Cryptocurrency: an Economy of Evolution
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Advantages and Disadvantages of Bitcoin Payments in the New Economy Carina-Elena Stegăroiu, Lecturer Phd, „Constantin Br
Annals of the „Constantin Brâncuşi” University of Târgu Jiu, Economy Series, Issue 1/2018 THE ADVANTAGES AND DISADVANTAGES OF BITCOIN PAYMENTS IN THE NEW ECONOMY CARINA-ELENA STEGĂROIU, LECTURER PHD, „CONSTANTIN BRÂNCUŞI” UNIVERSITY, TÂRGU JIU, ROMANIA [email protected] Abstract In the Internet economy, with the help of cryptography, a branch of mathematics dealing with the security of information, as well as authentication and restriction of access to a computer system, a new digital coin as an alternative to national currencies appeared. In accomplishing this, using both mathematical methods (taking advantage of, for example, the difficulty of factorizing very large numbers), and quantum encryption methods. Throughout the world, information technology companies are focusing on information protection, inventing day-to-day methods with greater durability. In the horizon of Information Security, Quantum Cryptography has emerged, generating new possibilities in that field, hoping that data will be better protected and that the digital currency will resist over time and eventually evolve in the future, although Kurzweil, Bitcoin's pioneering technology is unlikely to be used in this respect. The idea of virtual alternatives to national currencies is not new, with advantages and disadvantages. The advantages of this coin are high payment freedom, transparency of information, high security, reduced risks for traders. Among the disadvantages we highlight the risk and volatility, the lack of notification and understanding, with incomplete functions, but which are developing, so Bitcoin is not perfect. Keywords: bitcoin, criptografie, methodology, economic growth, economic agent, branch production, virtual economy, monedă digitală Classification JEL: F60, F61. F62, F63 1. Introduction The idea of virtual alternatives to national currencies is not a new one, Iceland being a country that in April issued its own virtual modular Auroracoin, distributing it to the population. -
YEUNG-DOCUMENT-2019.Pdf (478.1Kb)
Useful Computation on the Block Chain The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Yeung, Fuk. 2019. Useful Computation on the Block Chain. Master's thesis, Harvard Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364565 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 111 Useful Computation on the Block Chain Fuk Yeung A Thesis in the Field of Information Technology for the Degree of Master of Liberal Arts in Extension Studies Harvard University November 2019 Copyright 2019 [Fuk Yeung] Abstract The recent growth of blockchain technology and its usage has increased the size of cryptocurrency networks. However, this increase has come at the cost of high energy consumption due to the processing power needed to maintain large cryptocurrency networks. In the largest networks, this processing power is attributed to wasted computations centered around solving a Proof of Work algorithm. There have been several attempts to address this problem and it is an area of continuing improvement. We will present a summary of proposed solutions as well as an in-depth look at a promising alternative algorithm known as Proof of Useful Work. This solution will redirect wasted computation towards useful work. We will show that this is a viable alternative to Proof of Work. Dedication Thank you to everyone who has supported me throughout the process of writing this piece. -
Pow, Pos, & Hybrid Protocols: a Matter of Complexity?
PoW, PoS, & Hybrid protocols: A Matter of Complexity? Renato P. dos Santos Blockchain Researcher at ULBRA – The Lutheran University of Brazil [email protected]. Melanie Swan Technology Theorist and Founder at Institute for Blockchain Studies [email protected] Abstract In a previous paper, it was discussed whether Bitcoin and/or its blockchain could be considered a complex system and, if so, whether a chaotic one, a positive response raising concerns about the likelihood of Bitcoin/blockchain entering a chaotic regime, with catastrophic consequences for financial systems based on it. This paper intends to simplify and extend that analysis to other PoW, PoS, and hybrid protocol-based cryptocurrencies. As before, this study was carried out with the help of Information Theory of Complex Systems, in general, and Crutchfield’s Statistical Complexity measure, in particular. This paper is a work-in-progress. Whereas PoW consensus was shown to be highly non-complex, the Nxt PoS consensus method studied shows an outstandingly higher measure of complexity, which is undesirable because it introduces unnecessary complexity into what should be a simple computational system. This paper is a work-in-progress and undoubtedly prone to incorrectness as a few cryptocurrencies may have changed their consensus algorithms. As next step, we intend to uncover some other measures that capture the qualitative notion of complexity of systems that can be applied to these cryptocurrencies to compare with the results here obtained. As a final thought, however, considering that a certain amount of chaoticity may have been potentially introduced in the Bitcoin market by the presence of the capital gains-seekers, one could wonder whether the recent surge of blockchain technology-based start-ups, even discounting all the scam cases, could not help to reduce non-linearity and prevent chaos. -
IFRS: Accounting for Crypto-Assets
IFRS (#) Accounting for crypto-assets Contents 1. Introduction 1 2. What are crypto-assets? 2 2.1. Cryptocurrencies 3 2.2. Tokens (crypto-assets other than cryptocurrencies) 5 3. Accounting for crypto-assets 10 3.1. Selected activities of standard setters 10 3.2. Special situations 13 3.3. Conclusion 15 4. Supporting details 16 5. Contacts 21 1 Introduction Crypto-assets experienced a breakout year in 2017. Cryptocurrencies, such as bitcoin and ether, have seen their prices surge as the public’s YoYj]f]kk`Ykaf[j]Yk]\$Yf\ÕfYf[aYdeYjc]lhYjla[ahYflk`Yn]l`mk af[j]Ykaf_dqlmjf]\l`]ajYll]flagflgl`]h`]fge]fgf&KaemdlYf]gmkdq$ a wave of new crypto-asset issuance has been sweeping the start-up fundraising world, sparking the interest of regulators in the process. 9[[gmflYflk`Yn]l`mk^YjZ]]ffglYZd]Zql`]ajj]dYlan]YZk]f[]^jge l`YlfYjjYlan]&H]j`Yhk$egklfglYZd]akl`]^Y[ll`Yll`]9mkljYdaYf 9[[gmflaf_KlYf\Yj\k:gYj\ 99K:!`YkkmZeall]\Y\ak[mkkagfhYh]j gfÉ\a_alYd[mjj]f[a]kÊlgl`]Afl]jfYlagfYd9[[gmflaf_KlYf\Yj\k :gYj\ A9K:!$Yf\l`]9[[gmflaf_KlYf\Yj\k:gYj\g^BYhYf 9K:B! `Ykakkm]\Yf]phgkmj]\jY^l^gjhmZda[[gee]flgfY[[gmflaf_^gj “virtual currencies”.1AfY\\alagf$l`]A9K:\ak[mkk]\[]jlYaf^]Ylmj]kg^ ljYfkY[lagfkafngdnaf_\a_alYd[mjj]f[a]k\mjaf_alke]]laf_afBYfmYjq *()0$Yf\oadd\ak[mkkaf^mlmj]o`]l`]jlg[gee]f[]Yj]k]Yj[`hjgb][l in this area.1 L`akYdkg`a_`da_`lkl`]dY[cg^YklYf\Yj\ar]\[jqhlg%Ykk]llYpgfgeq$ o`a[`eYc]kal\a^Õ[mdllg\]l]jeaf]l`]Yhhda[YZadalqg^klYf\Yj\k]ll]jkÌ hmZdak`]\h]jkh][lan]k&>mjl`]jegj]$\m]lgl`]\an]jkalqYf\hY[]g^ affgnYlagfYkkg[aYl]\oal`[jqhlg%Ykk]lk$l`]^Y[lkYf\[aj[meklYf[]k g^]Y[`af\ana\mYd[Yk]oadd\a^^]j$eYcaf_al\a^Õ[mdllg\jYo_]f]jYd [gf[dmkagfkgfl`]Y[[gmflaf_lj]Yle]fl& <]khal]l`]eYjc]lÌkaf[j]Ykaf_dqmj_]flf]]\^gjY[[gmflaf__ma\Yf[]$ l`]j]`Yn]Z]]ffg^gjeYdhjgfgmf[]e]flkgfl`aklgha[lg\Yl]& Afl`akj]hgjl$o]YaelgÕjklZja]Öqafljg\m[][jqhlg[mjj]f[a]kYf\ gl`]jlqh]kg^[jqhlg%Ykk]lk&L`]f$o]\ak[mkkkge]g^l`]j][]fl activities by accounting standard setters in relation to crypto-assets. -
BLOCK by BLOCK a Comparative Analysis of the Leading Distributed Ledgers
BLOCK BY BLOCK A Comparative Analysis of the Leading Distributed Ledgers Table of Contents EXECUTIVE SUMMARY 3 PRELIMINARY MATTERS 4 A NOTE ON METHODOLOGY 4 THE EVOLUTION OF DISTRIBUTED LEDGERS 5 SEC. 1 : TECHNICAL STRUCTURE & FEATURE SET 7 PUBLIC OR PRIVATE? 7 PERMISSIONED OR PERMISSIONLESS? 8 CONSENSUS MECHANISM 9 LANGUAGES SUPPORTED 10 TRANSACTION RATES 11 SMART CONTRACTS 12 ADDITIONAL FEATURES 13 SEC. 2 : BUSINESS CONSIDERATIONS 14 PROJECT GOVERNANCE 14 LICENSING 16 THIRD PARTY SUPPORT 16 DEVELOPER SUPPORT 17 PUBLISHER SUPPORT 18 BLOCKCHAIN AS A SERVICE (BAAS) PROVIDERS 19 PARTNERSHIPS 21 ASSOCIATED COSTS 22 PRICING 22 COST PER TRANSACTION 23 ENERGY CONSUMPTION 24 SEC. 3 : HEALTH INDICATORS 25 DEVELOPMENT ACTIVITY 25 MINDSHARE 27 PROJECT SITE POPULARITY 28 SEARCH ENGINE QUERY VOLUME 29 FINANCIAL STRENGTH INDICATORS 30 MARKET CAP 30 24 HOUR TRADING VOLUME 31 VENTURE CAPITAL AND INVESTORS 32 NODES ONLINE 33 WEISS CRYPTOCURRENCY RANKINGS 34 SIGNIFICANT DEPLOYMENTS 35 CONCLUSIONS 36 PUBLIC LEDGERS 37 PRIVATE LEDGERS 37 PROJECTS TO WATCH 40 APPENDIX A. PROJECT LINKS 42 MERCY CORPS 2 EXECUTIVE SUMMARY Purpose This report compares nine distributed ledger platforms on nearly 30 metrics What’s Included related to the capabilities and the health of each project. The analysis looks at a broad range of indicators -- both direct and indirect -- with the goal of Bitcoin synthesizing trends and patterns that define the market leaders. Corda Ethereum Audience Hyperledger Fabric Multichain This paper is intended for readers already familiar with distributed ledger NEO technologies and will prove most useful to those that are currently evaluating NXT platforms in order to make a decision where to build or deploy applications. -
Defending Against Malicious Reorgs in Tezos Proof-Of-Stake
Defending Against Malicious Reorgs in Tezos Proof-of-Stake Michael Neuder Daniel J. Moroz Harvard University Harvard University [email protected] [email protected] Rithvik Rao David C. Parkes Harvard University Harvard University [email protected] [email protected] ABSTRACT Conference on Advances in Financial Technologies (AFT ’20), October 21– Blockchains are intended to be immutable, so an attacker who is 23, 2020, New York, NY, USA. ACM, New York, NY, USA , 13 pages. https: //doi.org/10.1145/3419614.3423265 able to delete transactions through a chain reorganization (a ma- licious reorg) can perform a profitable double-spend attack. We study the rate at which an attacker can execute reorgs in the Tezos 1 INTRODUCTION Proof-of-Stake protocol. As an example, an attacker with 40% of the Blockchains are designed to be immutable in order to protect against staking power is able to execute a 20-block malicious reorg at an attackers who seek to delete transactions through chain reorga- average rate of once per day, and the attack probability increases nizations (malicious reorgs). Any attacker who causes a reorg of super-linearly as the staking power grows beyond 40%. Moreover, the chain could double-spend transactions, meaning they commit an attacker of the Tezos protocol knows in advance when an at- a transaction to the chain, receive some goods in exchange, and tack opportunity will arise, and can use this knowledge to arrange then delete the transaction, effectively robbing their counterparty. transactions to double-spend. We show that in particular cases, the Nakamoto [15] demonstrated that, in a Proof-of-Work (PoW) setting, Tezos protocol can be adjusted to protect against deep reorgs. -
Artificial Intelligence Integrated Blockchain Technology for Decentralized Applications and Smart Contracts
International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 1023-1031 Artificial Intelligence Integrated Blockchain Technology for Decentralized Applications and Smart Contracts MAAN NAWAF ABBOOD Al-Imam Al-Adham college Abstract In the present period, Blockchain Technology is one of the key regions of research just as execution explicitly in the space of Cryptocurrency. Presently days, various advanced digital forms of money are very conspicuous and shared all through the world in spite of enormous analysis and debates. These cryptographic forms of money incorporate BitCoin, Ethereum, LiteCoin, PeerCoin, GridCoin, PrimeCoin, Ripple, Nxt, DogeCoin, NameCoin, AuroraCoin, Dash, Neo, NEM, PotCoin, TitCoin, Verge, Stellar, VertCoin, Tether, Zcash and numerous others. These blockchain based digital forms of money don't have any middle of the road bank or installment passage to record the log of the transactions. That is the primary reason in light of which numerous nations are not permitting the cryptographic forms of money as legitimate cash transaction. In any case, these blockchain based cryptographic forms of money are extremely celebrated and utilized as a result of colossal security highlights. This manuscript is focusing on the blockchain technology that is directly associated as the application domain of artificial intelligence. Keywords: Artificial Intelligence, AI, AI based Blockchain, Blockchain Security Introduction The blockchain organize is having a square of records in which every single record is related with the dynamic cryptography so every one of the transactions can be scrambled with no likelihood of sniffing or hacking endeavors [1, 2]. In current situation, the blockchain innovation is progressively engaged towards cryptographic forms of money in which the disseminated record is kept up for the transactions [3, 4]. -
A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets
Journal of Risk and Financial Management Review A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets Nikolaos A. Kyriazis Department of Economics, University of Thessaly, 38333 Volos, Greece; [email protected] Abstract: This study is an integrated survey of GARCH methodologies applications on 67 empirical papers that focus on cryptocurrencies. More sophisticated GARCH models are found to better explain the fluctuations in the volatility of cryptocurrencies. The main characteristics and the optimal approaches for modeling returns and volatility of cryptocurrencies are under scrutiny. Moreover, emphasis is placed on interconnectedness and hedging and/or diversifying abilities, measurement of profit-making and risk, efficiency and herding behavior. This leads to fruitful results and sheds light on a broad spectrum of aspects. In-depth analysis is provided of the speculative character of digital currencies and the possibility of improvement of the risk–return trade-off in investors’ portfolios. Overall, it is found that the inclusion of Bitcoin in portfolios with conventional assets could significantly improve the risk–return trade-off of investors’ decisions. Results on whether Bitcoin resembles gold are split. The same is true about whether Bitcoins volatility presents larger reactions to positive or negative shocks. Cryptocurrency markets are found not to be efficient. This study provides a roadmap for researchers and investors as well as authorities. Keywords: decentralized cryptocurrency; Bitcoin; survey; volatility modelling Citation: Kyriazis, Nikolaos A. 2021. A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets. Journal of Risk and 1. Introduction Financial Management 14: 293. The continuing evolution of cryptocurrency markets and exchanges during the last few https://doi.org/10.3390/jrfm years has aroused sparkling interest amid academic researchers, monetary policymakers, 14070293 regulators, investors and the financial press. -
Impossibility of Full Decentralization in Permissionless Blockchains
Impossibility of Full Decentralization in Permissionless Blockchains Yujin Kwon*, Jian Liuy, Minjeong Kim*, Dawn Songy, Yongdae Kim* *KAIST {dbwls8724,mjkim9394,yongdaek}@kaist.ac.kr yUC Berkeley [email protected],[email protected] ABSTRACT between achieving good decentralization in the consensus protocol Bitcoin uses the proof-of-work (PoW) mechanism where nodes earn and not relying on a TTP exists. rewards in return for the use of their computing resources. Although this incentive system has attracted many participants, power has, CCS CONCEPTS at the same time, been significantly biased towards a few nodes, • Security and privacy → Economics of security and privacy; called mining pools. In addition, poor decentralization appears not Distributed systems security; only in PoW-based coins but also in coins that adopt proof-of-stake (PoS) and delegated proof-of-stake (DPoS) mechanisms. KEYWORDS In this paper, we address the issue of centralization in the consen- Blockchain; Consensus Protocol; Decentralization sus protocol. To this end, we first define ¹m; ε; δº-decentralization as a state satisfying that 1) there are at least m participants running 1 INTRODUCTION a node, and 2) the ratio between the total resource power of nodes Traditional currencies have a centralized structure, and thus there run by the richest and the δ-th percentile participants is less than exist several problems such as a single point of failure and corrup- or equal to 1 + ε. Therefore, when m is sufficiently large, and ε and tion. For example, the global financial crisis in 2008 was aggravated δ are 0, ¹m; ε; δº-decentralization represents full decentralization, by the flawed policies of banks that eventually led to many bank which is an ideal state. -
A Regulatory System for Optimal Legal Transaction Throughput in Cryptocurrency Blockchains
A Regulatory System for Optimal Legal Transaction Throughput in Cryptocurrency Blockchains Aditya Ahuja Vinay J. Ribeiro Ranjan Pal Indian Institute of Technology Indian Institute of Technology University of Michigan Delhi Bombay Ann Arbor, USA New Delhi, India Mumbai, India [email protected] [email protected] [email protected] ABSTRACT correctness of the underlying computational principles, which are a Permissionless blockchain consensus protocols have been designed basis of the efficacy of these economies. More specifically, in order primarily for defining decentralized economies for the commercial to sustain these cryptocurrency based decentralized economies, trade of assets, both virtual and physical, using cryptocurrencies. blockchain consensus protocols serve as a technical foundation. In most instances, the assets being traded are regulated, which man- Existing blockchain protocols for cryptocurrencies address one dates that the legal right to their trade and their trade value are of (or any combination of) the following system goals: speed, se- determined by the governmental regulator of the jurisdiction in curity and decentralization. Unfortunately, these system goals are which the trade occurs. Unfortunately, existing blockchains do not necessary but insufficient. Illegal activities propelled through the formally recognise proposal of legal cryptocurrency transactions, as strategic use of blockchain based cryptocurrencies, is a serious part of the execution of their respective consensus protocols, result- problem staring at the face of many world governments today ing in rampant illegal activities in the associated crypto-economies. [47]. These illegal activities exploit the permissionless nature of In this contribution, we motivate the need for regulated blockchain the blockchain networks for illegal trade, to strategically defeat consensus protocols with a case study of the illegal, cryptocurrency regulation by obfuscating the jurisdictions of the blockchain users based, Silk Road darknet market. -
Privacy on the Blockchain: Unique Ring Signatures. Rebekah Mercer
Privacy on the Blockchain: Unique Ring Signatures. Rebekah Mercer This report is submitted as part requirement for the MSc in Information Security at University College London. 1 Supervised by Dr Nicolas T. Courtois. arXiv:1612.01188v2 [cs.CR] 25 Dec 2016 1This report is substantially the result of my own work except where explicitly indicated in the text. The report may be freely copied and distributed provided the source is explicitly acknowledged. Abstract Ring signatures are cryptographic protocols designed to allow any member of a group to produce a signature on behalf of the group, without revealing the individual signer’s identity. This offers group members a level of anonymity not attainable through generic digital signature schemes. We call this property ‘plausible deniability’, or anonymity with respect to an anonymity set. We concentrate in particular on implementing privacy on the blockchain, introducing a unique ring signature scheme that works with existing blockchain systems. We implement a unique ring signature (URS) scheme using secp256k1, creating the first implemen- tation compatible with blockchain libraries in this way, so as for easy implementation as an Ethereum smart contract. We review the privacy and security properties offered by the scheme we have constructed, and compare its efficiency with other commonly suggested approaches to privacy on the blockchain. 1 Acknowledgements Thank you to Dr Nicolas Courtois, for introducing me to blockchains and applied cryptography. Thanks to Matthew Di Ferrante, for continued insight and expertise on Ethereum and adversarial security. Thanks also to my mum and dad, for convincing me that can handle an MSc alongside a full time job, and for all the advice along the way! Finally, thanks to the University of Manchester, UCL, Yorkshire Ladies’ Trust, and countless others for their generous grants over the years, without which this MSc would not have been possible. -
Virtual Currencies – Key Definitions and Potential Aml/Cft Risks
FATF REPORT Virtual Currencies Key Definitions and Potential AML/CFT Risks June 2014 FINANCIAL ACTION TASK FORCE The Financial Action Task Force (FATF) is an independent inter-governmental body that develops and promotes policies to protect the global financial system against money laundering, terrorist financing and the financing of proliferation of weapons of mass destruction. The FATF Recommendations are recognised as the global anti-money laundering (AML) and counter-terrorist financing (CFT) standard. For more information about the FATF, please visit the website: www.fatf-gafi.org © 2014 FATF/OECD. All rights reserved. No reproduction or translation of this publication may be made without prior written permission. Applications for such permission, for all or part of this publication, should be made to the FATF Secretariat, 2 rue André Pascal 75775 Paris Cedex 16, France (fax: +33 1 44 30 61 37 or e-mail: [email protected]). Photocredits coverphoto: ©Thinkstock VIRTUAL CURRENCIES – KEY DEFINITIONS AND POTENTIAL AML/CFT RISKS CONTENTS INTRODUCTION ................................................................................................................................... 3 KEY DEFINITIONS: ................................................................................................................................ 3 Virtual Currency .................................................................................................................................... 4 Convertible Versus Non-Convertible Virtual Currency ........................................................................