The Short and Long-Term Implications of Warming and Increased Sea Water Pco2 on the Physiological Response of a Temperate Neogastropod Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean. -
Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of -
Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata
Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier To cite this version: Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier. Interplay between abi- otic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science, Elsevier, 2018, 200, pp.1-18. 10.1016/j.ecss.2017.10.001. hal-02323051 HAL Id: hal-02323051 https://hal.archives-ouvertes.fr/hal-02323051 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 3 1 Title 4 5 2 Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria 6 7 3 alveolata (Annelida: Polychaeta) 8 9 4 Authors 10 11 5 Auriane G. Jones a,b,c, Stanislas F. Dubois a, Nicolas Desroy b, Jérôme Fournier c,d 12 6 Affiliations 13 14 7 a IFREMER, Laboratoire Centre de Bretagne, DYNECO LEBCO, 29280 Plouzané, France 15 b 16 8 IFREMER, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France 17 9 18 10 c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France 19 20 11 d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France 21 12 Corresponding author 22 23 Auriane G. -
The Evolution of the Molluscan Biota of Sabaudia Lake: a Matter of Human History
SCIENTIA MARINA 77(4) December 2013, 649-662, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03858.05M The evolution of the molluscan biota of Sabaudia Lake: a matter of human history ARMANDO MACALI 1, ANXO CONDE 2,3, CARLO SMRIGLIO 1, PAOLO MARIOTTINI 1 and FABIO CROCETTA 4 1 Dipartimento di Biologia, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy. 2 IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico (IST), 1049-001, Lisbon, Portugal. 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Lagoas-Marcosende, Vigo E-36310, Spain. 4 Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy. E-mail: [email protected] SUMMARY: The evolution of the molluscan biota in Sabaudia Lake (Italy, central Tyrrhenian Sea) in the last century is hereby traced on the basis of bibliography, museum type materials, and field samplings carried out from April 2009 to Sep- tember 2011. Biological assessments revealed clearly distinct phases, elucidating the definitive shift of this human-induced coastal lake from a freshwater to a marine-influenced lagoon ecosystem. Records of marine subfossil taxa suggest that previous accommodations to these environmental features have already occurred in the past, in agreement with historical evidence. Faunal and ecological insights are offered for its current malacofauna, and special emphasis is given to alien spe- cies. Within this framework, Mytilodonta Coen, 1936, Mytilodonta paulae Coen, 1936 and Rissoa paulae Coen in Brunelli and Cannicci, 1940 are also considered new synonyms of Mytilaster Monterosato, 1884, Mytilaster marioni (Locard, 1889) and Rissoa membranacea (J. -
Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata (Annelida: Polychaeta)
Estuarine, Coastal and Shelf Science 200 (2018) 1e18 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) * Auriane G. Jones a, b, c, , Stanislas F. Dubois a, Nicolas Desroy b,Jer ome^ Fournier c, d a IFREMER, Centre de Bretagne, DYNECO LEBCO, 29280 Plouzane, France b IFREMER, Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France article info abstract Article history: Sabellaria alveolata is a gregarious polychaete that uses sand particles to build three-dimensional Received 1 February 2017 structures known as reefs, fixed atop rocks or built on soft sediments. These structures are known to Received in revised form modify the local grain-size distribution and to host a highly diversified macrofauna, altered when the 4 October 2017 reef undergoes disturbances. The goal of this study was to investigate the different sedimentary and Accepted 6 October 2017 biological changes associated with the presence of a S. alveolata reef over two contrasting seasons (late Available online 7 October 2017 winter and late summer), and how these changes were linked. Three different sediments were considered: the engineered sediment (the actual reef), the associated sediment (the soft sediment Keywords: Honeycomb worm surrounding the reef structures) and a control soft sediment (i.e. no reef structures in close proximity). -
Dynamics of Large Sessile Seabed Fauna, Important for Structural
Dynamics of large sessile seabed fauna, important for structural fisheries habitat and biodiversity of marine ecosystems – and use of these habitats by key finfish species No. 97/205 Project CSIRO Marine Research C. R. Pitcher T. J. Wassenberg G. P. Smith M. Austin S. R. Gordon R. H. Bustamante C. H. Moeseneder Australian Institute of Marine Science M. C. Cappo P. J. Speare P. J. Doherty Queensland Museum J. A. Kennedy J. N. A. Hooper August 2004 DYNAMICS OF LARGE SESSILE SEABED FAUNA, IMPORTANT FOR STRUCTURAL FISHERIES HABITAT AND BIODIVERSITY OF MARINE ECOSYSTEMS – AND USE OF THESE HABITATS BY KEY FINFISH SPECIES C.R. Pitcher¹, T.J. Wassenberg¹, M.C. Cappo², G.P. Smith¹, M. Austin¹, S.R. Gordon¹, R.H. Bustamante¹, C.H. Moeseneder¹, P.J. Speare², J.A. Kennedy³, P.J. Doherty², J.N.A. Hooper³ 1 2 3 PROJECT No. 97/205 ISBN 1 876 996 77 3 ii National Library of Australia Cataloguing-in-Publication entry: Dynamics of large sessile seabed fauna, important for structural fisheries habitat and biodiversity of marine ecosystems — and use of these habitats by key finfish species. ISBN 1 876996 77 3. 1. Fishery management - Australia. 2. Fish habitat improvement - Australia. 3. Marine sciences - Australia. 4. Marine ecology - Australia. 5. Marine fauna. I. Pitcher, C. R. (Clifford Roland). II. CSIRO Marine Research. III. Fisheries Research & Development Corporation (Australia). 333.9560994 This Report should be cited as: Pitcher, C.R., Wassenberg, T.J., Cappo, M.C., Smith, G.P., Austin, M., Gordon, S.R., Bustamante, R.H., Moeseneder, C.H., Speare, P.J., Kennedy, J.A., Doherty, P.J., Hooper, J.N.A. -
Biodiversity and Spatial Distribution of Molluscs in Tangerang Coastal Waters, Indonesia 1,2Asep Sahidin, 3Yusli Wardiatno, 3Isdradjad Setyobudiandi
Biodiversity and spatial distribution of molluscs in Tangerang coastal waters, Indonesia 1,2Asep Sahidin, 3Yusli Wardiatno, 3Isdradjad Setyobudiandi 1 Laboratory of Aquatic Resources, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, Indonesia; 2 Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung, Indonesia; 3 Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia. Corresponding author: A. Sahidin, [email protected] Abstract. Tangerang coastal water is considered as a degraded marine ecosystem due to anthropogenic activities such as mangrove conversion, industrial and agriculture waste, and land reclamation. Those activities may affect the marine biodiversity including molluscs which have ecological role as decomposer in bottom waters. The purpose of this study was to describe the biodiversity and distribution of molluscs in coastal waters of Tangerang, Banten Province- Indonesia. Samples were taken from 52 stations from April to August 2014. Sample identification was conducted following the website of World Register of Marine Species and their distribution was analyzed by Canonical Correspondence Analysis (CCA) to elucidate the significant environmental factors affecting the distribution. The research showed 2194 individual of molluscs found divided into 15 species of bivalves and 8 species of gastropods. In terms of number, Lembulus bicuspidatus (Gould, 1845) showed the highest abundance with density of 1100-1517 indv m-2, probably due to its ability to live in extreme conditions such as DO < 0.5 mg L-1. The turbidity and sediment texture seemed to be key parameters in spatial distribution of molluscs. Key Words: bivalve, ecosystem, gastropod, sediment, turbidity. Introduction. Coastal waters are a habitat for various aquatic organisms including macroinvertebrates such as molluscs, crustaceans, polychaeta, olygochaeta and echinodermata. -
Linnaeus 1758)
ORE Open Research Exeter TITLE Intracapsular development and dispersal polymorphism in the predatory gastropod Ocenebra erinaceus (Linnaeus 1758) AUTHORS Smith, KE; Reed, AJ; Thatje, S JOURNAL Helgoland Marine Research DEPOSITED IN ORE 02 December 2016 This version available at http://hdl.handle.net/10871/24705 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication 1 Intracapsular development and dispersal polymorphism in the predatory 2 gastropod Ocenebra erinaceus (Linnaeus 1758) 3 Kathryn E. Smitha,b,*, Adam J. Reeda and Sven Thatjea 4 a Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 5 3ZH, UK 6 *Corresponding author email: [email protected] 7 *Corresponding author fax: 001 321 674 7238 8 *Corresponding author telephone: 001 321 674 8026 9 b Present address: Department of Biological Sciences, Florida Institute of Technology, 150 10 West University Boulevard, Melbourne, FL 32901, USA 11 Abstract 12 Intraspecific polymorphism during development, such as poecilogony or dispersal 13 polymorphism, has rarely been observed in the marine environment. The ecological 14 advantages of this bet-hedging strategy, whereby the offspring from one species exhibit 15 multiple developmental modes, include the potential for rapid colonization of new habitats 16 whilst simultaneously achieving a degree of gene flow between populations. The muricid 17 gastropod, Ocenebra erinaceus, is a common, shallow-water marine predator found across 18 England and France. Historically, O. -
Physiological Responses and Scope for Growth in a Marine Scavenging
ICES Journal of Marine Science ICES Journal of Marine Science (2016), 73(3), 814–824. doi:10.1093/icesjms/fsv208 Contribution to Special Issue: ‘Towards a Broader Perspective on Ocean Acidification Research’ Original Article Physiological responses and scope for growth in a marine Downloaded from https://academic.oup.com/icesjms/article/73/3/814/2458919 by guest on 29 September 2021 scavenging gastropod, Nassarius festivus (Powys, 1835), are affected by salinity and temperature but not by ocean acidification Haoyu Zhang1, Paul K. S. Shin1,2, and Siu Gin Cheung1,2* 1Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China 2State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China *Corresponding author: tel: + 852 34427749; fax: + 852 34420522; e-mail: [email protected] Zhang, H., Shin, P. K. S., and Cheung, S. G. Physiological responses and scope for growth in a marine scavenging gastropod, Nassarius festivus (Powys, 1835), are affected by salinity and temperature but not by ocean acidification. – ICES Journal of Marine Science, 73: 814–824. Received 4 June 2015; revised 17 September 2015; accepted 19 October 2015; advance access publication 11 November 2015. In the past few years, there has been a dramatic increase in the number of studies revealing negative or positive effects of ocean acidification on marine organisms including corals, echinoderms, copepods, molluscs, and fish. However, scavenging gastropods have received little attention despite being major players in energy flow, removing carrion, and recycling materials in marine benthic communities. The present study investi- gated the physiological responses (ingestion, absorption rate and efficiency, respiration, and excretion) and scope for growth (SfG) of an intertidal scavenging gastropod, Nassarius festivus, to the combined effects of ocean acidification (pCO2 levels: 380, 950, and 1250 matm), salinity (10 and 30 psu), and temperature (15 and 308C) for 31 d. -
Rapid Biodiversity Assessment of REPUBLIC of NAURU
RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements -
Community, Trophic Structure and Functioning in Two Contrasting Laminaria Hyperborea Forests
1 Estuarine, Coastal and Shelf Science Achimer January 2015, Volume 152, Pages 11-22 http://dx.doi.org/10.1016/j.ecss.2014.11.005 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00226/33747/ © 2014 Elsevier Ltd. All rights reserved. Community, Trophic Structure and Functioning in two contrasting Laminaria hyperborea forests Leclerc Jean-Charles 1, 2, * , Riera Pascal 1, 2, Laurans Martial 3, Leroux Cedric 1, 4, Lévêque Laurent 1, 4, Davoult Dominique 1, 2 1 Sorbonne Universités, UPMC Univ Paris 6, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France 2 CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff, France 3 IFREMER, Laboratoire de Biologie Halieutique, Centre Bretagne, BP 70,29280 Plouzané, France 4 CNRS, FR 2424, Station Biologique de Roscoff, Place Georges Teissier,29680 Roscoff, France * Corresponding author : Jean-Charles Leclerc, email address : [email protected] Abstract : Worldwide kelp forests have been the focus of several studies concerning ecosystems dysfunction in the past decades. Multifactorial kelp threats have been described and include deforestation due to human impact, cascading effects and climate change. Here, we compared community and trophic structure in two contrasting kelp forests off the coasts of Brittany. One has been harvested five years before sampling and shelters abundant omnivorous predators, almost absent from the other, which has been treated as preserved from kelp harvest. δ15N analyses conducted on the overall communities were linked to the tropho-functional structure of different strata featuring these forests (stipe and holdfast of canopy kelp and rock). Our results yielded site-to-site differences of community and tropho-functional structures across kelp strata, particularly contrasting in terms of biomass on the understorey. -
Mannitol Oxidase and Polyol Dehydrogenases in the Digestive Gland of Gastropods: Correlations with Phylogeny and Diet
RESEARCH ARTICLE Mannitol oxidase and polyol dehydrogenases in the digestive gland of gastropods: Correlations with phylogeny and diet Alexandre Lobo-da-Cunha1,2*, Diogo Amaral-de-Carvalho1, Elsa Oliveira1, AÃ ngela Alves1, VõÂtor Costa3,4,5, GoncËalo Calado6,7 1 Departamento de Microscopia, Instituto de Ciências BiomeÂdicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal, 2 Centro Interdisciplinar de InvestigacËão Marinha e Ambiental (CIIMAR), Matosinhos, a1111111111 Portugal, 3 Departamento de Biologia Molecular, Instituto de Ciências BiomeÂdicas Abel Salazar (ICBAS), a1111111111 Universidade do Porto, Porto, Portugal, 4 Instituto de InvestigacËão e InovacËão em SauÂde, Universidade do a1111111111 Porto, Porto, Portugal, 5 IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal, 6 Departamento de Ciências da Vida, Universidade LusoÂfona de Humanidades e Tecnologias, a1111111111 Lisboa, Portugal, 7 MARE NOVA, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, a1111111111 Departamento de Ciências e Engenharia do Ambiente, Campus de Caparica, Caparica, Portugal * [email protected] OPEN ACCESS Abstract Citation: Lobo-da-Cunha A, Amaral-de-Carvalho D, Oliveira E, Alves AÃ, Costa V, Calado G (2018) Mannitol oxidase and polyol dehydrogenases are enzymes that convert polyalcohols into Mannitol oxidase and polyol dehydrogenases in the sugars. Mannitol oxidase was previously investigated in terrestrial snails and slugs, being digestive gland of gastropods: Correlations with also present in a few aquatic gastropods. However, the overall distribution of this enzyme in phylogeny and diet. PLoS ONE 13(3): e0193078. https://doi.org/10.1371/journal.pone.0193078 the Gastropoda was not known. Polyol dehydrogenases are also poorly studied in gastro- pods and other mollusks.