[Nife] Hydrogenases
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Nitrogen Trace Gas Emissions from a Riparian Ecosystem in Sot&Em
CHEMOSPHERE PERGAMON Chemosphere 49 (2002) 1389-l 398 www.elsevier.com/locate/chemosphere Nitrogen trace gas emissions from a riparian ecosystem in sot&em Appalachia John T. Walker aP*, Christopher D. Geron a, James M. Vose b, Wayne T. Swank b ’ US Enviromental Protection Agency, Natkmal R&k Managmt Research Laboratory, iUD-63, Research Triangk Park, NC 27711, USA b US Department of Agricdture, Forest Service, Coweeta Hydrologic Laboratory, Otto, NC 28763, USA Received 11 July 2001; received in revised form 21 May 2002; accepted 19 June 2002 Abstract In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (NrO) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and NrO fluxes were 5.8,2.0, and 76.7 ngNm-* s-i (1.83,0.63, and 24.19 kg N ha-’ y-t), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NHr, measuring 9.1, 4.3, and 77.6 ng Nm-* s-* (2.87, 1.35, and 24.50 kg N ha-’ y-l) for NO, NHr, and N20, respectively. On average, NzO accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though NrO fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was ex- plained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammo- nium (NH:) concentration, while N20 flux was positively correlated with soil nitrate (NO;) concentration. -
Relative Importance of Gas Uptake on Aerosol and Ground Surfaces Characterized by Equivalent Uptake Coefficients
Atmos. Chem. Phys., 19, 10981–11011, 2019 https://doi.org/10.5194/acp-19-10981-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients Meng Li1,a, Hang Su1, Guo Li1, Nan Ma2, Ulrich Pöschl1, and Yafang Cheng1 1Max Planck Institute for Chemistry, Mainz, 55118, Germany 2Center for Air Pollution and Climate Change Research (APCC), Institute for Environmental and Climate Research (ECI), Jinan University, Guangzhou, 511443, China anow at: Chemical Science Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado 80305, USA Correspondence: Hang Su ([email protected]) and Yafang Cheng ([email protected]) Received: 19 March 2019 – Discussion started: 2 April 2019 Revised: 9 July 2019 – Accepted: 19 July 2019 – Published: 29 August 2019 Abstract. Quantifying the relative importance of gas up- Given the fact that most models have considered the up- take on the ground and aerosol surfaces helps to determine takes of these species on the ground surface, we suggest also which processes should be included in atmospheric chem- considering the following processes in atmospheric models: istry models. Gas uptake by aerosols is often characterized N2O5 uptake by all types of aerosols, HNO3 and SO2 uptake by an effective uptake coefficient (γeff), whereas gas uptake by mineral dust and sea salt aerosols, H2O2 uptake by min- on the ground is usually described by a deposition velocity eral dust, NO2 uptakes by sea salt aerosols and O3 uptake by (Vd). -
A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike . -
Inelastic Scattering in Ocean Water and Its Impact on Trace Gas Retrievals from Satellite Data
Atmos. Chem. Phys., 3, 1365–1375, 2003 www.atmos-chem-phys.org/acp/3/1365/ Atmospheric Chemistry and Physics Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data M. Vountas, A. Richter, F. Wittrock, and J. P. Burrows Institute for Environmental Physics, University of Bremen, Bremen, Germany Received: 4 April 2003 – Published in Atmos. Chem. Phys. Discuss.: 2 June 2003 Revised: 29 August 2003 – Accepted: 4 September 2003 – Published: 15 September 2003 Abstract. Over clear ocean waters, photons scattered within 1 Introduction the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Backscattered light from waters with low concentrations of Scattering (VRS) by liquid water is also playing a role and chlorophyll and gelbstoff – which are commonly referred can have a strong impact on the spectral distribution of the to as oligotrophic waters – is significantly influenced by outgoing radiance. Under clear-sky conditions, VRS has an Vibrational Raman Scattering (VRS) within the water (e.g. influence on trace gas retrievals from space-borne measure- Stavn and Weidemann, 1988; Marshall and Smith, 1990; ments of the backscattered radiance such as from e.g. GOME Haltrin and Kattawar, 1993; Sathyendranath and Platt, 1998; (Global Ozone Monitoring Experiment). The effect is par- Vasilkov et al., 2002b). ticularly important for geo-locations with small solar zenith As inelastic scattering redistributes photons over wave- angles and over waters with low chlorophyll concentration. length, VRS fills-in solar Fraunhofer lines, as well as trace gas absorption lines and therefore changes the spectral dis- In this study, a simple ocean reflectance model (Sathyen- tribution of scattered light in the atmosphere. -
Cris Trace Gas Data Users Workshop
NOAA Unique CrIS/ATMS Processing System (NUCAPS) Trace Gas Data Products and Access A.K. Sharma (OSPO) CrIS Trace Gas Data Users Workshop September 18, 2014 The NOAA Unique CrIS/ATMS Processing System Products Retrieval Products gas Range Precisio d.o.f. Interfering Gases Science Cloud Cleared Radiances 660-750 cm-1 (cm-1) n Code 2200-2400 cm-1 T 650-800 1K/km 6-10 H2O,O3,N2O 100 levels Cloud fracon and Top 660-750 cm-1 2375-2395 emissivity Pressure Surface temperature window H2O 1200-1600 15% 4-6 CH4, HNO3 100 layers O 1025-1050 10% 1+ H2O,emissivity 100 layers Temperature 660-750 cm-1 3 2200-2400 cm-1 CO 2080-2200 15% ≈ 1 H2O,N2O 100 layers Water Vapor 780 – 1090 cm-1 1200-1750 cm-1 CH4 1250-1370 1.5% ≈ 1 H2O,HNO3,N2O 100 layers O3 990 – 1070 cm-1 CO2 680-795 0.5% ≈ 1 H2O,O3 100 layers CO 2155 – 2220 cm-1 2375-2395 T(p) CH4 1220-1350 cm-1 Volcanic 1340-1380 50% ?? < 1 H2O,HNO3 flag SO2 N2O 1290-1300cm-1 2190-2240cm-1 HNO3 860-920 50% ?? < 1 emissivity 100 layers 1320-1330 H2O,CH4,N2O HNO3 760-1320cm-1 N2O 1250-1315 5% ?? < 1 H2O 100 layers SO2 1343-1383cm-1 2180-2250 H2O,CO NH3 860-875 50% <1 emissivity BT diff CFCs 790-940 20-50% <1 emissivity Constant NUCAPS EDR Trace Gas Products The EDR product contains the following trace gas profiles calculated on each CrIS FOR: O3 layer column density (at 100 levels) O3 mixing ratio (at 100 levels) First Guess O3 layer column density (at 100 levels) First Guess O3 mixing ratio (at 100 levels) CH4 layer column density (at 100 levels) CH4 mixing ratio (at 100 levels) CO2 mixing ratio (at 100 levels) HNO3 layer column density (at 100 levels) HNO3 mixing ratio (at 100 levels) N2O layer column density (at 100 levels) N2O mixing ratio (at 100 levels) SO2 layer column density (at 100 levels) SO2 mixing ratio (at 100 levels) 3 AWIPS NUCAPS Products The retrieval product for AWIPS contains the following variaBles. -
Concentrations and Fluxes of Aerosol Particles During the LAPBIAT
Atmos. Chem. Phys. Discuss., 7, 709–751, 2007 Atmospheric www.atmos-chem-phys-discuss.net/7/709/2007/ Chemistry © Author(s) 2007. This work is licensed and Physics under a Creative Commons License. Discussions Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign in Varri¨ o¨ field station T. M. Ruuskanen1, M. Kaasik2, P. P. Aalto1, U. Horrak˜ 2, M. Vana1,2, M. Martensson˚ 3, Y. J. Yoon4, P. Keronen1, G. Mordas1, D. Ceburnis4, E. D. Nilsson3, C. O’Dowd4, M. Noppel2, T. Alliksaar5, J. Ivask5, M. Sofiev6, M. Prank2, and M. Kulmala1 1University of Helsinki, Dept. of Physical Sciences, P.O. Box 64, 00014 University of Helsinki, Finland 2Institute of Environmental Physics, University of Tartu, Tartu, Estonia 3Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden 4Department of Experimental Physics, National University of Ireland, Galway, Ireland 5Institute of Geology, Tallinn University of Technology, Tallinn, Estonia 6Air Quality Research, Finnish Meteorological Institute, Finland Received: 21 November 2006 – Accepted: 8 January 2006 – Published: 17 January 2007 Correspondence to: T. M. Ruuskanen (taina.ruuskanen@helsinki.fi) 709 Abstract The LAPBIAT measurement campaign took place in the SMEAR I measurement station located in Eastern Lapland in the spring of 2003 between 26 April and 11 May. In this paper we describe the measurement campaign, concentrations and fluxes of aerosol 5 particles, air ions and trace gases, paying special attention to an aerosol particle for- mation event broken by a polluted air mass approaching from industrial areas of Kola Peninsula, Russia. Aerosol particle number flux measurements show strong downward fluxes during that time. -
Hydrogenases of Methanogens
ANRV413-BI79-18 ARI 27 April 2010 21:0 Hydrogenases from Methanogenic Archaea, Nickel, a Novel Cofactor, and H2 Storage Rudolf K. Thauer, Anne-Kristin Kaster, Meike Goenrich, Michael Schick, Takeshi Hiromoto, and Seigo Shima Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany; email: [email protected] Annu. Rev. Biochem. 2010. 79:507–36 Key Words First published online as a Review in Advance on H2 activation, energy-converting hydrogenase, complex I of the March 17, 2010 respiratory chain, chemiosmotic coupling, electron bifurcation, The Annual Review of Biochemistry is online at reversed electron transfer biochem.annualreviews.org This article’s doi: Abstract 10.1146/annurev.biochem.030508.152103 Most methanogenic archaea reduce CO2 with H2 to CH4. For the Copyright c 2010 by Annual Reviews. activation of H2, they use different [NiFe]-hydrogenases, namely All rights reserved energy-converting [NiFe]-hydrogenases, heterodisulfide reductase- 0066-4154/10/0707-0507$20.00 associated [NiFe]-hydrogenase or methanophenazine-reducing by University of Texas - Austin on 06/10/13. For personal use only. [NiFe]-hydrogenase, and F420-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related Annu. Rev. Biochem. 2010.79:507-536. Downloaded from www.annualreviews.org to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]- hydrogenase (instead of F420-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH2-, one S-CH2-, and a sp2-hybridized pyridinol nitrogen. -
[Nife]-Hydrogenase Ingmar Bürstela,B, Elisabeth Siebertb, Stefan Frielingsdorfa,B, Ingo Zebgerb, Bärbel Friedricha, and Oliver Lenza,B,1
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase Ingmar Bürstela,b, Elisabeth Siebertb, Stefan Frielingsdorfa,b, Ingo Zebgerb, Bärbel Friedricha, and Oliver Lenza,b,1 aDepartment of Biology, Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; and bDepartment of Chemistry, Biophysical Chemistry, Technische Universität Berlin, 10623 Berlin, Germany Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved November 8, 2016 (received for review September 1, 2016) Hydrogenases are nature’s key catalysts involved in both microbial of the HypD and HypC proteins acts as scaffold for the assembly of consumption and production of molecular hydrogen. H2 exhibits a the Fe(CN)2(CO) entity of the active site (7, 8). The HypF and − strongly bonded, almost inert electron pair and requires transition HypE proteins deliver the CN ligands, which are synthesized metals for activation. Consequently, all hydrogenases are metal- from carbamoyl phosphate (9). Incorporation of the nickel is fa- loenzymes that contain at least one iron atom in the catalytic center. cilitated by the HypB and HypA proteins (10). However, source For appropriate interaction with H2, the iron moiety demands for a and synthesis of the active site CO ligand remained elusive. sophisticated coordination environment that cannot be provided Maturation studies on the O2-tolerant, energy-generating just by standard amino acids. This dilemma has been overcome by [NiFe]-hydrogenases in the facultative H2-oxidizing bacterium the introduction of unprecedented chemistry—that is, by ligating Ralstonia eutropha H16 indicate that at least two different meta- the iron with carbon monoxide (CO) and cyanide (or equivalent) bolic sources exist for CO ligand synthesis (11). -
Dual Laser Trace Gas Monitor Sensitive, Rapid, Highly Specific and Continuous Measurements of Multiple Atmospheric Trace Gases in Ambient Air
Dual Laser Trace Gas Monitor Sensitive, rapid, highly specific and continuous measurements of multiple atmospheric trace gases in ambient air. APPLICATIONS ADVANTAGES • Extremely sensitive detection of a wide variety of • Absolute trace gas concentrations with atmospheric trace gases, such as: methane, out calibration gases. nitrous oxide, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide, formaldehyde, • Fast time response. formic acid, ethylene, acetylene, carbonyl sulfide, acrolein, ammonia and others. • Free from interferences by other atmospheric gases or water vapor. • Combustion monitoring and characterization. • Turnkey and unattended operation. • Isotopic monitoring of CH4 and N2O for source/ sink characterization. • Ready to be deployed in field measurements and on moving platforms. • Eddy Covariance measurements. • Two lasers allow simultaneous • Fast response plume studies. measurement of more species. • Air quality monitoring. • Optical pathlength of either 76 meters or 210 meters. • Mobile measurements from ship, truck, and Aircraft platforms. AERODYNE RESEARCH, Inc. 45 MANNING ROAD, BILLERICA, MA 01821 (978) 663 9500 www.aerodyne.com CAEC_TILDAS_DUAL POPULAR INSTRUMENTS HIGHER PRECISION AND ACCURACY IS OBTAINABLE WITH MID-INFRARED LASERS Clumped CO2 Isotopes* CH4 Isotopes CO2, Water Isotopes N2O Isotopes NO, NO2 CH4, N2O, CO,CO2, H2O, C2H6 MECHANICAL SPECIFICATIONS FOR DUAL LASER TRACE GAS MONITOR: Dimensions: 560 mm x 770 mm x 640 mm (W x D x H) Weight: 75 kg Electrical Power: 250-500 W, 120/240 V, 55/60 Hz (without pump) MULTIPASS CELL: Choice of 76 meter standard cell (V=0.5 liters) or 210 meter “Super Cell” (V=2liters) *Image attribution by Psammophile [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons REFERENCES: Nelson, D.D. -
Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification
Aerosol and Air Quality Research, 13: 421–435, 2013 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2012.08.0207 Transportable Aerosol Characterization Trailer with Trace Gas Chemistry: Design, Instruments and Verification T. Petäjä1*, V. Vakkari1, T. Pohja2, T. Nieminen1, H. Laakso2, P.P. Aalto1, P. Keronen1, E. Siivola1, V.-M. Kerminen1,3, M. Kulmala1, L. Laakso3,4 1 Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland 2 Hyytiälä Forestry Field Station, Hyytiäläntie 124, FI-35500 Korkeakoski, Finland 3 School of Physical and Chemical Sciences, North-West University, Potchefstroom 2520, South Africa 4 Finnish Meteorological Institute, Research and Development, P.O. Box 503, FI-00101, Finland ABSTRACT The characterization of atmospheric aerosol properties and trace gas concentrations in various environments provides a basis for scientific research on the assessment of their roles in the climate system, as well as regional air quality issues. However, measurements of these face many problems in the developing world. In this study we present the design of a transportable aerosol dynamic and atmospheric research trailer, which relies minimally on the existing infrastructure by making use of wireless data transfer. The instrumentation used in this trailer was originally used in various aerosol formation studies, and has been expanded so that it can also monitor air quality. The instruments include a Differential Mobility Particle Sizer (DMPS) for aerosol number size distribution in the range 10–840 nm, a Tapered Element Oscillating Microbalance (TEOM) for aerosol mass concentration, and Air Ion Spectrometer (AIS) for atmospheric ion measurements in the size range 0.5–40 nm. -
Is a Trace Gas in Earth's Atmosphere, with a Mixing Ratio in 2005 Of
Nitrous Oxide Nitrous oxide (chemical formula N 2O), is a trace gas in Earth’s atmosphere, with a mixing ratio in 2005 of 319±0.12 ppb (parts per billion, by volume). Atmospheric nitrous oxide is steadily increasing due to human activities. Nitrous oxide absorbs terrestrial radiation (i.e. radiation emitted by the Earth), and consequently it is an important anthropogenic greenhouse gas; it is one of the gases targeted for control within the Kyoto Protocol. Nitrous oxide also absorbs solar radiation, which can split the molecule, releasing reactive species that contribute towards stratospheric ozone depletion. Various natural and anthropogenic sources add nitrous oxide to the atmosphere. The main natural sources are related to biological activity in soils and the upper ocean. The largest anthropogenic source is from the use of nitrogenous fertilizer in the agricultural sector; others include combustion of fossil fuel, biomass and biofuel, and industrial processes. Nitrous oxide emissions related to biofuel production are an example of reducing emissions of one greenhouse gas (CO 2) at the expense of increasing emissions of another. Nitrous oxide is relatively inert in the troposphere (the atmosphere’s lowest 10-15 km). Higher up, in the stratosphere, energetic ultra-violet radiation starts to break the molecule apart. This photochemical destruction in the upper atmosphere removes about 0.9% of all nitrous oxide every year, determining the average atmospheric residence time of an N 2O molecule, which is currently around 114 years. This is long compared to timescales of most atmospheric transport and mixing processes, which typically range from hours to a few years. -
An Implementation of the Dry Removal Processes DRY Deposition and Sedimentation in the Modular Earth Submodel System (Messy) A
Technical Note: an implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy) A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, P. Jöckel To cite this version: A. Kerkweg, J. Buchholz, L. Ganzeveld, A. Pozzer, H. Tost, et al.. Technical Note: an implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics Discussions, European Geosciences Union, 2006, 6 (4), pp.6853-6901. hal-00302014 HAL Id: hal-00302014 https://hal.archives-ouvertes.fr/hal-00302014 Submitted on 24 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys. Discuss., 6, 6853–6901, 2006 Atmospheric www.atmos-chem-phys-discuss.net/6/6853/2006/ Chemistry ACPD © Author(s) 2006. This work is licensed and Physics 6, 6853–6901, 2006 under a Creative Commons License. Discussions Dry removal processes in MESSy A. Kerkweg et al. Technical Note: an implementation of the Title Page dry removal processes DRY DEPosition Abstract Introduction and SEDImentation in the Modular Earth Conclusions References Submodel System (MESSy) Tables Figures A.