Flows and Colorings in Oriented Matroids

Total Page:16

File Type:pdf, Size:1020Kb

Flows and Colorings in Oriented Matroids Flows and Colorings in Oriented Matroids Dissertation zur Erlangung des akademischen Grades DOKTOR RER. NAT. der Fakult¨atf¨ur Mathematik und Informatik der FernUniversit¨at in Hagen von Dipl. Math. Robert Nickel aus Berlin Hagen, 2012 Berichterstatter: Prof. Dr. Winfried Hochst¨attler Prof. Dr. Luis Goddyn Tag der m¨undlichen Pr¨ufung: 15. Mai 2012 Danksagungen Besonderer Dank geht an meinen Betreuer Professor Dr. Winfried Hochst¨attlerf¨ur eine fantastische Themenwahl, f¨urdie zahlreichen spannenden Diskussionen in seinem B¨uro und f¨urseine nicht enden wollende Motivation und das entgegengebrachte Vertrauen bis zur lang ersehnten Abgabe dieser Arbeit. Er hat mich angesteckt mit seiner Begeisterung f¨urOrientierte Matroide und mir in vielerlei Hinsicht einiges beigebracht. Desweiteren danke ich: • Professor Luis Goddyn f¨urdas Begutachten dieser Arbeit, • Dominique Andres f¨ur die zahlreichen spannenden Diskussionen zum Thema, • Britta Peis f¨urdas tapfere Korrekturlesen großer Teile dieser Arbeit und die zahlrei- chen Verbesserungsvorschl¨age, • Lukas Finschi f¨urdie Bereitstellung seiner Datenbank aller kleinen orientierten Matroide, • Oliver Klein, der mit seiner Software etliche Einelementerweiterungen f¨urmich berechnet hat, • Xun Dong, der mit seiner Arbeit [30] das gesamte dritte Kapitel motiviert hat, • meinen Kollegen bei der DCAM GmbH, allen voran Edmund Groß und Jens Franke, die mir den R¨ucken frei gehalten haben als ich es brauchte, • zahlreichen weiteren Personen, die es nie leid waren, mich in regelm¨aßigenAbst¨anden immer wieder nach dem Stand dieser Arbeit zu fragen und damit wesentlich zu deren Fertigstellung beigetragen haben, • Steve f¨ur ein besseres Englisch in der Einleitung, • meinen Eltern die mir w¨ahrend des Studiums, der Zeit an der Universit¨atund bis heute unsch¨atzbare Unterst¨utzungentgegenbringen • und meiner Frau und meiner Tochter f¨urderen Liebe, Geduld, Beistand und Ver- trauen w¨ahrendlanger Phasen k¨orperlicher sowie geistiger Abwesenheit. Zusammenfassung Wir werden uns in dieser Arbeit mit einer Struktur besch¨aftigen,deren St¨arke darin liegt, verschiedenste Gebiete der Mathematik zusammenzuf¨uhrenwie Lineare Optimierung, affine/projektive Geometrie, Algebra, Verbandstheorie, Komplexit¨atstheorie,Transver- salentheorie und Graphentheorie. Orientierte Matroide reduzieren die Eigenschaften von Punktkonfigurationen, Polyedern und (Pseudo)Hyperebenenarangements auf deren rein kombinatorischen Kern und wurden 1978 von Folkman und Lawrence [38] und Bland und Las Vergnas [12] mit der Motivation eingef¨uhrt,die praktisch belegte, theoretisch aber nie nachgewiesene gute Effizienz des Simplex-Algorithmus der linearen Optimierung zu beweisen. Außerdem weiß man von Optimierungsproblemen, denen eine Matroidstruk- tur zugrunde liegt, dass diese exakt mit einer \gierigen" (greedy) Strategie gel¨ostwer- den k¨onnen([10]). Die nicht-orientierten Pendants, die Matroide, wurden bereits 1935 von Whitney [111] eingef¨uhrt,der die gemeinsamen Eigenschaften von minimal linear abh¨angigenMengen von Vektoren und Kreisen in Graphen untersuchte. Weitere davon unabh¨angigeVerweise findet man in Birkhoff [7], van der Waerden [107] und Nakasawa [84]. Wir konzentrieren uns in dieser Arbeit auf Konzepte der Graphentheorie und deren Ver- allgemeinerung auf orientierte Matroide. Sowohl aus theoretischer, als auch aus praktis- cher Sicht, liefert die Graphentheorie eine schier endlose Quelle von einfach darzustel- lenden Problemen, deren L¨osung sich aber nicht selten als harte Nuss herausstellt. Das wahrscheinlich prominenteste Beispiel ist das Vier-Farben-Problem (Francis Guthrie um 1852, siehe Cayley [22]): Gegeben ist eine geographische Landkarte mit zusam- menh¨angendenL¨andern(also z. B. ohne Kolonien). Ist es immer m¨oglich, deren L¨ander so einzuf¨arben, dass man benachbarte L¨andermit unterschiedlichen Farben versieht und h¨ochstens vier Farben verwendet? Ein Graph besteht aus einer Menge von Knoten und einer Menge von Kanten, die einige Paare dieser Knoten miteinander verbinden. Identifiziert man L¨andermit Knoten und Grenzen mit Kanten, so stellt sich das Vier-Farben-Problem wie folgt dar: Gegeben ist ein planarer Graph, d. h. ein Graph, der so in der Ebene gezeichnet werden kann, dass sich Kanten nur in ihren Endpunkten kreuzen. Gibt es eine F¨arbungder Knoten, so dass durch Kanten verbundene Knoten verschieden gef¨arbt sind und h¨ochstens vier Farben ben¨otigt werden? Bereits 1852 erstmals erw¨ahnt, dauerte es fast anderthalb Jahrhunderte, bis ein weitestge- hend akzeptierter Beweis daf¨urgefunden wurde, dass eine solche F¨arbungimmer existiert (siehe Appel und Haken [4], Robertson, Sanders, Seymour und Thomas [89]). Bis heute f¨ulltdie Theorie der Graphenf¨arbungganze B¨ucher und deren zahlreiche Anwendungen ¨uberschreiten bei weitem den Rahmen dieser Einleitung ([25]). F¨uhrtman in einem Graphen f¨urjede Kante eine Richtung ein, so kann man durch Label an den Kanten Fluss zwischen den Knoten modellieren, die nun als Verzweigungspunkte in einem (Verkehrs-, Rohr- oder elektrischen) Netzwerk fungieren. Mit der Bedingung, dass alles, was in einen Knoten hineinfließt auch wieder herausfließen soll (Kirchhoff'sches Gesetz [72]), erh¨alt man ein Modell f¨urRundfl¨usse.Wenn zus¨atzlich zwei der Knoten die Rolle von Quelle und Senke ¨ubernehmen und jede gerichtete Kante mit einer Maximalka- pazit¨atversehen wird, endet man in einem Modell f¨urmaximale Fl¨ussezwischen zwei Knoten mit Kapazit¨atsbeschr¨ankung, was den Ausgangspunkt der Flusstheorie bildete (Ford und Fulkerson [39]). Im Falle eines planaren Graphen sind Rundfl¨usseund Knotenf¨arbungen\duale" Objekte (Tutte [101]). Um diese Dualit¨atf¨urnicht-planare Graphen und allgemeinere Strukturen zu erhalten, ben¨otigtman orientierte Matroide. Zwei verschiedene Verallgemeinerungen von Fl¨ussenin Graphen auf orienterte Matroide finden sich in Ver¨offentlichungen der letz- ten Jahre (siehe Hochst¨attlerund Neˇsetˇril[59] und Goddyn, Tarsi und Zhang [45]). Wir untersuchen Fl¨ussein orientierten Matroiden wie sie von Hochst¨attlerund Neˇsetˇril[59] eingef¨uhrtwurden und diskutieren Fragestellungen, die beschr¨anktauf Graphen, zu promi- nenten Problemen z¨ahlen. Die ersten beiden Kapitel dienen der Einf¨uhrungvon Theorie und Notation, die f¨urdie Aussagen und Beweise der folgenden Kapitel von Bedeutung sind. W¨ahrendKapitel 1 den Grundlagen der Graphentheorie, Geometrie und Verbandstheorie gewidmet ist, geben wir in Kapitel 2 eine recht ausf¨uhrliche Einf¨uhrungin die Theorie der orientierten Ma- troide. Dabei legen wir besonderen Wert auf die zahlreichen Axiomensysteme, mit de- nen ein orientiertes Matroid definiert werden kann. Diese Grundlagen sind unerl¨asslich f¨urKapitel 3, wo wir wohlbekannte Aussagen zur Komposition und Dekomposition von (nicht-orientierten) Matroiden betrachten und deren Korrektheit im Kontext orientierter Matroide beweisen. Der Begriff der Fl¨usseund Kofl¨usse(duale Fl¨ussebzw. F¨arbungen)wird in Kapitel 4 basierend auf der Arbeit von Hochst¨attlerund Neˇsetˇril[59] eingef¨uhrt.Wir untersuchen das sogenannte Flussgitter, die Menge aller Rundfl¨usse. Genauer gesagt bestimmen wir dieses exakt f¨urorientierte Matroide, die uniform sind oder deren Rang h¨ochstens drei ist. Bei der Betrachtung von Kofl¨ussenzeigen wir, dass das orientierte Matroid eines vollst¨andigenGraphen, bei dem jedes Paar von Knoten durch eine Kante verbunden ist, genau wie in der Graphentheorie auch im allgemeineren Kontext orientierter Matroide die einzige Worst-Case-Instanz darstellt. Nach einigen weiteren Resultaten f¨ur allgemeine orientierte Matroide beschließen wir das Ende des Kapitels mit Berechnungen auf der Datenbank aller kleinen orientierten Matroide von Finschi [37] und zusammenfassenden Abschnitten ¨uber den Ansatz von [45], gruppenwertige Fl¨usseund das Tutte-Polynom. Wie bereits erw¨ahnt, bildet das Problem der maximalen Fl¨usse mit Kapazit¨atsbe- schr¨ankungenden Ausgangspunkt der Flusstheorie in Graphen ([39]). In Kapitel 5 werden wir eine neue Verallgemeinerung von maximalen Fl¨ussenauf orientierte Matroide basierend auf dem Flussgitter pr¨asentieren. Die aus der Graphentheorie bekannte Dualit¨atvon maxi- malen Fl¨ussenund minimalen Schnitten verallgemeinern wir zu einer kompatiblen Aussage f¨urorientierte Matroide und leiten notwendige sowie hinreichende Bedingungen mit Hilfe von Eigenschaften des Flussgitters her. Contents Introduction1 1 Preliminaries3 1.1 Basics.......................................3 1.2 An Oriented Matroid Expedition........................ 16 2 Oriented Matroids 23 2.1 Circuit Axioms of an Oriented Matroid.................... 23 2.2 Topological Representation and Minors..................... 24 2.3 Duality...................................... 27 2.4 The Underlying Matroid............................. 31 2.5 The Convex Closure Operator.......................... 36 2.6 Basis Orientation and Chirotopes........................ 37 2.7 Classes of Matroids................................ 38 2.8 Guide through the next chapters........................ 41 3 Composition and Decomposition 43 3.1 Basic Connection Operators........................... 47 3.2 Generalized Parallel Connection, Modular Join, and Modular Sum........................ 56 3.3 A Decomposition Theorem........................... 60 3.4 Concluding Remarks and Open Problems................... 63 ix x Contents 4 Flows and Colorings 65 4.1 Regular Oriented Matroids........................... 70 4.2 Uniform Oriented Matroids........................... 72 4.3 Small Rank...................................
Recommended publications
  • Configurations of Points and Lines
    Configurations of Points and Lines "RANKO'RüNBAUM 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/103 Configurations of Points and Lines Configurations of Points and Lines Branko Grünbaum Graduate Studies in Mathematics Volume 103 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103 Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society.
    [Show full text]
  • Chapter 7 Block Designs
    Chapter 7 Block Designs One simile that solitary shines In the dry desert of a thousand lines. Epilogue to the Satires, ALEXANDER POPE The collection of all subsets of cardinality k of a set with v elements (k < v) has the ³ ´ v¡t property that any subset of t elements, with 0 · t · k, is contained in precisely k¡t subsets of size k. The subsets of size k provide therefore a nice covering for the subsets of a lesser cardinality. Observe that the number of subsets of size k that contain a subset of size t depends only on v; k; and t and not on the specific subset of size t in question. This is the essential defining feature of the structures that we wish to study. The example we just described inspires general interest in producing similar coverings ³ ´ v without using all the k subsets of size k but rather as small a number of them as possi- 1 2 CHAPTER 7. BLOCK DESIGNS ble. The coverings that result are often elegant geometrical configurations, of which the projective and affine planes are examples. These latter configurations form nice coverings only for the subsets of cardinality 2, that is, any two elements are in the same number of these special subsets of size k which we call blocks (or, in certain instances, lines). A collection of subsets of cardinality k, called blocks, with the property that every subset of size t (t · k) is contained in the same number (say ¸) of blocks is called a t-design. We supply the reader with constructions for t-designs with t as high as 5.
    [Show full text]
  • On the Levi Graph of Point-Line Configurations 895
    inv lve a journal of mathematics On the Levi graph of point-line configurations Jessica Hauschild, Jazmin Ortiz and Oscar Vega msp 2015 vol. 8, no. 5 INVOLVE 8:5 (2015) msp dx.doi.org/10.2140/involve.2015.8.893 On the Levi graph of point-line configurations Jessica Hauschild, Jazmin Ortiz and Oscar Vega (Communicated by Joseph A. Gallian) We prove that the well-covered dimension of the Levi graph of a point-line configuration with v points, b lines, r lines incident with each point, and every line containing k points is equal to 0, whenever r > 2. 1. Introduction The concept of the well-covered space of a graph was first introduced by Caro, Ellingham, Ramey, and Yuster[Caro et al. 1998; Caro and Yuster 1999] as an effort to generalize the study of well-covered graphs. Brown and Nowakowski [2005] continued the study of this object and, among other things, provided several examples of graphs featuring odd behaviors regarding their well-covered spaces. One of these special situations occurs when the well-covered space of the graph is trivial, i.e., when the graph is anti-well-covered. In this work, we prove that almost all Levi graphs of configurations in the family of the so-called .vr ; bk/- configurations (see Definition 3) are anti-well-covered. We start our exposition by providing the following definitions and previously known results. Any introductory concepts we do not present here may be found in the books by Bondy and Murty[1976] and Grünbaum[2009]. We consider only simple and undirected graphs.
    [Show full text]
  • Self-Dual Configurations and Regular Graphs
    SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS H. S. M. COXETER 1. Introduction. A configuration (mci ni) is a set of m points and n lines in a plane, with d of the points on each line and c of the lines through each point; thus cm = dn. Those permutations which pre­ serve incidences form a group, "the group of the configuration." If m — n, and consequently c = d, the group may include not only sym­ metries which permute the points among themselves but also reci­ procities which interchange points and lines in accordance with the principle of duality. The configuration is then "self-dual," and its symbol («<*, n<j) is conveniently abbreviated to na. We shall use the same symbol for the analogous concept of a configuration in three dimensions, consisting of n points lying by d's in n planes, d through each point. With any configuration we can associate a diagram called the Menger graph [13, p. 28],x in which the points are represented by dots or "nodes," two of which are joined by an arc or "branch" when­ ever the corresponding two points are on a line of the configuration. Unfortunately, however, it often happens that two different con­ figurations have the same Menger graph. The present address is concerned with another kind of diagram, which represents the con­ figuration uniquely. In this Levi graph [32, p. 5], we represent the points and lines (or planes) of the configuration by dots of two colors, say "red nodes" and "blue nodes," with the rule that two nodes differently colored are joined whenever the corresponding elements of the configuration are incident.
    [Show full text]
  • Configurations of Points and Lines
    Configurations of Points and Lines "RANKO'RüNBAUM 'RADUATE3TUDIES IN-ATHEMATICS 6OLUME !MERICAN-ATHEMATICAL3OCIETY Configurations of Points and Lines Configurations of Points and Lines Branko Grünbaum Graduate Studies in Mathematics Volume 103 American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103 Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • The Pappus Configuration and the Self-Inscribed Octagon
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MATHEMATICS THE PAPPUS CONFIGURATION AND THE SELF-INSCRIBED OCTAGON. I BY H. S. M. COXETER (Communic&ed at the meeting of April 24, 1976) 1. INTRODUCTION This paper deals with self-dual configurations 8s and 93 in a projective plane, that is, with sets of 8 or 9 points, and the same number of lines, so arranged that each line contains 3 of the points and each point lies on 3 of the lines. Combinatorially there is only one 83, but there are three kinds of 9s. However, we shall discuss only the kind to which the symbol (9s)i was assigned by Hilbert and Cohn-Vossen [24, pp. 91-98; 24a, pp. 103-1111. Both the unique 8s and this particular 9s occur as sub- configurations of the finite projective plane PG(2, 3), which is a 134. The 83 is derived by omitting a point 0, a non-incident line I, all the four points on E, and all the four lines through 0. Similarly, our 9s is derived from the 134 by omitting a point P, a line 1 through P, the remaining three points on I, and the remaining three lines through P. Thus the points of the 83 can be derived from the 9s by omitting any one of its points, but then the lines of the 83 are not precisely a subset of the lines of the 9s. Both configurations occur not only in PG(2, 3) but also in the complex plane, and the 93 occurs in the real plane.
    [Show full text]
  • Modelling Finite Geometries on Surfaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 244 (2002) 479–493 www.elsevier.com/locate/disc Modelling ÿnite geometries on surfaces Arthur T. White Western Michigan University, Kalamazoo, Michigan 49008, USA In Honor ofProfessorToma zÄ Pisanski Abstract The usual model ofthe Fano plane has several deÿciencies, all ofwhich are remedied by imbedding the complete graph K7 on the torus. This idea is generalized, in two directions: (1) Let q be a prime power. E3cient topological models are described for each PG(2;q), and a study is begun for AG(2;q). (2) A 3-conÿguration is a geometry satisfying: (i) each line is on exactly 3 points; (ii) each point is on exactly r lines, where r is a ÿxed positive integer; (iii) two points are on at most one line. Surface models are found for 3-conÿgurations of low order, including those ofPappus and Desargues. Special attention is paid to AG(2,3). A study is begun ofpartial geometries which are also 3-conÿgurations, and fourgeneral constructions are given. c 2002 Elsevier Science B.V. All rights reserved. Keywords: Finite geometry; Projective plane; A3ne plane; Partial geometry; Conÿguration; Surface; Voltage graph 1. Introduction A ÿnite geometry can be modelled by specifying its point set P and then giving the line set L by listing each lines as a subset of P. This abstract model reinforces the interpretation ofthe geometry as a block design, or as a hypergraph. But it lacks the geometric =avor available through the use of0-dimensional subspaces ofsome Euclidean n-space to model P, and higher dimensional subspaces to model L.
    [Show full text]
  • On the Configurations of Nine Points on a Cubic Curve
    On the configurations of nine points on a cubic curve Alessandro Logar 1 Dipartimento di Matematica e Geoscienze, Universit`adegli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy. Sara Paronitti Dipartimento di Matematica e Geoscienze, Universit`adegli Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy. Abstract We study the reciprocal position of nine points in the plane, according to their collinearities. In particular, we consider the case in which the nine points are con- tained in an irreducible cubic curve and we give their classification. If we consider two configurations different when the associated incidence structures are not iso- morphic, we see that there are 131 configurations that can be realized in 2 , and p PQ 2 there are two more in PK , where K = Q[ −3] (one of the two is the Hesse configu- ration given by the nine inflection points of a cubic curve). Finally, we compute the possible Hilbert functions of the ideals of the nine points. 1 Introduction arXiv:1912.08115v1 [math.CO] 17 Dec 2019 The study of reciprocal position of a finite number of points in the plane and a finite set of lines joining some of the points, is a classical problem whose origin dates back to the past and that has been considered from many different points of view. Recall, for instance, the Pappus configuration which takes its name from Pappus of Alexandria, or the Sylvester problem (see [20]), formulated by Sylvester in the last decade of the nineteenth century, or the Orchard Planting Email addresses: [email protected] (Alessandro Logar), [email protected] (Sara Paronitti).
    [Show full text]
  • Identifiability of Graphs with Small Color Classes by The
    Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm Frank Fuhlbrück Institut für Informatik, Humboldt-Universität zu Berlin, Germany [email protected] Johannes Köbler Institut für Informatik, Humboldt-Universität zu Berlin, Germany [email protected] Oleg Verbitsky Institut für Informatik, Humboldt-Universität zu Berlin, Germany [email protected] Abstract It is well known that the isomorphism problem for vertex-colored graphs with color multiplicity at most 3 is solvable by the classical 2-dimensional Weisfeiler-Leman algorithm (2-WL). On the other hand, the prominent Cai-Fürer-Immerman construction shows that even the multidimensional version of the algorithm does not suffice for graphs with color multiplicity 4. We give an efficient decision procedure that, given a graph G of color multiplicity 4, recognizes whether or not G is identifiable by 2-WL, that is, whether or not 2-WL distinguishes G from any non-isomorphic graph. In fact, we solve the more general problem of recognizing whether or not a given coherent configuration of maximum fiber size 4 is separable. This extends our recognition algorithm to directed graphs of color multiplicity 4 with colored edges. Our decision procedure is based on an explicit description of the class of graphs with color multi- plicity 4 that are not identifiable by 2-WL. The Cai-Fürer-Immerman graphs of color multiplicity 4 distinctly appear here as a natural subclass, which demonstrates that the Cai-Fürer-Immerman construction is not ad hoc. Our classification reveals also other types of graphs that are hard for 2-WL.
    [Show full text]
  • Colouring Problems for Symmetric Configurations with Block Size 3
    Colouring problems for symmetric configurations with block size 3 Grahame Erskine∗∗ Terry Griggs∗ Jozef Sir´aˇnˇ †† [email protected] [email protected] [email protected] (corresponding author) Abstract The study of symmetric configurations v3 with block size 3 has a long and rich history. In this paper we consider two colouring problems which arise naturally in the study of these structures. The first of these is weak colouring, in which no block is monochromatic; the second is strong colouring, in which every block is multichromatic. The former has been studied before in re- lation to blocking sets. Results are proved on the possible sizes of blocking sets and we begin the investigation of strong colourings. We also show that the known 213 and 223 configura- tions without a blocking set are unique and make a complete enumeration of all non-isomorphic 203 configurations. We discuss the concept of connectivity in relation to symmetric configura- tions and complete the determination of the spectrum of 2-connected symmetric configurations without a blocking set. A number of open problems are presented. 1 Introduction In this paper we will be concerned with symmetric configurations with block size 3 and, more particularly, two colouring problems which arise naturally from their study. First we recall the definitions. A configuration (vr, bk) is a finite incidence structure with v points and b blocks, with the property that there exist positive integers k and r such that (i) each block contains exactly k points; (ii) each point is contained in exactly r blocks; and (iii) any pair of distinct points is contained in at most one block.
    [Show full text]
  • Foundations of Projective Geometry
    Foundations of Projective Geometry Robin Hartshorne 1967 ii Preface These notes arose from a one-semester course in the foundations of projective geometry, given at Harvard in the fall term of 1966–1967. We have approached the subject simultaneously from two different directions. In the purely synthetic treatment, we start from axioms and build the abstract theory from there. For example, we have included the synthetic proof of the fundamental theorem for projectivities on a line, using Pappus’ Axiom. On the other hand we have the real projective plane as a model, and use methods of Euclidean geometry or analytic geometry to see what is true in that case. These two approaches are carried along independently, until the first is specialized by the introduction of more axioms, and the second is generalized by working over an arbitrary field or division ring, to the point where they coincide in Chapter 7, with the introduction of coordinates in an abstract projective plane. Throughout the course there is special emphasis on the various groups of transformations which arise in projective geometry. Thus the reader is intro- duced to group theory in a practical context. We do not assume any previous knowledge of algebra, but do recommend a reading assignment in abstract group theory, such as [4]. There is a small list of problems at the end of the notes, which should be taken in regular doses along with the text. There is also a small bibliography, mentioning various works referred to in the preparation of these notes. However, I am most indebted to Oscar Zariski, who taught me the same course eleven years ago.
    [Show full text]
  • Embeddings of Configurations by Garret Flowers B.A., Oberlin College, 2009 M.Sc., University of Victoria, 2011 a Dissertation Su
    Embeddings of Configurations by Garret Flowers B.A., Oberlin College, 2009 M.Sc., University of Victoria, 2011 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Mathematics c Garret Flowers, 2015 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Embeddings of Configurations by Garret Flowers B.A., Oberlin College, 2009 M.Sc., University of Victoria, 2011 Supervisory Committee Dr. P. Dukes, Supervisor (Department of Mathematics) Dr. J. Huang, Departmental Member (Department of Mathematics) Dr. V. Srinivasan, Outside Member (Department of Computer Science) iii Supervisory Committee Dr. P. Dukes, Supervisor (Department of Mathematics) Dr. J. Huang, Departmental Member (Department of Mathematics) Dr. V. Srinivasan, Outside Member (Department of Computer Science) ABSTRACT In this dissertation, we examine the nature of embeddings with regard to both combinatorial and geometric configurations. A combinatorial [r; k]-configuration is a collection of abstract points and sets (referred to as blocks) such that each point is a member of r blocks, each block is of size k, and these objects satisfy a linearity criterion: no two blocks intersect in more than one point. A geometric configuration requires that the points and blocks be realized as points and lines within the Euclidean plane. We provide improvements on the current bounds for the asymptotic existence of both combinatorial and geometric configurations. In addition, we examine the largely new problem of embedding configurations within larger configurations possessing regularity properties.
    [Show full text]