juniperus spp. Larch Alerce Larix spp. Leadtree Tepeguaje Leucaena spp. Live oak Encino, tesmoli, texmol Quercus virginiana Loquat Níspero Eriobotrya japonica Madrone Madroño Arbutus spp. Magnolia Palo de cacique, magnolio Magnolia grandiflora Mahogany Caoba Swietenia spp.
    [Show full text]
  • Henderson, L. (2007). Invasive, Naturalized and Casual Alien Plants in Southern Africa
    Bothalia 37,2: 215–248 (2007) Invasive, naturalized and casual alien plants in southern Africa: a sum- mary based on the Southern African Plant Invaders Atlas (SAPIA) L. HENDERSON* Keywords: biomes, casual alien plants, invasive plants, Lesotho, naturalized plants, roadside surveys, SAPIA mapping project, South Africa, Swaziland ABSTRACT The primary objective of this publication is to provide an overview of the species identity, invasion status, geographical extent, and abundance of alien plants in South Africa, Swaziland and Lesotho, based on fi eld records from 1979 to the end of 2000. The dataset is all the species records for the study area in the Southern African Plant Invaders Atlas (SAPIA) database during this time period. A total of 548 naturalized and casual alien plant species were catalogued and invasion was recorded almost throughout the study area. Most invasion, in terms of both species numbers and total species abundance, was recorded along the southern, southwestern and eastern coastal belts and in the adjacent interior. This area includes the whole of the Fynbos and Forest Biomes, and the moister eastern parts of the Grassland and Savanna Biomes. This study reinforces previous studies that the Fynbos Biome is the most extensively invaded vegetation type in South Africa but it also shows that parts of Savanna and Grassland are as heavily invaded as parts of the Fynbos. The Fabaceae is prominent in all biomes and Acacia with 17 listed species, accounts for a very large proportion of all invasion. Acacia mearnsii was by far the most prominent invasive species in the study area, followed by A.
    [Show full text]
  • ACACIA Miller, Gard
    Flora of China 10: 55–59. 2010. 31. ACACIA Miller, Gard. Dict. Abr., ed. 4, [25]. 1754, nom. cons. 金合欢属 jin he huan shu Acaciella Britton & Rose; Racosperma Martius; Senegalia Rafinesque; Vachellia Wight & Arnott. Morphological characters and geographic distribution are the same as those of the tribe. The genus is treated here sensu lato, including the African, American, Asian, and Australian species. Acacia senegal (Linnaeus) Willdenow and A. nilotica (Linnaeus) Delile were treated in FRPS (39: 28, 30. 1988) but are not treated here because they are only rarely cultivated in China. 1a. Leaves reduced to phyllodes. 2a. Phyllodes 10–20 × 1.5–6 cm; inflorescence a spike ...................................................................................... 1. A. auriculiformis 2b. Phyllodes 6–10 × 0.4–1 cm; inflorescence a head ................................................................................................... 2. A. confusa 1b. Leaves bipinnate. 3a. Flowers in racemes or spikes. 4a. Trees armed; pinnae 10–30 pairs ....................................................................................................................... 7. A. catechu 4b. Shrubs unarmed; pinnae 5–15 pairs. 5a. Racemes 2–5 cm; midveins of leaflets close to upper margin ............................................................ 8. A. yunnanensis 5b. Racemes shorter than 2 cm; midveins of leaflets subcentral ........................................................................ 5. A. glauca 3b. Flowers in heads, then rearranged in panicles. 6a.
    [Show full text]
  • An Assessment of the Impacts of Invasive Australian Wattle Species on Grazing Provision and Livestock Production in South Africa
    AN ASSESSMENT OF THE IMPACTS OF INVASIVE AUSTRALIAN WATTLE SPECIES ON GRAZING PROVISION AND LIVESTOCK PRODUCTION IN SOUTH AFRICA by Thozamile Steve Yapi Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Conservation Ecology, Faculty of AgriSciences, Stellenbosch University Supervisor: Dr Patrick O’Farrell Co-supervisors: Prof. Karen Esler and Dr Luthando Dziba December 2013 Stellenbosch University http://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Thozamile Steve Yapi Full names and surname December 2013 Date Copyright © 2013 Stellenbosch University All rights reserved i Stellenbosch University http://scholar.sun.ac.za ABSTRACT I investigated the impacts of the invasive wattle species (Acacia mearnsii, A. dealbata, A. decurrens), on the ecological function and productivity of rangelands in South Africa and their ability to sustain livestock production. More specifically, this study set out to: (1) assess grazing areas at a national scale; (2) identify evidence of progressive impacts of these species on livestock production across a selection of magisterial districts; (3) determine the effects of A. mearnsii density on growth form dominance of indigenous plant species, and highlight how this translates into impacts in forage quality and quantity; (4) determine the effects of A. mearnsii invasion on soil resources and conditions (key determinates of ecological function) required to support grazing production; and finally (5) determine to effects that clearing operations have had on the provision of grazing resources.
    [Show full text]
  • Adoption, Use and Perception of Australian Acacias Around the World
    Diversity and Distributions, (Diversity Distrib.) (2011) 17, 822–836 S BIODIVERSITY Adoption, use and perception of PECIAL ISSUE RESEARCH Australian acacias around the world Christian A. Kull1*, Charlie M. Shackleton2, Peter J. Cunningham3, Catherine Ducatillon4, Jean-Marc Dufour-Dror5, Karen J. Esler6, James B. Friday7, Anto´nio C. Gouveia8, A. R. Griffin9, Elizabete Marchante8, Stephen J. :H Midgley10, Anı´bal Pauchard11, Haripriya Rangan1, David M. Richardson12, Tony Rinaudo13, Jacques Tassin14, Lauren S. Urgenson15, Graham P. von Maltitz16, Rafael D. Zenni17 and Matthew J. Zylstra6 UMAN - MEDIATED INTRODUCTIONS OF 1School of Geography and Environmental Science, ABSTRACT Monash University, Melbourne, Australia, 2Department of Environmental Science, Rhodes Aim To examine the different uses and perceptions of introduced Australian University, Grahamstown, South Africa, 3Sowing acacias (wattles; Acacia subgenus Phyllodineae) by rural households and Seeds of Change in the Sahel Project, SIM, communities. Maradi, Niger Republic, 4INRA, Jardin Thuret, Antibes, France, 5Environmental Policy Center, Location Eighteen landscape-scale case studies around the world, in Vietnam, Jerusalem Institute for Israel Studies, Jerusalem, India, Re´union, Madagascar, South Africa, Congo, Niger, Ethiopia, Israel, France, Israel, 6Department of Conservation Ecology and Portugal, Brazil, Chile, Dominican Republic and Hawai‘i. A Journal of Conservation Biogeography Entomology and Centre for Invasion Biology, Stellenbosch University, South Africa, 7University
    [Show full text]
  • Variation in Basic Wood Density and Percentage Heartwood in Temperate Australian Acacia Species
    126 Wood of temperate Australian acacias Variation in basic wood density and percentage heartwood in temperate Australian Acacia species S.D. Searle1,2 and J.V. Owen3 1PO Box 6201, O’Connor, ACT 2602, Australia 2Email: [email protected] 3CSIRO Forestry and Forest Products, PO Box E4008, Kingston, ACT 2604, Australia Revised manuscript received 15 March 2005 Summary 530–598 kg m–3 (Hillis 1997) and 550–850 kg m–3 (Dobson and Feely 2002). Species, provenance and within-tree variation in basic wood density and percentage heartwood were assessed in 18 tree-form A few Acacia species and provenance trials planted in southern Acacia species/subspecies (40 provenances) and Eucalyptus nitens Australia in the 1990s have been assessed for wood density (either (one provenance) from southern Australia. The 229 trees from basic, air-dry or green) at a particular age and the sampling strategy two 8-y-old trials in the Australian Capital Territory were has been described (Barbour 2000; Clark 2001). One of the destructively sampled. difficulties in comparing such density data, when they are available, is that they have frequently been collected using different Whole-tree, volume-weighted basic wood densities for the Acacia procedures for within-tree and within-population sampling species were between 568 and 771 kg m–3 and provenance means (Balodis 1994; Downes et al. 1997; Ilic et al. 2000). were in the range 520–778 kg m–3. Percentage heartwood, sampled at 20% of tree height, ranged between 2.4 and 43.8% for species Basic wood density influences both the paper-making process and 0.0 and 44.1% for provenances.
    [Show full text]