BLOCK by BLOCK a Comparative Analysis of the Leading Distributed Ledgers

Total Page:16

File Type:pdf, Size:1020Kb

BLOCK by BLOCK a Comparative Analysis of the Leading Distributed Ledgers BLOCK BY BLOCK A Comparative Analysis of the Leading Distributed Ledgers Table of Contents EXECUTIVE SUMMARY 3 PRELIMINARY MATTERS 4 A NOTE ON METHODOLOGY 4 THE EVOLUTION OF DISTRIBUTED LEDGERS 5 SEC. 1 : TECHNICAL STRUCTURE & FEATURE SET 7 PUBLIC OR PRIVATE? 7 PERMISSIONED OR PERMISSIONLESS? 8 CONSENSUS MECHANISM 9 LANGUAGES SUPPORTED 10 TRANSACTION RATES 11 SMART CONTRACTS 12 ADDITIONAL FEATURES 13 SEC. 2 : BUSINESS CONSIDERATIONS 14 PROJECT GOVERNANCE 14 LICENSING 16 THIRD PARTY SUPPORT 16 DEVELOPER SUPPORT 17 PUBLISHER SUPPORT 18 BLOCKCHAIN AS A SERVICE (BAAS) PROVIDERS 19 PARTNERSHIPS 21 ASSOCIATED COSTS 22 PRICING 22 COST PER TRANSACTION 23 ENERGY CONSUMPTION 24 SEC. 3 : HEALTH INDICATORS 25 DEVELOPMENT ACTIVITY 25 MINDSHARE 27 PROJECT SITE POPULARITY 28 SEARCH ENGINE QUERY VOLUME 29 FINANCIAL STRENGTH INDICATORS 30 MARKET CAP 30 24 HOUR TRADING VOLUME 31 VENTURE CAPITAL AND INVESTORS 32 NODES ONLINE 33 WEISS CRYPTOCURRENCY RANKINGS 34 SIGNIFICANT DEPLOYMENTS 35 CONCLUSIONS 36 PUBLIC LEDGERS 37 PRIVATE LEDGERS 37 PROJECTS TO WATCH 40 APPENDIX A. PROJECT LINKS 42 MERCY CORPS 2 EXECUTIVE SUMMARY Purpose This report compares nine distributed ledger platforms on nearly 30 metrics What’s Included related to the capabilities and the health of each project. The analysis looks at a broad range of indicators -- both direct and indirect -- with the goal of Bitcoin synthesizing trends and patterns that define the market leaders. Corda Ethereum Audience Hyperledger Fabric Multichain This paper is intended for readers already familiar with distributed ledger NEO technologies and will prove most useful to those that are currently evaluating NXT platforms in order to make a decision where to build or deploy applications. Accordingly, the text often assumes some knowledge on the part of the reader Quorum and a level of technical sophistication that does not require explanation of all Hyperledger Sawtooth 1 terms used in this document. Methodology We compare each of the systems on a variety of criteria. The criteria are grouped into three categories: 1. Technical Structure & Feature Set 2. Business Considerations 3. Health Indicators For each category, we examine a variety of largely objective metrics in hopes of being able to draw some meaningful comparisons that will provide you with firm ground for making an assessment of suitability for purpose. 2 Principal Conclusions The final section of this paper discusses in detail the conclusions reached in this report. The most significant conclusions being: • Ethereum is the clear leader in the public blockchain space, with broad support and a large number of resources and developers. • Corda and Fabric lead in the private blockchain space, with Fabric benefitting from the backing of Hyperledger and IBM. • NXT is a project of some concern, whose future seems in doubt. • Quorum, after a strong start, has slowed and appears to be going through some changes that bear watching. 1 For a good primer on the technology, consider our previous publication on the subject “A Revolution in Trust,” see, https://www.mercycorps.org/research-resources/revolution-trust-distributed-ledger-technology-relief-development 2 NOTICE OF DISCLOSURE: Note that the author holds several of the currencies discussed in this paper, including: Bitcoin, Ethereum, NXT, Cardano, Neo, Ripple, Stellar, and Stratis. MERCY CORPS 3 PRELIMINARY MATTERS The selection process for this paper began with an examination of 17 distributed ledger platforms3. During the course of data collection, the list was narrowed to a final set of nine. Systems were removed from consideration typically for one of two reasons: either they were not yet in a production release4, or they were focused on a very narrow use case5. Nine systems may seem like a small number. The simple fact is, that while there is an increasing array of choices for distributed ledger platforms, the number of options for building an robust (dare we say “enterprise”?) distributed ledger are actually quite limited at this time; we’ve tried to identify and compare those contenders in this document. Note that the focus here is on providing information about the systems that decision-makers are most likely to be looking at when they decide where to build or deploy their apps. The selection set is not intended to identify the best, or even the most interesting, new platforms, rather, our selection set includes the names we think are most likely to come up in any discussion of “where to build.”6 This paper was produced by Mercy Corps’ Technology for Development team7 which cultivates the innovative application of leading edge Security & Privacy technology to make global humanitarian and development work more While the security and privacy effective and efficient. This analysis seeks to enable users to harness the aspects of these systems is power of distributed ledger technologies for social good. undoubtedly of concern to anyone selecting a platform, A Note on Methodology this report has not attempted to rate or review systems on As a final note before we get started: Please keep in mind that, from a these factors. While we would research perspective, several of the products in our sample group present have liked to provide unique challenges. Bitcoin, Ethereum, Neo, NXT, and Quorum, in guidance on the topics, there particular, are problematic. is no consistent objective data set available at this time that In the case of Bitcoin, Ethereum, Neo, and NXT, the difficulty occurs due allows us to compare the to the existence of digital currencies of the same names. As the digital coin systems with confidence -- product and the underlying distributed ledger product lack naming and without speculation. Note distinction, some research data points are susceptible to distortion. In an that the list of additional attempt to filter out results of the term that are not related to the underlying distributed ledger platform (as opposed to the coin of the same name) we features in Sec. 1 does have sometimes used very specific searches, for example, formulating highlight system features queries that use the word "bitcoin" together with the word "blockchain" (i.e., relevant to this enquiry. 3 Among the systems considered but rejected were: Cardano, Digital Asset Platform, IOTA, Lisk, Ripple, Sequence, Stellar, and Stratis. 4 E.g., Cardano, Digital Asset, Lisk, Stratis. 5 E.g., IOTA, Stellar, Ripple. 6 Bitcoin has been included, largely due to the fact that the system always comes up in discussions of blockchain platforms. While it is an unlikely choice for most deployments, having the comparative data on the system is likely to be helpful to address the questions that are likely to come up during discussions of platforms. 7 See, https://mercycorps.org MERCY CORPS 4 run the search for ‘bitcoin blockchain’ rather than just ‘bitcoin’). In the case of Quorum, the issue relates to the need to filter out irrelevant references. The problem here is that the product name is also a term in common usage. As with the products above, if unchecked, this problem would result in over-reporting. In an attempt to filter out results of the term that are not related to the Quorum blockchain platform, we have sometimes used very specific queries, e.g., searching for the string "quorum blockchain" instead of for the single word "quorum." Our approach to these problems is of mixed effectiveness. While the modified query strings tend to knock out irrelevant references, they also invariably kill off a certain number of relevant references, hence resulting in under- reporting. It’s a balancing act and one we try to highlight in the “Notes on Interpretation” attached to each exhibit.8 The Evolution of Distributed Ledgers With the publication of a whitepaper in 2008, Satoshi Nakamoto launched the era of blockchain and distributed ledgers. The “chain of blocks9” outlined for the first time in Satoshi’s whitepaper existed for one reason only: to act as a ledger tracking the ownership of a digital currency named Bitcoin. In January of 2009, the Bitcoin experiment was launched and first blockchain was live. The Bitcoin network has grown and the system has been modified over the years by the developers involved in the project.10 The core functionality, however, has always remained the same: tracking the ownership of Bitcoin.11 While that first blockchain may have been designed to do only one thing, it does it pretty well. In the 10 years since the system’s launch it has never gone down or been hacked and, as Bitcoin has grown, it has competently managed large volumes of transactions with significant financial value. Bitcoin and its immediate progeny represent the first generation of distributed ledger technology (DLT); a convenient label might be “DLT 1.0”. By way of definition: A DLT 1.0 system is narrowly focused on one primary task, managing a digital currency. Bitcoin may have been the first, but it is not the only DLT 1.0 system. A number of the cryptocurrencies that popped up in the wake of Bitcoin actually started by forking the Bitcoin codeset and then modifying elements of that codeset to create something distinct (e.g., Litecoin). Fast forward to 2014: Vitalik Buterin envisions the next generation of distributed ledger technology and launches a project known as Ethereum. With an innovative technical architecture and investment of over $15 million12, the system was poised to be a game changer. Here was a blockchain that not only supported tracking ownership of a native coin, but also included a purpose-built business logic layer designed to allow a blockchain to incorporate programming that would automatically execute instructions, a functionality that became known as a “smart contract.” The Ethereum blockchain also supported the use of tokens that could be traded independently of Ethereum’s native cryptocurrency. Ethereum, with its meaningful expansion of functionality for DLT, heralded the 8 Once data collection was completed, we forwarded the data sheets to all the projects and asked them to verify the data.
Recommended publications
  • Pow, Pos, & Hybrid Protocols: a Matter of Complexity?
    PoW, PoS, & Hybrid protocols: A Matter of Complexity? Renato P. dos Santos Blockchain Researcher at ULBRA – The Lutheran University of Brazil [email protected]. Melanie Swan Technology Theorist and Founder at Institute for Blockchain Studies [email protected] Abstract In a previous paper, it was discussed whether Bitcoin and/or its blockchain could be considered a complex system and, if so, whether a chaotic one, a positive response raising concerns about the likelihood of Bitcoin/blockchain entering a chaotic regime, with catastrophic consequences for financial systems based on it. This paper intends to simplify and extend that analysis to other PoW, PoS, and hybrid protocol-based cryptocurrencies. As before, this study was carried out with the help of Information Theory of Complex Systems, in general, and Crutchfield’s Statistical Complexity measure, in particular. This paper is a work-in-progress. Whereas PoW consensus was shown to be highly non-complex, the Nxt PoS consensus method studied shows an outstandingly higher measure of complexity, which is undesirable because it introduces unnecessary complexity into what should be a simple computational system. This paper is a work-in-progress and undoubtedly prone to incorrectness as a few cryptocurrencies may have changed their consensus algorithms. As next step, we intend to uncover some other measures that capture the qualitative notion of complexity of systems that can be applied to these cryptocurrencies to compare with the results here obtained. As a final thought, however, considering that a certain amount of chaoticity may have been potentially introduced in the Bitcoin market by the presence of the capital gains-seekers, one could wonder whether the recent surge of blockchain technology-based start-ups, even discounting all the scam cases, could not help to reduce non-linearity and prevent chaos.
    [Show full text]
  • The Magnificent Seven
    The Magnificent Seven A closer look at functional attributes of blockchain platforms The Magnificent Seven1 Following a whitepaper published in late 2008, the Bitcoin system came into being in 2009, and the underlying technology became what we refer to as Blockchain today. 1 The top seven cryptocurrencies covered a good variety of attributes that are essential to gain a more thorough understanding of the potentials offered by this new technology. The Magnificent Seven 1 Since then, a variety of different cryptocurrency platforms have been created, and based on data from CoinMarketCap (https://coinmarketcap.com/), as of 27 March 2021, there were 8,964 crypto tokens in existence, with a total Market Cap of over USD$1.6 Trillion. The top seven cryptocurrencies made up around 80% of the global market capitalisation: Market Cap Token Symbol (billion USD) % Bitcoin BTC 1,026.8 59.23 Ethereum ETH 0,196.2 11.32 Cardano ADA 0,040.2 02.32 Binance Coin BNB 0,039.1 02.25 Tether USDT 0,038.5 02.22 Polkadot DOT 0,030.4 01.75 XRP XRP 0,025.8 01.49 80.58 Rest of 8,957 tokens 19.42 Bitcoin alone represents nearly 60% of the total cryptocurrency value, with Ethereum being the second highest by value. However, these cryptocurrencies are not in fact the same: value aside, they differ in some interesting ways, which in turn affect their “function” and value proposition. Asset Smart Token Year Type Minable Consensus2 Limit Backed Contract BTC 2009 Native Yes POW No 21m ETH 2012 ERC-20 Yes / No3 POW | POS No Y none ADA 2017 Native No POS No Y 45bn BNB 2017 ERC-20 No Tendermint No 100m Multiple Forms: USDT-Omni, USDT 2014 USDT-TRON, No NA USD none USDT-ERC20 and USDT-EOS DOT 2017 Native NPOS No Y none Ripple XRP 2012 Native No Transaction No 100bn Protocol Source: https://icorating.com/ and https://coincodex.com/ 2 In simple terms, consensus mechanism is a means of authenticating and validating transactions on a Blockchain (or distributed ledger) without having to trust or rely on a central authority.
    [Show full text]
  • IFRS: Accounting for Crypto-Assets
    IFRS (#) Accounting for crypto-assets Contents 1. Introduction 1 2. What are crypto-assets? 2 2.1. Cryptocurrencies 3 2.2. Tokens (crypto-assets other than cryptocurrencies) 5 3. Accounting for crypto-assets 10 3.1. Selected activities of standard setters 10 3.2. Special situations 13 3.3. Conclusion 15 4. Supporting details 16 5. Contacts 21 1 Introduction Crypto-assets experienced a breakout year in 2017. Cryptocurrencies, such as bitcoin and ether, have seen their prices surge as the public’s YoYj]f]kk`Ykaf[j]Yk]\$Yf\ÕfYf[aYdeYjc]lhYjla[ahYflk`Yn]l`mk af[j]Ykaf_dqlmjf]\l`]ajYll]flagflgl`]h`]fge]fgf&KaemdlYf]gmkdq$ a wave of new crypto-asset issuance has been sweeping the start-up fundraising world, sparking the interest of regulators in the process. 9[[gmflYflk`Yn]l`mk^YjZ]]ffglYZd]Zql`]ajj]dYlan]YZk]f[]^jge l`YlfYjjYlan]&H]j`Yhk$egklfglYZd]akl`]^Y[ll`Yll`]9mkljYdaYf 9[[gmflaf_KlYf\Yj\k:gYj\ 99K:!`YkkmZeall]\Y\ak[mkkagfhYh]j gfÉ\a_alYd[mjj]f[a]kÊlgl`]Afl]jfYlagfYd9[[gmflaf_KlYf\Yj\k :gYj\ A9K:!$Yf\l`]9[[gmflaf_KlYf\Yj\k:gYj\g^BYhYf 9K:B! `Ykakkm]\Yf]phgkmj]\jY^l^gjhmZda[[gee]flgfY[[gmflaf_^gj “virtual currencies”.1AfY\\alagf$l`]A9K:\ak[mkk]\[]jlYaf^]Ylmj]kg^ ljYfkY[lagfkafngdnaf_\a_alYd[mjj]f[a]k\mjaf_alke]]laf_afBYfmYjq *()0$Yf\oadd\ak[mkkaf^mlmj]o`]l`]jlg[gee]f[]Yj]k]Yj[`hjgb][l in this area.1 L`akYdkg`a_`da_`lkl`]dY[cg^YklYf\Yj\ar]\[jqhlg%Ykk]llYpgfgeq$ o`a[`eYc]kal\a^Õ[mdllg\]l]jeaf]l`]Yhhda[YZadalqg^klYf\Yj\k]ll]jkÌ hmZdak`]\h]jkh][lan]k&>mjl`]jegj]$\m]lgl`]\an]jkalqYf\hY[]g^ affgnYlagfYkkg[aYl]\oal`[jqhlg%Ykk]lk$l`]^Y[lkYf\[aj[meklYf[]k g^]Y[`af\ana\mYd[Yk]oadd\a^^]j$eYcaf_al\a^Õ[mdllg\jYo_]f]jYd [gf[dmkagfkgfl`]Y[[gmflaf_lj]Yle]fl& <]khal]l`]eYjc]lÌkaf[j]Ykaf_dqmj_]flf]]\^gjY[[gmflaf__ma\Yf[]$ l`]j]`Yn]Z]]ffg^gjeYdhjgfgmf[]e]flkgfl`aklgha[lg\Yl]& Afl`akj]hgjl$o]YaelgÕjklZja]Öqafljg\m[][jqhlg[mjj]f[a]kYf\ gl`]jlqh]kg^[jqhlg%Ykk]lk&L`]f$o]\ak[mkkkge]g^l`]j][]fl activities by accounting standard setters in relation to crypto-assets.
    [Show full text]
  • Defending Against Malicious Reorgs in Tezos Proof-Of-Stake
    Defending Against Malicious Reorgs in Tezos Proof-of-Stake Michael Neuder Daniel J. Moroz Harvard University Harvard University [email protected] [email protected] Rithvik Rao David C. Parkes Harvard University Harvard University [email protected] [email protected] ABSTRACT Conference on Advances in Financial Technologies (AFT ’20), October 21– Blockchains are intended to be immutable, so an attacker who is 23, 2020, New York, NY, USA. ACM, New York, NY, USA , 13 pages. https: //doi.org/10.1145/3419614.3423265 able to delete transactions through a chain reorganization (a ma- licious reorg) can perform a profitable double-spend attack. We study the rate at which an attacker can execute reorgs in the Tezos 1 INTRODUCTION Proof-of-Stake protocol. As an example, an attacker with 40% of the Blockchains are designed to be immutable in order to protect against staking power is able to execute a 20-block malicious reorg at an attackers who seek to delete transactions through chain reorga- average rate of once per day, and the attack probability increases nizations (malicious reorgs). Any attacker who causes a reorg of super-linearly as the staking power grows beyond 40%. Moreover, the chain could double-spend transactions, meaning they commit an attacker of the Tezos protocol knows in advance when an at- a transaction to the chain, receive some goods in exchange, and tack opportunity will arise, and can use this knowledge to arrange then delete the transaction, effectively robbing their counterparty. transactions to double-spend. We show that in particular cases, the Nakamoto [15] demonstrated that, in a Proof-of-Work (PoW) setting, Tezos protocol can be adjusted to protect against deep reorgs.
    [Show full text]
  • Blockchain & Cryptocurrency Regulation
    Blockchain & Cryptocurrency Regulation Third Edition Contributing Editor: Josias N. Dewey Global Legal Insights Blockchain & Cryptocurrency Regulation 2021, Third Edition Contributing Editor: Josias N. Dewey Published by Global Legal Group GLOBAL LEGAL INSIGHTS – BLOCKCHAIN & CRYPTOCURRENCY REGULATION 2021, THIRD EDITION Contributing Editor Josias N. Dewey, Holland & Knight LLP Head of Production Suzie Levy Senior Editor Sam Friend Sub Editor Megan Hylton Consulting Group Publisher Rory Smith Chief Media Officer Fraser Allan We are extremely grateful for all contributions to this edition. Special thanks are reserved for Josias N. Dewey of Holland & Knight LLP for all of his assistance. Published by Global Legal Group Ltd. 59 Tanner Street, London SE1 3PL, United Kingdom Tel: +44 207 367 0720 / URL: www.glgroup.co.uk Copyright © 2020 Global Legal Group Ltd. All rights reserved No photocopying ISBN 978-1-83918-077-4 ISSN 2631-2999 This publication is for general information purposes only. It does not purport to provide comprehensive full legal or other advice. Global Legal Group Ltd. and the contributors accept no responsibility for losses that may arise from reliance upon information contained in this publication. This publication is intended to give an indication of legal issues upon which you may need advice. Full legal advice should be taken from a qualified professional when dealing with specific situations. The information contained herein is accurate as of the date of publication. Printed and bound by TJ International, Trecerus Industrial Estate, Padstow, Cornwall, PL28 8RW October 2020 PREFACE nother year has passed and virtual currency and other blockchain-based digital assets continue to attract the attention of policymakers across the globe.
    [Show full text]
  • A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets
    Journal of Risk and Financial Management Review A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets Nikolaos A. Kyriazis Department of Economics, University of Thessaly, 38333 Volos, Greece; [email protected] Abstract: This study is an integrated survey of GARCH methodologies applications on 67 empirical papers that focus on cryptocurrencies. More sophisticated GARCH models are found to better explain the fluctuations in the volatility of cryptocurrencies. The main characteristics and the optimal approaches for modeling returns and volatility of cryptocurrencies are under scrutiny. Moreover, emphasis is placed on interconnectedness and hedging and/or diversifying abilities, measurement of profit-making and risk, efficiency and herding behavior. This leads to fruitful results and sheds light on a broad spectrum of aspects. In-depth analysis is provided of the speculative character of digital currencies and the possibility of improvement of the risk–return trade-off in investors’ portfolios. Overall, it is found that the inclusion of Bitcoin in portfolios with conventional assets could significantly improve the risk–return trade-off of investors’ decisions. Results on whether Bitcoin resembles gold are split. The same is true about whether Bitcoins volatility presents larger reactions to positive or negative shocks. Cryptocurrency markets are found not to be efficient. This study provides a roadmap for researchers and investors as well as authorities. Keywords: decentralized cryptocurrency; Bitcoin; survey; volatility modelling Citation: Kyriazis, Nikolaos A. 2021. A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets. Journal of Risk and 1. Introduction Financial Management 14: 293. The continuing evolution of cryptocurrency markets and exchanges during the last few https://doi.org/10.3390/jrfm years has aroused sparkling interest amid academic researchers, monetary policymakers, 14070293 regulators, investors and the financial press.
    [Show full text]
  • A Regulatory System for Optimal Legal Transaction Throughput in Cryptocurrency Blockchains
    A Regulatory System for Optimal Legal Transaction Throughput in Cryptocurrency Blockchains Aditya Ahuja Vinay J. Ribeiro Ranjan Pal Indian Institute of Technology Indian Institute of Technology University of Michigan Delhi Bombay Ann Arbor, USA New Delhi, India Mumbai, India [email protected] [email protected] [email protected] ABSTRACT correctness of the underlying computational principles, which are a Permissionless blockchain consensus protocols have been designed basis of the efficacy of these economies. More specifically, in order primarily for defining decentralized economies for the commercial to sustain these cryptocurrency based decentralized economies, trade of assets, both virtual and physical, using cryptocurrencies. blockchain consensus protocols serve as a technical foundation. In most instances, the assets being traded are regulated, which man- Existing blockchain protocols for cryptocurrencies address one dates that the legal right to their trade and their trade value are of (or any combination of) the following system goals: speed, se- determined by the governmental regulator of the jurisdiction in curity and decentralization. Unfortunately, these system goals are which the trade occurs. Unfortunately, existing blockchains do not necessary but insufficient. Illegal activities propelled through the formally recognise proposal of legal cryptocurrency transactions, as strategic use of blockchain based cryptocurrencies, is a serious part of the execution of their respective consensus protocols, result- problem staring at the face of many world governments today ing in rampant illegal activities in the associated crypto-economies. [47]. These illegal activities exploit the permissionless nature of In this contribution, we motivate the need for regulated blockchain the blockchain networks for illegal trade, to strategically defeat consensus protocols with a case study of the illegal, cryptocurrency regulation by obfuscating the jurisdictions of the blockchain users based, Silk Road darknet market.
    [Show full text]
  • Makoto Yano Chris Dai Kenichi Masuda Yoshio Kishimoto Editors
    Economics, Law, and Institutions in Asia Pacific Makoto Yano Chris Dai Kenichi Masuda Yoshio Kishimoto Editors Blockchain and Crypto Currency Building a High Quality Marketplace for Crypto Data Economics, Law, and Institutions in Asia Pacific Series Editor Makoto Yano, Research Institute of Economy, Trade and Industry (RIETI), Tokyo, Japan The Asia Pacific region is expected to steadily enhance its economic and political presence in the world during the twenty-first century. At the same time, many serious economic and political issues remain unresolved in the region. To further academic enquiry and enhance readers’ understanding about this vibrant region, the present series, Economics, Law, and Institutions in Asia Pacific, aims to present cutting-edge research on the Asia Pacific region and its relationship with the rest of the world. For countries in this region to achieve robust economic growth, it is of foremost importance that they improve the quality of their markets, as history shows that healthy economic growth cannot be achieved without high-quality markets. High-quality markets can be established and maintained only under a well-designed set of rules and laws, without which competition will not flourish. Based on these principles, this series places a special focus on economic, business, legal, and institutional issues geared towards the healthy development of Asia Pacific markets. The series considers book proposals for scientific research, either theoretical or empirical, that is related to the theme of improving market quality and has policy implications for the Asia Pacific region. The types of books that will be considered for publication include research monographs as well as relevant proceedings.
    [Show full text]
  • A Conceptual Framework for Digital-Asset Securities: Tokens and Coins As Debt and Equity
    Maryland Law Review Volume 80 Issue 1 Article 7 A Conceptual Framework for Digital-Asset Securities: Tokens and Coins as Debt and Equity Yuliya Guseva Follow this and additional works at: https://digitalcommons.law.umaryland.edu/mlr Part of the Securities Law Commons Recommended Citation Yuliya Guseva, A Conceptual Framework for Digital-Asset Securities: Tokens and Coins as Debt and Equity, 80 Md. L. Rev. 166 (2021) Available at: https://digitalcommons.law.umaryland.edu/mlr/vol80/iss1/7 This Article is brought to you for free and open access by the Academic Journals at DigitalCommons@UM Carey Law. It has been accepted for inclusion in Maryland Law Review by an authorized editor of DigitalCommons@UM Carey Law. For more information, please contact [email protected]. A CONCEPTUAL FRAMEWORK FOR DIGITAL-ASSET SECURITIES: TOKENS AND COINS AS DEBT AND EQUITY YULIYA GUSEVA* A. INTRODUCTION ......................................................................................167 B. AN OVERVIEW OF TOKENS ....................................................................175 1. Token Taxonomy .....................................................................175 1.1. Native and Non-native Tokens ....................................175 1.2. Functional and Regulatory ClassiFications ..................176 1.3. Fungible and Non-Fungible Tokens ............................177 2. The Two Stages oF Digital Asset Markets ...............................179 3. Howey and Bonds ....................................................................184
    [Show full text]
  • Privacy on the Blockchain: Unique Ring Signatures. Rebekah Mercer
    Privacy on the Blockchain: Unique Ring Signatures. Rebekah Mercer This report is submitted as part requirement for the MSc in Information Security at University College London. 1 Supervised by Dr Nicolas T. Courtois. arXiv:1612.01188v2 [cs.CR] 25 Dec 2016 1This report is substantially the result of my own work except where explicitly indicated in the text. The report may be freely copied and distributed provided the source is explicitly acknowledged. Abstract Ring signatures are cryptographic protocols designed to allow any member of a group to produce a signature on behalf of the group, without revealing the individual signer’s identity. This offers group members a level of anonymity not attainable through generic digital signature schemes. We call this property ‘plausible deniability’, or anonymity with respect to an anonymity set. We concentrate in particular on implementing privacy on the blockchain, introducing a unique ring signature scheme that works with existing blockchain systems. We implement a unique ring signature (URS) scheme using secp256k1, creating the first implemen- tation compatible with blockchain libraries in this way, so as for easy implementation as an Ethereum smart contract. We review the privacy and security properties offered by the scheme we have constructed, and compare its efficiency with other commonly suggested approaches to privacy on the blockchain. 1 Acknowledgements Thank you to Dr Nicolas Courtois, for introducing me to blockchains and applied cryptography. Thanks to Matthew Di Ferrante, for continued insight and expertise on Ethereum and adversarial security. Thanks also to my mum and dad, for convincing me that can handle an MSc alongside a full time job, and for all the advice along the way! Finally, thanks to the University of Manchester, UCL, Yorkshire Ladies’ Trust, and countless others for their generous grants over the years, without which this MSc would not have been possible.
    [Show full text]
  • The Blockchain: Industry Applications and Legal Perspectives
    MUMBAI SILICON VALLEY BANGALOR E SINGAPORE MUMBAI BKC NEW DELHI MUNICH N E W Y ORK The Blockchain Industry Applications and Legal Perspectives November 2018 © Copyright 2018 Nishith Desai Associates www.nishithdesai.com The Blockchain Industry Applications and Legal Perspectives November 2018 [email protected] © Nishith Desai Associates 2018 The Blockchain Industry Applications and Legal Perspectives Contents 1. INTRODUCTION 01 2. HOW BLOCKCHAIN TECHNOLOGY WORKS 03 I. Technical Perspective 03 II. Public and Private Blockchains 05 III. Looking Past the Hype 06 3. STATE OF THE ART IN INDUSTRY 08 4. REGULATORY REACTION 20 5. FORECASTING LEGAL ISSUES 25 I. Pseudonymity and Legal Enforcement 25 II. Privacy and Cybersecurity 25 III. Complications Associated with Decentralized Autonomous Organizations (DAOs) 27 IV. Complications Due to Immutability and Irreversability 28 V. Jurisdictional Questions 29 VI. Contract Law Grey Areas 29 VII. Whether Blockchain Tokens are ‘Securities’ 31 VIII. Adaptations of Older Requirements 31 6. PRACTICAL CHALLENGES 33 I. Cybersecurity 33 II. Widespread Adoption 33 III. Necessity 33 IV. Teething Problems 34 V. Privacy 34 VI. Energy Consumption 34 7. CONCLUSION 35 © Nishith Desai Associates 2018 The Blockchain Industry Applications and Legal Perspectives 1. Introduction Most people have heard of Bitcoin, the their businesses, independently and through revolutionary decentralized, trustless payment consortiums such as the Enterprise Ethereum system. But Bitcoin is just one application of Alliance.2 Big name technology and consulting a broader concept known as blockchain firms heavily involved in blockchain projects technology, or simply, ‘the blockchain.’ include Deloitte, Google (DeepMind), IBM, Blockchain technology made Bitcoin achieve KPMG, and Microsoft. a goal that many virtual currencies before The Indian fintech space has seen considerable it could not.
    [Show full text]
  • Profiting from Kitties on Ethereum: Leveraging Blockchain RDF Data
    Profiting from Kitties on Ethereum: Leveraging Blockchain RDF Data with SANSA Damien Graux1, Gezim Sejdiu2, Hajira Jabeen2, Jens Lehmann1;2, Danning Sui3, Dominik Muhs3 and Johannes Pfeffer3 1 Fraunhofer IAIS, Germany fdamien.graux,[email protected] 2 Smart Data Analytics, University of Bonn, Germany fsejdiu,jabeen,[email protected] 3 Alethio [email protected] fdanning.sui,[email protected] Abstract. In this poster, we will present attendees how the recent state- of-the-art Semantic Web tool SANSA could be used to tackle blockchain specific challenges. In particular, the poster will focus on the use case of CryptoKitties: a popular Ethereum-based online game where users are able to trade virtual kitty pets in a secure way. 1 Introduction During the recent years, the interest of the research community for blockchain technologies has raised up since the Bitcoin white paper published by Nakamoto [4]. Indeed, several applications either practical or theoretical have been made, for instance with crypto-currencies or with secured exchanges of data. More specifically, several blockchain systems have been designed, each one having their own set of properties, for example Ethereum [6] {further described in Section2{ which provides access to so-called smart-contracts. Recently, Mukhopadhyay et al. surveyed major crypto-currencies in [3]. In parallel to ongoing blockchain development, the research community has focused on the possibilities offered by the Semantic Web such as designing efficient data management systems, dealing with large and distributed knowledge RDF graphs. As a consequence, recently, some studies have started to connect the Semantic Web world with the blockchain one, see for example the study of English et al.
    [Show full text]