Configurations of Points and Lines

"RANKO'RüNBAUM

'RADUATE3TUDIES IN-ATHEMATICS 6OLUME

!MERICAN-ATHEMATICAL3OCIETY http://dx.doi.org/10.1090/gsm/103 Configurations of Points and Lines

Configurations of Points and Lines

Branko Grünbaum

Graduate Studies in Mathematics Volume 103

American Mathematical Society Providence, Rhode Island

Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann

2000 Mathematics Subject Classification. Primary 01A55, 01A60, 05–03, 05B30, 05C62, 51–03, 51A20, 51A45, 51E30, 52C30.

For additional information and updates on this book, visit www.ams.org/bookpages/gsm-103

Library of Congress Cataloging-in-Publication Data Gr¨unbaum, Branko. Configurations of points and lines / Branko Gr¨unbaum. p. cm. — (Graduate studies in mathematics ; v. 103) Includes bibliographical references and index. ISBN 978-0-8218-4308-6 (alk. paper) 1. Configurations. I. Title. QA607.G875 2009 516.15—dc22 2009000303

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2009 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 141312111009

Dedicated to the memory of my teachers:

Milenko Vucˇkic´ (1911–1981) Stanko Bilinski (1909–1998) Abraham Halevi (Adolf) Fraenkel (1891–1965) Aryeh Dvoretzky (1916–2008)

Contents

Preface xi Chapter 1. Beginnings 1 §1.1. Introduction 1 §1.2. An informal history of configurations 8 §1.3. Basic concepts and definitions 14 §1.4. Tools for the study of configurations 26 §1.5. Symmetry 32 §1.6. Reduced Levi graphs 38 §1.7. Derived figures and other tools 47 Chapter 2. 3-Configurations 59 §2.0. Overview 59 §2.1. Existence of 3-configurations 60 §2.2. Enumeration of 3-configurations (Part 1) 69 §2.3. Enumeration of 3-configurations (Part 2) 81 §2.4. General constructions for combinatorial 3-configurations 89 §2.5. Steinitz’s theorem—the combinatorial part 92 §2.6. Steinitz’s theorem—the geometric part 102 §2.7. Astral 3-configurations with cyclic symmetry group 110 §2.8. Astral 3-configurations with dihedral symmetry group 121 §2.9. Multiastral 3-configurations 134 §2.10. Duality of astral 3-configurations 144 §2.11. Open problems (and a few exercises) 150

vii viii Contents

Chapter 3. 4-Configurations 155 §3.0. Overview 155 §3.1. Combinatorial 4-configurations 156 §3.2. Existence of topological and geometric 4-configurations 161 §3.3. Constructions of geometric 4-configurations 169 §3.4. Existence of geometric 4-configurations 186 §3.5. Astral 4-configurations 190 §3.6. 2-Astral 4-configurations 203 §3.7. 3-Astral 4-configurations 212 §3.8. k-Astral configurations for k ≥ 4 223 §3.9. Open problems 231 Chapter 4. Other Configurations 233 §4.0. Overview 233 §4.1. 5-configurations 234 §4.2. k-configurations for k ≥ 6 239 §4.3. [3, 4]- and [4, 3]-configurations 242 §4.4. Unbalanced [q, k]-configurations with [q, k] =[3 , 4] 253 §4.5. Floral configurations 261 §4.6. Topological configurations 280 §4.7. Unconventional configurations 286 §4.8. Open problems 293 Chapter 5. Properties of Configurations 295 §5.0. Overview 295 §5.1. Connectivity of configurations 296 §5.2. Hamiltonian multilaterals 308 §5.3. Multilateral decompositions 322 §5.4. Multilateral-free configurations 327 §5.5. “Density” of trilaterals in configurations 342 §5.6. The dimension of a configuration 344 §5.7. Movable configurations 349 §5.8. Automorphisms and duality 359 §5.9. Open problems 374 Postscript 375 Appendix 377 Contents ix

The Euclidean, projective, and extended Euclidean planes 377 References 385 Index 397

Preface

It is easy to explain the concept of a configuration of points and lines to any ten-years-old youngster. Why then a book on this topic in a graduate series? There are several good reasons:

• First and foremost, configurations are mathematically challenging even though easily accessible. • The study of configurations leans on many fields: classical geom- etry, combinatorics, topology, algebraic geometry, computing, and even analysis and number theory. • There is a visual appeal to many types of configurations. • There are opportunities for serious innovation that do not rely on long years of preliminary study.

The truly remarkable aspect of configurations is the scarcity of results in a field that was explicitly started well over a century ago, and informally much earlier. One of the foremost aims of the present text is to make avail- able, essentially for the first time ever, a coherent account of the material. Historical aspects are presented in order to enable the reader to follow the advances (as well as the occasional retreats) of the understanding of configurations. As explained more fully in the text, an initial burst of en- thusiasm in the late nineteenth century produced several basic results. For almost a century, these were not matched by any comparably important new achievements. But near the end of the last century it turned out that the early results were incorrect, and this became part of the impetus for a reinvigorated study of configurations.

xi xii Preface

The recent realization that symmetries may play an important role in the investigations of configurations provided additional points of view on configurations. Together with the increased ability to actually draw configurations—made possible by advances in computer graphics—the stage was set for renewed efforts in correcting the ancient mistakes and to studying configurations that were never contemplated in the past. This text relies very heavily on the graphical presentation of config- urations. This is practically inevitable considering the topic and greatly simplifies the description of the many types of configurations dealt with. Most of the diagrams have been crafted using Mathematica,Geometers Sketchpad,andClarisDraw, often in combination. In many respects this is a “natural history” of configurations—the prop- erties and methods of generation depend to a large extent on the kind of configuration, and we present them in separate chapters and sections. We have avoided insisting on proofs of properties that are visually ob- vious to such an extent that formal proofs would needlessly lengthen the exposition and make it quite boring. We firmly believe that an appropriate diagram is as much of a valid argument as a pedantic verbal explanation, besides being more readily understandable. It is hoped that the reader will agree! The text is narrowly restricted to the topic of its title. There are many other kinds of configurations that might have been included. However, the nature of such configurations, for example, of points and planes, or of various higher-dimensional flats, is totally different from our topic. It is well possible that the early attempts to cover all possibilities led to very general definitions followed by very meager results. Two exceptions to the restricted character of the presentation concern combinatorial configurations and topological configurations. The former are essential to the theory of geometric configurations, and we present the topic with this aim in mind. We do not enlarge on the various more general as- pects of combinatorial designs and finite geometries—there are many excel- lent texts on these matters. Completely different is the situation regarding topological configurations. Very little is known about them, and the present text collects most of what is available. One other aspect not covered here is the detailed investigations of the hierarchies of some special configurations. It seems that at one time it was fashionable to start with a simple result, such as the theorem of Pascal, and generate a whole family of objects by permuting the starting elements, then considering all the intersections of the resulting lines and the lines generated by the obtained points, etc. This way one could secure a family of points or Preface xiii lines or whatever to be attached to one’s name. The interested reader may gain access to this literature through other means. For almost all the material covered, we provided as ample and detailed references as we were able to find. However, we did not give details con- cerning the programs that produced the various computer-generated enu- merations. The reason—besides lack of competence—is that the programs and the computers on which they run change too rapidly for any printed information to be of lasting value. The interested reader should contact the authors of these results to obtain the most up-to-date status. Results for which no reference is given are the author’s and appear here for the first time. Also, as noted in appropriate places, several colleagues have been kind enough to allow the inclusion of their unpublished results—I am greatly indebted to them for this courtesy. My gratitude goes to several other people and institutions. The Ameri- can Mathematical Society was extremely helpful at all stages of the prepa- ration of this text; in particular, allowing the illustrations to be in color has greatly increased the appeal of the book, as well as its instructional value. I greatly appreciate the attention of the editorial staff to detail and consis- tency, and the generous help they gave me through all stages of publication. The Department of Mathematics of the University of Washington supported my efforts in a variety of ways, both during the several times I gave graduate courses about configurations and in the preparation of the manuscript later on. The staff of the Mathematics Research Library at the university was very helpful in obtaining for me many of the old papers and books (and some new ones) and in guiding me through the labyrinths of the world of digital books and journals. Several stays at the Helen Riaboff Whiteley Center at the Friday Harbor Laboratories of the University of Washington provided the pleasant atmosphere and conditions conducive to work on this book. Special thanks go to my friends and coauthors of recent papers on configurations—L. W. Berman, M. Boben, J. Bokowski, T. Pisanski, and L. Schewe. Their insights and comments, as well as results, encouraged me greatly while adding to the joint enterprises. The students of the courses I gave on configurations have earned my gratitude for their interest in the topic, which inspired me to investigate many questions and write up material in lecture notes. xiv Preface

Last—but certainly not least— my thanks go to my wife Zdenka, not only for her patience and forbearance over the long haul of my study of configurations and the preparation of the manuscript of this book, but even more for her love and support during well over half a century. Branko Gr¨unbaum Seattle, October 23, 2008

References

Each entry in the list of references ends in a list of pages in which this reference is mentioned. In order to avoid clutter, only the first occurrence of a reference in a section is listed; the presence of additional mentions of the same reference within the same section is signaled by the + sign.

1. B. Alspach and C. Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups. Ars Combinat. 28(1989), 101–108. [319] 2. R. Artzy, Self-dual configurations and their Levi graphs. Proc. Amer. Math. Soc. 7(1956), 299–303. [150] 3. J. Ashley, B. Gr¨unbaum, G. C. Shephard, and W. Stromquist, Self-duality groups and ranks of self-dualities. Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, P. Gritzmann and B. Sturmfels, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, pp. 11–50. Amer. Math. Soc., 1991. [368] 4. A. T. Balaban, Trivalent graphs of nine and eleven and relations among cages. Rev. Roumaine Math. Pure Appl. 18(1973), 1033–1043. [336] 5. P. Barbarin, Georges Brunel. Enseignement Math. 3(1901), 237–239. [156]

6. L. W. Berman, A characterization of astral (n4) configurations. Discrete Comput. Geom. 26 (2001), no. 4, 603–612. [203+, 281] 7. L. W. Berman, Astral Configurations. Ph.D. thesis, Univ. of Washington, Seattle, 2002. [203] 8. L. W. Berman, Even astral configurations. Electron. J. Combin. 11 (2004), Research Paper 37, 23 pp. (electronic). [240, 253] 9. L. W. Berman, Some results on odd astral configurations. Electron. J. Combin. 13(2006), Research Paper 27. [235]

10. L. W. Berman, Movable (n4) configurations. Electron. J. Combin. 13(2006), Research Paper 104. [36, 352] 11. L. W. Berman, Symmetric simplicial pseudoline arrangements. Electr. J. Combina- torics 15(2008), #R13. [286]

385 386 References

12. L. W. Berman, Astral (n4) configurations of pseudolines. Preprint, April 2007. [281+]

13. L. W. Berman, A new class of movable (n4) configurations. Preprint, July 2007. [352+]

14. L. W. Berman and J. Bokowski, Astral (n5) configurations. Europ. J. Combinatorics (to appear). [126+, 235] 15. L. W. Berman, J. Bokowski, B. Gr¨unbaum, and T. Pisanski, Geometric “floral” configurations. Canad. Math. Bull. (to appear). [262+]

16. A. Betten and D. Betten, Tactical decompositions and some configurations v4.J. Geom. 66(1999), 27–41. [82, 157+]

17. A. Betten, G. Brinkmann, and T. Pisanski, Counting symmetric configurations v3. Discrete Appl. Math. 99(2000), 331–338. [81+, 91, 333, 343, 367+]

18. D. Betten and U. Schumacher, The ten configurations 103. Rostock Math. Kolloq. 46(1993), 3–10. [10] 19. M. Boben, Uporaba teorije grafov pri kombinatorcnih in geometricnih konfiguracijah. (In Slovenian) [The use of in the study of combinatorial and geometric configurations]. Ph.D. thesis, University of Ljubljana, November 2003. [91]

20. M. Boben, Irreducible (v3) configurations and graphs. Discrete Math. 307(2007), 331-344. [91] 21. M. Boben, B. Gr¨unbaum, and T. Pisanski, What did Steinitz prove in his Thesis? (in preparation). [103] 22. M. Boben, B. Gr¨unbaum, T. Pisanski, and A. Zitnik, Small triangle-free configura- tions of points and lines. Discrete and Computational Geometry 35(2006), 405–427. [82, 91, 121, 329+] 23. M. Boben, B. Gr¨unbaum, and T. Pisanski, Multilateral-free configurations (in prepa- ration). [342] 24. M. Boben and T. Pisanski, Polycyclic configurations. Europ. J. Combin. 24(2003), 431–457. [40, 137+, 190+, 221+] 25. J. Bokowski, Computational Oriented Matroids. Cambridge Univ. Press, 2006. [32, 339]

26. J. Bokowski, B. Gr¨unbaum, and L. Schewe, Topological configurations (n4)exist for all n ≥ 17. Europ. J. Combinatorics (in press; electronic version available from Elsevier). [162+]

27. J. Bokowski and L. Schewe, There are no realizable 154-and164-configurations. Rev. Roumaine Math. Pures Appl. 50(2005), no. 5-6, 483–493. [161]

28. J. Bokowski and L. Schewe, On the finite set of missing geometric (n4) configurations (in preparation). [162+, 173] 29. J. Bokowski and B. Sturmfels, Computational Synthetic Geometry. Lecture notes in Mathematics #1355, Springer, New York, 1989. [10+, 20+, 65+, 336] 30. G. Bol, Beantwoording van Prijsvraag no. 17, 1931. Nieuw Archief voor Wiskunde (2)18, 14–66 (1933). [210] 31. P. B. Borwein and W. O. J. Moser, A survey of Sylvester’s problem and its general- izations. Aequat. Math. 40(1990), 111–135. [7] 32. P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry. Springer, New York, 2005. [3+, 64] 33. R. A. Brualdi, Introductory Combinatorics. 4th ed., Prentice Hall, Englewood Cliffs, NJ, 2004. [94, 158, 254] References 387

34. G. Brunel, Polygones autoinscrits. Proc. Verb. S´ances Soc. Sci. Phys. Nat. Bordeau, 1895/96, pp. 35–39. [68, 156, 309, 324] 35. G. Brunel, Polygones `a multiple. Proc. Verb. S´eances Soc. Sci. Phys. Nat. Bordeau, 1897/98, pp. 43–46. [11, 156+, 161] 36. W. Burnside, On the Hessian configuration and its connection with the group of 360 plane collineations. Proc. London Math. Soc. (2) 4(1907), 54–71. [156+] 37. S. A. Burr, B. Gr¨unbaum, and N. J. A. Sloane, The Orchard Problem, Geom. Dedi- cata 2(1974), 397–424. [8, 246+, 253]

38. B. Bydzovsky, Uber¨ eine ebene Konfiguration (124, 163). Vestn´ık Kr´alovsk´e Cesk.ˇ Spolecnosti Nauk. Tr´ıda Matemat.-Pr´ırodoved., 1939, 8 pp. (1940). [249] 39. H. G. Carstens, T. Dinski, and E. Steffen, Reduction of symmetric configurations n3. Discrete Appl. Math. 99(2000), 401–411. Erratum (by E. Steffen, T. Pisanski, M. Boben, and N. Ravnik), ibid. 154(2006), 1645–1646. [90] 40. W. B. Carver, Proof of the impossibility of the construction of one of the Kantor (3, 3)10 configurations. Johns Hopkins Univ. Circ. 22(1902), No. 160, pp. 3–4. [10, 76] 41. A. Cayley, Sur quelques th´eor`emes de la g´eom´etrie de position. J. Reine und Angew. Math. 31(1846), 213–226 = Collected Mathematical Papers vol. 1, pp. 317–328. [239+, 250, 253, 323] 42. W. K. Clifford, Synthetic proof of Miquel’s theorem. Oxford, Cambridge and Dublin Messenger of Math. 5(1871), 124–141. [287] 43. A. M. Cohen and J. Tits, On generalized hexagons and a near octagon whose lines have three points. Europ. J. Combinat. 6(1985), 13–27. [337] 44. J. Colannino, Circular and modular Golomb rulers (2003). http://cgm.cs. mcgill.ca/~athens/cs507/Projects/2003/JustinColannino/#References. [234] 45. H. S. M. Coxeter, Configurations and maps. Reports of a Math. Colloq. (2) 8(1949), 18–38. [12, 27] 46. H. S. M. Coxeter, Self-dual configurations and regular graphs. Bull. Amer. Math. Soc. 56(1950), 413–455. (= Twelve Geometric Essays, Southern Illinois Univ. Press, Carbondale, IL, 1968 = The Beauty of Geometry, Dover, Mineola, NY, 1999. pp. 106–149. [12, 17+, 328+] 47. H. S. M. Coxeter, Introduction to Geometry. Wiley, New York, 1961. Second ed., 1981. [8, 287] 48. H. S. M. Coxeter, Desargues configurations and their collineation groups. Math. Proc. Cambridge Philos. Soc. 78(1975), 227–246. [12] 49. H. S. M. Coxeter, The Pappus configuration and the self-inscribed octagon. I, II, III. Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39(1977), pp. 256–269, 270–284, 285–300. [12] 50. H. S. M. Coxeter, My graph. Proc. London Math. Soc. (3) 46(1983). 117–136. [12, 156] 51. H. S. M. Coxeter, Twelve Geometric Essays, Southern Illinois Univ. Press, Carbon- dale, IL, 1968. Second ed., The Beauty of Geometry, Dover, Mineola, NY, 1999. [12] 52. H. S. M. Coxeter and S. L. Greitzer, Geometry revisited. Random House, New York, 1967. [8] 53. T. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved Problems in Geometry. Springer, New York, 1991. [7] 388 References

54. R. Daublebsky von Sterneck, Die Configurationen 113. Monatshefte Math. Phys. 5(1894), 325–330 + 1 plate. [81]

55. R. Daublebsky von Sterneck, Die Configurationen 123. Monatshefte Math. Phys. 6(1895), 223–255 + 2 plates. [40+, 81+]

56. R. Daublebsky von Sterneck, Uber¨ die zu den Configurationen 123 zugeh¨origen Grup- pen von Substitutionen. Monatshefte Math. Phys. 14(1903), 254–260. [82] 57. M. Daven and C. A. Rodger, (k, g)-cages are 3-connected. Discrete Math. 199(1999), 207–215. [339] 58. J. de Vries, Uber¨ gewisse ebene Configurationen. Acta Math. 12(1888), 63–81. [15, 249] 59. J. W. Di Paola and H. Gropp, Hyperbolic graphs from hyperbolic planes. Congressus Numerant. 68(1989), 23–44. [28, 53+] 60. J. W. Di Paola and H. Gropp, Symmetric configurations without sets. Mitt. Math. Seminar Giessen 201(1991), 49–54. [321] 61. I. V. Dolgachev, Abstract configurations in algebraic geometry. Proc. Fano Confer- ence, Torino, 2002, A. Collino, A. Conte, and M. Marchisio, eds., Torino, 2004, pp. 423–462. [10, 82] 62. H. L. Dorwart, The Geometry of . Autotelic Instructional Materials Pub- lishers, New Haven, CT, 1966. [12, 324] 63. H. L. Dorwart and B. Gr¨unbaum, Are these figures oxymora? Mathematics Magazine 65(1992), 158–169. [82, 92, 309] 64. P. Duhem, Notice sur la vie et les travaux de Georges Brunel (1856–1900). M´emoirs Soc. Sci. Phys. et Nat. Bordeaux (6) 2(1903), I–LXXXIX. [156+] 65. M. N. Ellingham and J. D. Horton, Non-hamiltonian 3-connected cubic bipartite graphs. J. Combinat. Theory Ser. B 34(1983), 330–333. [310+] 66. L. S. Evans, Some configurations of triangle centers. Forum Geometricorum 3(2003) 49–56. [19] 67. H. Eves, A survey of Geometry. Allyn & Bacon, Boston. Vol. 1, 1963; Vol.2, 1965. [287] 68. G. Fano, Sui postulati fondamentali della geometria proiettiva in uno spazio lineare a un numero qualunque di dimensioni. Giornale di Matematiche 30(1892), 106–132. [61] 69. G. Feigh, Review of [H1]. Jahrbuch Fortschritte Math. 58(1932), 597. [12] 70. H. L. Fu, K. C. Huang, and C. A. Rodger, Connectivity of cages. J. Graph Theory 24(1997), 187–191. [339] 71. J. P. Georges, Non-hamiltonian bicubic graphs. J. Combinat. Theory B 46(1989), 121–124. [310+]

72. D. G. Glynn, On the anti-Pappian 103 and its construction. Geom. Dedicata 77(1999), 71–75. [10, 76] 73. D. G. Glynn, On the representation of configurations in projective spaces. J. of Statistical Planning and Inference 86(2000), 443–456. [105+] 74. S. W. Golomb, Algebraic constructions for Costas arrays. J. Combinat. Theory (A) 37(1984), 13–21. [234] 75. S. W. Golomb, Construction of signals with favourable correlation symmetries. Sur- veys in Combinatorics 1991. London Math. Soc. Lecture Notes Series 166, A. D. Keedwell, ed., Cambridge Univ. Press, 1991, pp. 1–39. [234] References 389

76. J. E. Goodman, Proof of a conjecture of Burr, Gr¨unbaum and Sloane. Discrete Math. 32(1980), 27–35. [164] 77. J. T. Graves, On the functional symmetry exhibited in the notation of certain geo- metrical porisms, when they are stated merely with reference to the arrangement of points. The London and Edinburgh Philos. Magazine and J. of Science, Ser 3, Vol. 15(1839), 129–136. [322+] 78. H. Gropp, “Il methodo di Martinetti” (1887) or Configurations and Steiner systems S(2, 4, 25). Ars Combinatoria 24B(1987), 179–188. [83, 90]

79. H. Gropp, On the existence and nonexistence of configurations nk. J. Combinatorics, Information and System Science 15(1990), 34–48. [90, 157, 234] 80. H. Gropp, Configurations and the Tutte conjecture. Ars Combinat. 29A(1990), 171– 177. [309+] 81. H. Gropp, On the history of configurations. Internat. Sympos. On Structures in Math. Theories, A. Diez, J. Echeverria, and A. Ibarra, eds., Bilbao, 1990, pp. 263–268. [13, 81+]

82. H. Gropp, Blocking sets in configurations n3. Mitt. Math. Seminar Giessen 201(1991), 59–72. [17, 321] 83. H. Gropp, The history of Steiner systems S(2, 3, 13). Mitt. Math. Ges. Hamburg 12(1991), 849–861. [254]

84. H. Gropp, Configurations and Steiner systems S(2, 4, 25) II. Trojan configurations n3. Combinatorics ’88, Vol. 1 (Ravello, 1988). Res. Lecture Notes Math., Mediterranean, Rende, 1991, pp. 425–435. [82, 91]

85. H. Gropp, The construction of all configurations (124, 163). Fourth Czechoslov. Symp. on Combinatorics, Graphs and Complexity, J. Nesetril and M. Fiedler, eds., Elsevier, 1992, pp. 85–91. [244+] 86. H. Gropp, Enumeration of regular graphs 100 years ago. Discrete Math. 101(1992), 73–85. [13]

87. H. Gropp, The history of configurations (124, 163). Osterr.¨ Symp. Math. Gesch. (1992), 6 pp. [244] 88. H. Gropp, Non-symmetric configurations with deficiencies 1 and 2. In “Combinatorics ’90”, A. Barlotti et al., eds., Elsevier, 1992, pp. 227–239. [235, 254+] 89. H. Gropp, On Golomb birulers and their applications. Math. Slovaca 42(1992), 517– 529. [234] 90. H. Gropp, Configurations and graphs, Discrete Math. 111(1993), 269–276. [317, 330] 91. H. Gropp, Nonsymmetric configurations with natural index. Discrete Math. 124(1994), 87–98. [255+] 92. H. Gropp, The drawing of configurations. In “Graph Drawing”, F. J. Brandenburg, ed., Lecture Notes in Computer Science, No. 1027, Springer, 1995, pp. 267–276. [17] 93. H. Gropp, Configurations. CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz, eds., CRC Press, Boca Raton, 1996, pp. 253–255. [235] 94. H. Gropp, Configurations and graphs–II, Discrete Math. 164(1997), 155–163. [71] 95. H. Gropp, Blocking set free configurations and their relations to graphs and hyper- graphs. Discrete Math. 165/166(1997), 359–370. [321] 96. H. Gropp, Configurations and their realizations. Discrete Math. 174(1997), 137–151. [82, 90+] 97. H. Gropp, On combinatorial papers of K¨onig and Steinitz. Acta Applicandae Math. 52(1998), 271–276. [13, 17, 93] 390 References

98. H. Gropp, On configurations and the book of Sainte-Lagu¨e. Discrete Math. 191(1998), 91–99. [13] 99. H. Gropp, Die Configurationen von Theodor Reye in Straßburg nach 1876. Mathe- matik im Wandel, Math. Gesch. Unterr. 3, M. Toepell, ed., Franzbecker, Hildesheim- Berlin, 2001, pp. 287–301. [13] 100. H. Gropp, “R´eseaux r´eguliers” or regular graphs—Georges Brunel as a French pioneer in graph theory. 6th International Conference on Graph Theory. Discrete Math. 276 (2004), no. 1-3, 219–227. [13, 156] 101. H. Gropp, Configurations between geometry and combinatorics. Discrete Appl. Math. 138(2004), 79–88. [13, 90] 102. H. Gropp, Existence and enumeration of configurations. Beyreuther Math. Schriften 74(2005), 123–129. [235]

103. H. Gropp, Nonisomorphic configurations nk, Electronic Notes in Discrete Math. 27(2006), 43–44. [28, 234] 104. J. L. Gross, Voltage graphs. Discrete Math. 9(1974), 239–246. [40] 105. J. L Gross and T. W. Tucker, Topological Graph Theory. Wiley, New York, 1987. [40] 106. J. Gross and J. Yellen, Graph Theory and its Applications. CRC Press, Boca Raton, 1998. [40] 107. B. Gr¨unbaum, Convex Polytopes. Wiley, New York, 1967. Second ed., Springer, New York, 2003. [8, 20] 108. B. Gr¨unbaum, The importance of being straight. “Time Series and Stochastic Pro- cesses; Convexity and Combinatorics.” Proc. Twelfth Bienn. Seminar Canad. Math. Congr., R. Pyke, ed., Canad. Math. Congress, Montreal, 1970, pp. 243–254. [23] 109. B. Gr¨unbaum, Notes on configurations. Lectures presented in the “Combinatorics and Geometry” seminar, Univ. of Washington, Seattle, 1986. [13]

110. B. Gr¨unbaum, Astral (nk) configurations. Geombinatorics 3(1993), 32–37. [35, 119, 203]

111. B. Gr¨unbaum, Astral (n4) configurations. Geombinatorics 9(2000), 127–134. [35, 190, 208]

112. B. Gr¨unbaum, Which (n4) configurations exist? Geombinatorics 9(2000), 164–169. [62+]

113. B. Gr¨unbaum, Connected (n4) configurations exist for almost all n. Geombinatorics 10(2000), 24–29. [62]

114. B. Gr¨unbaum, Connected (n4) configurations exist for almost all n—an update. Geombinatorics 12(2002), 15–23. [62+] 115. B. Gr¨unbaum, Small configurations with many incidences. Geombinatorics 14(2005), 200–207. [258]

116. B. Gr¨unbaum, A 3-connected configuration (n3) with no Hamiltonian circuit. Bull. Institute of Combinatorics and Applications 46(2006), 12–26. [310] 117. B. Gr¨unbaum, Configurations of points and lines. The Coxeter Legacy. Reflections and Projections. C. Davis and W. W. Ellers, eds., Amer. Math. Soc., Providence, RI, 2006, pp. 179–225. [35, 82, 91, 108, 156, 235]

118. B. Gr¨unbaum, Connected (n4) configurations exist for almost all n—second update. Geombinatorics 16(2006), 254–261. [62+, 172] References 391

119. B. Gr¨unbaum, A catalogue of simplicial arrangements in the real . Ars Mathematica Contemporanea 2(2009), 1–25. (Preliminary version available at http://hdl.handle.net/1773/2269.) [173] 120. B. Gr¨unbaum, Musings on an example of Danzer’s. Europ. J. Combinatorics 29(2008), 1910–1918. [157] 121. B. Gr¨unbaum, [4, 3]-configurations with many symmetries. Geombinatorics 18(2008), 5–12. [250]

122. B. Gr¨unbaum and J. F. Rigby, The real configuration (214). J. London Math. Soc. (2) 41(1990), 336–346. [13, 53+, 157, 161+, 190, 207, 212, 235, 281, 363+] 123. P. Hall, On representatives of subsets. J. London Math. Soc. 10(1935), 26–30. [93] 124. O. Hesse, Uber¨ Curven dritter Ordnung und die Kegelschnitte, welche diese Curven in drei verschiedenen Puncten ber¨uhren. J. Reine Angew. Math. 36(1848), 143–176. [243+] 125. D. Hilbert, The Foundations of Geometry. Authorized translation by E. J. Townsend. Open Court, Chicago, 1902. [16] 126. D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie. Springer, Berlin, 1932. Eng- lish translation: Geometry and the Imagination, Chelsea, New York, 1952. Second ed., Springer, Berlin, 1996. [12+, 17, 70+] 127. M. Hladnik, D. Marusic, and T. Pisanski, Cyclic Haar graphs. Discrete Math. 244(2002), 137–152. [319+] 128. D. Ismailescu, Restricted point configurations with many collinear k-tuplets. Discrete Comput. Geom. 28(2002), 571–575. [7] 129. M. J. Kalaher, Review of [P4]. Math. Reviews MR2146456 (2006e:51004). [24] 130. S. Kantor, Ueber eine Gattung von Configurationen in der Ebene und im Raume. Wien. Ber. LXXX (1879), 227. [2] 131. S. Kantor, Ueber die configurationen (3, 3) mit den Indices 8, 9 und ihren Zusam- menhang mit den Curven dritter Ordnung. Wien. Ber. LXXXIV(1881), 915–932. [9+, 61+, 70+]

132. S. Kantor, Die Configurationen (3, 3)10. Wien. Ber. LXXXIV(1881), 1291–1314 + plate. [9+, 73+, 309] 133. F. K´arteszi, Su una analogia sorprendente. Ann. Univ. Sci. Budapest. Sect. Math. 29(1986), 257–259. [212] 134. L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by n points. Canad. J. Math. 10(1958), 210–219. [64] 135. L. M. Kelly and R. Rottenberg, Simple points in pseudoline arrangements. Pacif. J. Math. 40(1972), 617–622. [64] 136. A. K. Kelmans, Cubic bipartite cyclic 4-connected graphs without Hamiltonian cir- cuits. [In Russian.] Uspekhi Mat. Nauk 43, no. 3 (1988), 181–182. English translation: Russian Math. Surveys 43, no. 3 (1988), 205–206. [317] 137. A. K. Kelmans, Constructions of cubic bipartite 3-connected graphs without Hamil- tonian cycles. Amer. Math. Soc. Translations (2) 158(1994), 127–140. [309+] 138. R. Killgrove, R. Sternfeld, and R. Tamez, Quadrangle completions and the anti- Desargues configuration. Congr. Numer. 127(1997), 57–66. [76, 150] 139. F. Klein, Ueber die Transformationen siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14(1879), 428–471. [156+, 161] 140. W. Kocay and R. Szypowski, The application of determining sets to projective con- figurations. Ars Combinatoria 53(1999), 193–207. [105+] 392 References

141. D. K¨onig, Uber¨ Graphen und ihre Anwendung auf Determinantentheorie und Men- genlehre. Math. Ann. 77(1916), 453–465. [93] 142. E. K. Lampe, Review of 152. Jahrbuch Fortschr. Math. 19(1887), 587–589. [89]

143. R. Laufer, Die nichkonstruirbare Konfiguration (103). Math. Nachrichten 11(1954), 303–304. [10, 27, 76] 144. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, New upper bounds on the order of cages. Electronic J. Combinatorics Vol. 4(2) (1997), # R13. [328] 145. F. Levi, Geometrische Konfigurationen. Hirzel, Leipzig, 1929. [11, 26, 63+, 70+, 92, 280] 146. F. W. Levi, Finite Geometrical Systems. University of Calcutta, Calcutta, 1942. [28] 147. G. de Longchamps, Note de g´eometrie. Nouvelle Corresp. Math´emat. 3(1877), 306– 312 and 340–347. [287] 148. M. S. Longuet-Higgins, Inversive properties of the plane n-line, and a symmetric figure of 2×5 points on a quadric. J. London Math. Soc. (2) 12(1976), 206–212. [287] 149. M. S. Longuet-Higgins and C. F. Parry, Inversive properties of the plane n-line, II: An infinite six-fold chain of circle theorems. J. London Math. Soc. (2) 19(1979), 541–560. [287] 150. A. Lupinski, K. Petelczyc, and K. Prazmowski, Tresses of polygons. Demonstratio Math. 40(2007), 419–439. [324] 151. V. Martinetti, Sopra alcune configurazioni piane. Annali di Matematica Pura ed Applicata (2) 14(1886), 161–192. [328+, 343]

152. V. Martinetti, Sulle configurazioni piane µ3. Annali di Matematica Pura ed Applicata (2) 15(1887), 1–26. [66, 70+, 81, 89, 158, 309]

153. V. Martinetti, Sulle configurazioni n3 piane, atrigone. Giornale di Matematiche di Battaglini 54(1916), 174–182. [335] 154. D. Marusic and T. Pisanski, Weakly flag-transitive configurations and half-arc tran- sitive graphs. Europ. J. Combinatorics 20(1999), 559–570. [365] 155. R. A. Mathon, K. T. Phelps, and A. Rosa, Small Steiner triple systems and their properties. Ars Combinatoria 15(1983), pp. 3–110. [254] 156. N. S. Mendelsohn, R. Padmanabhan, and B. Wolk, Planar projective configurations. I. Note di Matem. 7(1987), 91–112. [249] 157. N. S. Mendelsohn, R. Padmanabhan, and B. Wolk, Designs embeddable in a plane cubic curve. (Part 2 of Planar projective configurations). Note di Matem. 7(1987), 113–148. [249] 158. N. S. Mendelsohn, R. Padmanabhan, and B. Wolk, Straight edge constructions on planar cubic curves. C. R. Math. Rep. Acad. Sci. Canada 10(1988), 77–82. [28, 249]

159. E. Merlin, Sur les configurations planes n4. Bull. Cl. Sci. Acad. Roy. Belg. 1913, 647–660. [31, 157+, 161]

160. J. Metelka, On certain (124, 163) configurations in the plane. [In Czech.] Vestn´ık Kr´alovsk´e Cesk.ˇ Spoleˇcnosti Nauk. Tr´ıda Matemat.-Pr´ırodoved., 1944, 8 pp. (1946). [249]

161. J. Metelka, Uber¨ ebene Konfigurationen (124, 163). [In Czech, with German and Russian summaries.] Casopisˇ pro Pestovani Matematiky 80(1955), 133 - 145. [249]

162. V. Metelka, Uber¨ gewisse ebene Konfigurationen (124, 163) welche mindestens einen D-Punkt enthalten. [In Czech, with German and Russian summaries.] Casopisˇ pro Pestovani Matematiky 80(1955), 146–151. [249] References 393

163. V. Metelka, Uber¨ ebene Konfigurationen (124, 163) welche mindestens einen D-Punkt enthalten. [In Czech, with German and Russian summaries.] Casopisˇ pro Pestovani Matematiky 82(1957), 385–439. [249]

164. V. Metelka, Uber¨ ebene Konfigurationen (124, 163), die mit einer irreduziblen Kurven dritter Ordnung inzidieren. Casopisˇ pro Pestovani Matematiky 91(1966), 261–307. [249]

165. V. Metelka, Uber¨ gewisse ebene Konfigurationen (124, 163), die auf den irreduziblen Kurven dritter Ordnung endliche Gruppoide bilden unduber ¨ die Konfigurationen C12. Casopisˇ pro Pestovani Matematiky 95(1970), 23–53. [249]

166. V. Metelka, Uber¨ gewisse ebene Konfigurationen (124, 163)dieB-, C- und E-Punkte enthalten unduber ¨ singulare Konfigurationen. [In Czech, with German summary.] Casopisˇ pro Pestovani Matematiky 102(1980), 219–255. [249]

167. V. Metelka, On certain planar configurations (124, 163)containingB, C and E points, and on singular configurations. [In Czech, with German summary.] Casopisˇ pro Pesto- vani Matematiky 105(1980), 219–255. [249]

168. V. Metelka, On two special configurations (124, 163). [In Czech, with German and Russian summaries.] Casopisˇ pro Pestovani Matematiky 110(1985), 351–355. [245+] 169. D. Michelucci and P. Schreck, Incidence constraints: A combinatorial approach. Internat. J. Comput. Geom. & Appl. 16(2006), 443–460. [20, 169] 170. N. Miller, Euclid and His Twentieth Century Rivals. Diagrams in the Logic of Eu- clidean Geometry. Center for the Study of Language and Information, Stanford, CA, 2007. [117] 171. A. Miquel, M´emoire de g´eom´etrie. J. Math. Pures Appl. 9(1844), 20–27. [281] 172. A. F. M¨obius, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um—und eingeschrieben zugleich heisen? J. Reine Angew. Math. 3(1828), 273–278 = Gesammelte Werke 1(1885), 439–446. [61+, 109] 173. G. Myerson, Rational products of sines of rational angles. Aequationes Math. 45(1993), 70–82. [210+, 214] 174. M. H. Noronha, Euclidean and Non-Euclidean Geometries. Prentice Hall, Upper Saddle River, NJ, 2002. [16, 254] 175. J. Nov´ak, Maximal systems of triples of 12 elements. [Czech, with German summary.] 1970 Mathematics (Geometry and Graph Theory), pp. 105–110. Univ. Karlova, Prag, 1970. [254] 176. J. J. O’Connor and E. F. Robertson, Ernst Steinitz. MacTutor History of Math- ematics. http://www-history.mcs.st-andrews.ac.uk/Biographies/Steinitz. html. [11] 177. M. O’Keefe and P. K. Wong, A smallest graph of girth 10 and valency 3. Journal of Combinatorial Theory (B) 29 (1980), 91–105. [336] 178. W. Page and H. L. Dorwart, Numerical patterns and geometrical configurations. Math. Magazine 57(1984), 82–92. [93] 179. K. Petelczyc, Series of inscribed n-gons and rank 3 configurations. Beitr¨age zur Al- gebra und Geom. 46(2005), 283–300. [24, 324] 180. T. Pisanski, Strong and weak realizations of configurations. Lecture Notes from the Klee-Gr¨unbaum Festival of Geometry, Ein Gev, Israel, April 9–16, 2000. [104] 181. T. Pisanski, Dimension of unsplittable incidence structures. Abstract for the Discrete and Computational Geometry session of the Summer 2005 meeting of the Canad. Math. Soc., Waterloo 2005. [305] 394 References

182. T. Pisanski, Yet another look at the . New Zealand J. of Math. 36(2007), 85–92. [2, 328] 183. T. Pisanski, M. Boben, D. Marusic, A. Orbanic, and A. Graovac, The 10-cages and derived configurations. Discrete Math. 275(2004), 265–276. [336+] 184. B. Polster, A Geometrical Picture Book. Springer, New York, 1998. [330+] 185. B. Poonen and M. Rubinstein, The number of intersection points made by the diag- onals of a regular polygon. SIAM J. Discrete Math. 11(1998), 135–156. [210] 186. M. Prazmowska, Multiple perspectives and generalizations of the Desargues config- urations. Demonstratio Math. 39(2006), 887–906. [299, 324] 187. T. Reye, Geometrie der Lage. I. Second ed., 1876. [8+] 188. T. Reye, Das Problem der Configurationen. Acta Math. 1(1882), 93–96. [3+, 16, 61] 189. J. F. Rigby, Multiple intersections of diagonals of regular polygons, and related topics. Geom. Dedicata 9(1980), 207–238. [210] 190. J. F. Rigby, Half-turns and Clifford configurations in the inversive plane. J. London Math. Soc. (2) 15(1997), 521–533. [287]

191. J. F. Rigby, Two 124, 163 configurations. Mitt. Math. Seminar Giessen 165(1984), 135–154. [190] 192. F. S. Roberts, Applied Combinatorics. Prentice Hall, Englewood Cliffs, NJ, 1984. [94, 254] 193. C. Rodenberg, Review of [K4]. Jahrbuch Fortschr. Math. 13(1881), 460. [10, 249] 194. A. Sch¨onflies, Ueber einige ebene Configurationen und die zugeh¨origen Gruppen von Substitutionen. Nachr. Ges. Wiss G¨ottingen 1887, 410–417. [324, 343]

195. A. Sch¨onflies, Ueber die regelm¨assigen Configurationen n3. Math. Ann. 31(1888), 43–69. [61+, 67, 309, 324, 343]

196. A. Sch¨onflies, Bemerkung zur Theorie der regelm¨assigen Configurationen n3.Math. Ann. 42(1883), 595–597. [324]

197. A. Sch¨onflies, Ueber regelm¨aßige Configurationen n3 auf den Curven dritter Ord- nung. Nachr. Ges. Wiss G¨ottingen 1889, 334–344. [324] 198. A. Sch¨onflies, Ueber Configurationen, welche sich aus gegebenen Raumelementen durch blosses Schneiden und Vebinden ableiten Lassen. Jahresber. Deutsch. Math.- Vereiningung 1(1892), 62–63. [324+]

199. H. Schr¨oter, Ueber lineare Konstruktionen zur Herstellung der Konfigurationen n3. Nachr. Ges. Wiss G¨ottingen 1888, 193–236. [61+, 71, 91, 109, 289] 200. H. Schr¨oter, Die Theorie der ebenen Curven dritter Ordnung. Teubner, Leipzig, 1888. [65] 201. H. Schr¨oter, Uber¨ die Bildungsweise und geometrische Construction der Configura- tionen 103.Nachr.Ges.WissG¨ottingen 1889, 239–253. [10, 27, 72+, 81, 109, 280, 309] 202. A. E. Schroth, How to draw a hexagon. Discrete Math. 199(1999), 161–171. [337+] 203. H. Schubert, Review of [131] and [132]. Jahrbuch Fortschr. Math. 13(1881), 460. [10] 204. H. Schubert, Review of [240]. Jahrbuch Fortschr. Math. 21(1888), 535. [153] 205. H. A. Schwarz, Beispiel einer stetigen Funktion reellen Argumentes, f¨ur welche der Grenzwert des Differentialquotienten in jedem Teile des Intervalles unendlich oft gleich Null ist. Berl. Ber. 1910, 592–593. [72] 206. J. B. Shearer, Golomb ruler table. 1996, http://www.research.ibm.com/people/ s/shearer/grtab.html. [234] References 395

207. T. Q. Sibley, The Geometric Viewpoint. Addison Wesley Longman, Reading, MA, 1998. [16] 208. L. A. Sidorov, Configuration. In “Encyclopaedia of Mathematics”, SpringerLink, http://eom.springer.de/C/c024670.htm#c024670 00f2. [64] 209. S. Stahl, Geometry: From Euclid to Knots. Pearson Education, Inc., Upper Saddle River, NJ, 2003. [16]

210. E. Steinitz, Uber¨ die Construction der Configurationen n3. Ph.D. Thesis, Breslau, 1894. [18, 92+, 102+, 298]

211. E. Steinitz, Uber¨ die Unm¨oglichkeit, gewisse Configurationen n3 in einem geschlosse- nen Zuge zu durchlaufen. Monathefte Math. Phys. 8(1897), 293–296. [309] 212. E. Steinitz, Konfigurationen der projektiven Geometrie. Encyklop¨adie der Math. Wissenschaften, Vol. 3 (Geometrie), Part IIIAB5a, pp. 481–516, 1910. [9, 72, 90+, 109, 324, 343] 213. E. Steinitz, Uber¨ Konfigurationen. Archiv Math. Phys., 3rd Ser., 16(1910), 289–313. [324, 343] 214. E. Steinitz and E. Merlin, Configurations. French translation of [212], incomplete. Encyclop´edie des Sciences Math´ematiques, edition fran¸caise. Tome III, Vol. 2 (1913), pp. 144–160. [90+] 215. R. Sternfeld, D. Koster, D. Kiel, and R. Killgrove, Self-dual confined configurations with ten points. Ars Combinat. 67(2003), 37–63. [10, 76]

216. B. Sturmfels and N. White, Rational realizations of 113-and123-configurations. In “Symbolic Computations in Geometry”, by H. Crapo, T. F. Havel, B. Sturmfels, W. Whiteley, and N. L. White, IMA Preprint Series #389, Univ. of Minnesota, 1988, pp. 92–123. [81+]

217. B. Sturmfels and N. White, All 113-and123-configurations are rational. Aequat. Math. 39(1990), 254–260. [13, 81+] 218. E. Togliatti, Review of [235]. Zentralblatt Math. 43(1952), p. 358. [76]

219. J. van de Craats, On Simonis’ 103 configuration. Nieuw Archief voor Wiskunde 4(1983), 193–207. [76, 120, 141, 290] 220. H. van Maldeghem, Slim and bislim geometries. In Topics in Diagram Geometry,A. Pasini, ed., Quaderni di Matematiche 12, Aracne, Roma, 2003, pp. 227–254. [15+, 324] 221. M. P. van Straten, The topology of the configurations of Desargues and Pappus. Reports of a Math. Colloquium (2) 8(1949), 3–17. [27] 222. E. Visconti, Sulle configurazioni piane atrigone. Giornale di Matematiche di Battaglini 54(1916), 27–41. [334+] 223. E. W. Weisstein, Configuration. http://mathworld.wolfram.com/ .html. [24] 224. D. Wells, The Penguin Dictionary of Curious and Interesting Geometry. Penguin, London, 1991. [329+] 225. Wikipedia, Projective configuration. http://en.wikipedia.org/wiki/ Projective configuration. [24] 226. Wikipedia, M¨obius-Kantor graph. (As of 2-7-2008) http://en.wikipedia.org/ wiki/M¨obius-Kantor configuration. [322] 227. Wikipedia, Ernst Steinitz. http://en.wikipedia.org/wiki/Ernst Steinitz. [103] 228. P. K. Wong, On the smallest graphs of girth 10 and valency 3. Discrete Math. 43(1983), 119–124. [336] 396 References

229. P.K. Wong, Cages—a survey. Journal of Graph Theory 6 (1982), 1–22. [330, 336] 230. I. M. Yaglom, Complex Numbers in Geometry. Academic Press, New York, 1968. [287]

231. M. Zacharias, Untersuchungenuber ¨ ebene Konfiguration (124, 163). Deutsche Math. 6(1941), 147–170. [249]

232. M. Zacharias, Eine neue ebene Konfigurationen (124, 163). Math. Nachrichten 1(1948), 332–336. [249]

233. M. Zacharias, Neue Wege zur Hesseschen Konfiguration (124, 163). Math. Nachrichten 2(1949), 163–170. [249] 234. M. Zacharias, Streifz¨uge im Reich der Konfigurationen: Eine Reyesche Konfiguration (153), Stern- und Kettenkonfigurationen. Math. Nachrichten 5(1951), 329–345. [119]

235. M. Zacharias, Die ebenen Konfigurationen (103). Math. Nachrichten 6(1951), 129– 144. [76]

236. M. Zacharias, Konstruktionen der ebenen Konfigurationen (124, 163). Math. Nachrichten 8(1952), 1–6. [249]

237. M. Zacharias, Bemerkung zu meiner Arbeit: “Die ebenen Konfigurationen (103)”. Math. Nachrichten 12(1954), p. 256. [76] 238. H. Zeitler, Uber¨ einen Satz von Karteszi. Elemente der Math. 42(1987), 15–18. [212] 239. P. Ziegenbein, Konfigurationen in der Kreisgeometrie. J. Reine Angew. Math. 183(1941), 9–24. [287] 240. K. Zindler, Zur Theorie der Netze und Configurationen. Wien. Ber. 98(1889), 499– 519. [153] Index

(3m+) construction, 177, 186 m#(b, c; d; µ), 123 (4m) construction, 172, 186 m#(b, c; d), 111, 144 (5/2m) construction, 186 m#(b1,b2,...,bh; b0), 136 (5/6m) construction, 174 m#(s1,t1; s2,t2; ...,sk,tk), 191 (5m) construction, 169, 186, 240 m#{s, t},200 (6m) construction, 171, 186 r-lateral, 308 (M1), 263, 272 #s-subfiguration, 21 (M2), 263, 265, 272 #s-superfiguration, 20 (M3), 263, 265, 272 1-connected, 301 (M4), 263, 268 2-connected, 85, 298 (DU-1) deleted unions construction, 180 3-configurations, 60 (DU-2) deleted unions constructions, 180 3-connected, 85 (k, g)-, 330 4-configurations, 156 5-configurations, 234 (nk), 1 (nk) configuration, 1 (pq,nk), 15 aggregate, 7 (t-A.m), 186 arranged configuration table, 99, 105 C3(n, a, b), 68 arrangement, 31, 163 C3(n, m), 67 astral, 34, 110, 203, 235, 240 E2,377 astral 3-configurations, 110 E3,378 astral 4-configurations, 190, 257 L(C), 28, 296 astral configurations, 335 LC(4), 231 automorphisms, 32, 296, 359 LC(k), 2, 235, 239, 299, 328 [3, 4]-configurations, 242 balanced, 16, 348 [4, 3]-configurations, 242 BB configuration, 126 [h1,h2]-orbital, 33 bipartite, 310 [q, k]-configuration, 15, 253, 318 , 93 BB(m; s, t), 150 bislim geometries, 23 c-connected, 30 bislim geometry, 15 h-astral, 34, 134 blocking set, 321 h-chiral, 135 blocks, 17 h-dihedral, 135 h-orbital, 34 cells, 31 k-astral, 191 characteristic path, 137, 193 k-configuration, 1, 15 chiral, 111, 284

397 398 Index

chiral configurations, 272 Fano configuration, 61, 105 circuit, 70 final polynomials, 63 circuit decomposition, 308 flag-transitive, 361 clade, 201 floral configurations, 261 cohort, 200, 207, 215 floret, 262 cohort symbol, 200 combinatorial configuration, 17, 242 generalized hexagons, 337 combinatorial type, 5, 18 generalized quadrangle, 330 combinatorially equivalent, 5, 18 geometric configuration, 16, 86, 102, 161, complementary graph, 30 243 complex plane, 66 geometric symmetries, 16 configuration, 1, 15 Georges configuration, 312 configuration graph, 28, 53 Georges graph, 311 configuration table, 17, 26 group of symmetries, 33 configurations of points and circles, 286 configurations of pseudolines, 21 Hamiltonian circuits, 156 connected, 30, 298 Hamiltonian multilateral, 25, 156, 308, 330, connected k-configuration, 100 374 connectivity, 296 constructions (DU-1) (DU-2), 186 incidence, 4 Cremona-Richmond, 329, 347 incidence systems, 324 Cremona-Richmond configuration, 2, 144 , 26 cubic curve, 245 incident, 15 cyclic 4-configurations, 231 independence graph, 308 cyclic astral configuration, 319 independent, 304 cyclic configuration, 65, 158, 234, 301, 348 independent family, 374 cyclic configuration C3(n), 60, 91 infinite [k]-configurations, 290 cyclic group cr,34 infinite k-configuration, 288 cyclic symmetry group, 110 inscribed/circumscribed family, 323 inscribed/circumscribed multilateral, 343, DD configurations, 122 374 deficiency graph, 28, 53, 70 inscribed/circumscribed pentalateral, 335 degrees of freedom, 76 irreducible, 89 density, 342 isomorphic, 5, 18 derived figures, 47 isomorphism, 359 Desargues configuration, 2, 87, 324, 345 diagonals of regular polygons, 210 K¨onig’s theorem, 93 diagrams, 16 dihedral astral, 351 , 28, 296, 308, 330 dihedral group dr,34 Levi incidence matrix, 26, 67 dihedral symmetry group, 121 lines, 15 dimension, 24, 344 disconnected, 298 Martinetti graph, 28 disconnected configuration, 82, 131 Martinetti’s claim, 89 dual, 19 matching, 93 dual configuration, 348 Menger graph, 27 dualities, 32 mirrors, 34 duality, 19, 144, 242, 359 M¨obius-Kantor configurations, 68, 105 movable configurations, 349, 374 edges, 31 multiastral, 34 EE configurations, 122 multiastral 3-configurations, 134 elements, 15 multilateral, 25, 98, 308 enumeration, 69 multilateral decomposition, 98, 100, 322 Euclidean, 377 multilateral path, 25, 100, 308 Euclidean plane E2,33 multilateral-free, 327 extended Euclidean plane E2+, 33, 235, 377, 382 oppositely selfpolar, 360 Index 399

orbit, 296 subfiguration, 21 orbit transitivity, 361 superfiguration, 19, 86, 102, 129 orbit type, 33 Sylvester’s problem, 7, 8, 242 orchard problem, 7, 8 symmetric Hamiltonian multilaterals, 319 orderly, 18 symmetry, 32, 359 orderly configuration table, 93, 105, 157 symmetry group, 33 orderly family, 324 symmetry type, 134 ordinary points, 61, 64, 167 systematic, 200, 214

Pappus configuration, 2, 4, 91 theorem of Pappus, 8 Pappus’s theorem, 85 topological configuration, 21, 61, 85, 161, parameters, 15 280 pentalateral-free, 337 trilateral, 71, 308, 342 points, 15 trilateral-free, 328 polar, 145, 199, 359 trivial, 200, 214 polarity, 33, 242 Tutte’s (3, 8)-cage, 330 polycyclic configurations, 35 polygon, 98 unsplittable, 305 prefiguration, 19, 170 projective, 377 vertices, 15, 31 projective plane P 2, 33, 379 voltage graphs, 40 projective transformation, 383 projectively h-astral, 135 weak realization, 102 protofloret, 263, 271 weakly flag-transitive, 365 pseudoline, 21, 61, 85, 163, 281 quadrilateral-free, 335 rank, 366 rational plane, 81, 231 realization, 18, 103 reciprocation, 33 reduced, 217 reduced Levi diagram, 126, 198 reduced Levi graph R(C), 38, 121 reducible, 89 regular, 343 remainder figures, 30, 48, 70 representation, 20, 102, 114 rigid, 350 RLG, 150 Roberts’s theorem, 8 selfdual, 19 selfduality, 19, 359 selfpolar*, 364 selfpolarity, 359 set-configurations, 17, 324 simplicial arrangements, 286 slim geometry, 15 span, 192 splittable, 305 sporadic, 201, 215 sporadic configurations, 205 Steiner triple system, 67, 254 Steinitz’s theorem, 92, 102, 231 subconfigurations, 163

Titles in This Series

103 Branko Gr¨unbaum, Configurations of points and lines, 2009 102 Mark A. Pinsky, Introduction to Fourier analysis and wavelets, 2009 101 Ward Cheney and Will Light, A course in approximation theory, 2009 100 I. Martin Isaacs, Algebra: A graduate course, 2009 99 Gerald Teschl, Mathematical methods in quantum mechanics: With applications to Schr¨odinger operators, 2009 98 Alexander I. Bobenko and Yuri B. Suris, Discrete differential geometry: Integrable structure, 2008 97 David C. Ullrich, Complex made simple, 2008 96 N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, 2008 95 Leon A. Takhtajan, Quantum mechanics for mathematicians, 2008 94 James E. Humphreys, Representations of semisimple Lie algebras in the BGG category O,2008 93 Peter W. Michor, Topics in differential geometry, 2008 92 I. Martin Isaacs, Finite group theory, 2008 91 Louis Halle Rowen, Graduate algebra: Noncommutative view, 2008 90 Larry J. Gerstein, Basic quadratic forms, 2008 89 Anthony Bonato, A course on the web graph, 2008 88 Nathanial P. Brown and Narutaka Ozawa, C∗-algebras and finite-dimensional approximations, 2008 87 Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, 2007 86 Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, 2007 85 John M. Alongi and Gail S. Nelson, Recurrence and topology, 2007 84 Charalambos D. Aliprantis and Rabee Tourky, Cones and duality, 2007 83 Wolfgang Ebeling, Functions of several complex variables and their singularities (translated by Philip G. Spain), 2007 82 Serge Alinhac and Patrick G´erard, Pseudo-differential operators and the Nash–Moser theorem (translated by Stephen S. Wilson), 2007 81 V. V. Prasolov, Elements of homology theory, 2007 80 Davar Khoshnevisan, Probability, 2007 79 William Stein, Modular forms, a computational approach (with an appendix by Paul E. Gunnells), 2007 78 Harry Dym, Linear algebra in action, 2007 77 Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, 2006 76 Michael E. Taylor, Measure theory and integration, 2006 75 Peter D. Miller, Applied asymptotic analysis, 2006 74 V. V. Prasolov, Elements of combinatorial and differential topology, 2006 73 Louis Halle Rowen, Graduate algebra: Commutative view, 2006 72 R. J. Williams, Introduction the the mathematics of finance, 2006 71 S. P. Novikov and I. A. Taimanov, Modern geometric structures and fields, 2006 70 Se´an Dineen, Probability theory in finance, 2005 69 Sebasti´an Montiel and Antonio Ros, Curves and surfaces, 2005 68 Luis Caffarelli and Sandro Salsa, A geometric approach to free boundary problems, 2005 67 T.Y. Lam, Introduction to quadratic forms over fields, 2004 TITLES IN THIS SERIES

66 Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, An introduction, 2004 65 S. Ramanan, Global calculus, 2004 64 A. A. Kirillov, Lectures on the orbit method, 2004 63 Steven Dale Cutkosky, Resolution of singularities, 2004 62 T. W. K¨orner, A companion to analysis: A second first and first second course in analysis, 2004 61 Thomas A. Ivey and J. M. Landsberg, Cartan for beginners: Differential geometry via moving frames and exterior differential systems, 2003 60 Alberto Candel and Lawrence Conlon, Foliations II, 2003 59 Steven H. Weintraub, Representation theory of finite groups: algebra and arithmetic, 2003 58 C´edric Villani, Topics in optimal transportation, 2003 57 Robert Plato, Concise numerical mathematics, 2003 56 E. B. Vinberg, A course in algebra, 2003 55 C. Herbert Clemens, A scrapbook of complex curve theory, second edition, 2003 54 Alexander Barvinok, A course in convexity, 2002 53 Henryk Iwaniec, Spectral methods of automorphic forms, 2002 52 Ilka Agricola and Thomas Friedrich, Global analysis: Differential forms in analysis, geometry and physics, 2002 51 Y. A. Abramovich and C. D. Aliprantis, Problems in operator theory, 2002 50 Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, 2002 49 John R. Harper, Secondary cohomology operations, 2002 48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002 47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002 46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002 45 Inder K. Rana, An introduction to measure and integration, second edition, 2002 44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002 43 N. V. Krylov, Introduction to the theory of random processes, 2002 42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002 41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002 40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, third edition, 2006 39 Larry C. Grove, Classical groups and geometric algebra, 2002 38 Elton P. Hsu, Stochastic analysis on manifolds, 2002 37 Hershel M. Farkas and Irwin Kra, Theta constants, Riemann surfaces and the modular group, 2001 36 Martin Schechter, Principles of functional analysis, second edition, 2002 35 James F. Davis and Paul Kirk, Lecture notes in algebraic topology, 2001 34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001 33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001 32 Robert G. Bartle, A modern theory of integration, 2001

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/. This is the only book on the topic of geometric configurations of points and lines. It presents in detail the history of the topic, with its surges and declines since its beginning in 1876. It covers all the advances in the field since the revival of interest in geometric configurations some 20 years ago. The author’s contributions are central to this revival. In particular, he initiated the study of 4- configurations (that is, those that contain four points on each line, and four lines through each point); the results are fully described

in the text. The main novelty in the approach to all geometric Photo courtesy of Ina Mette. configurations is the concentration on their symmetries, which make it possible to deal with configurations of rather large sizes. The book brings the readers to the limits of present knowledge in a leisurely way, enabling them to enjoy the material as well as entice them to try their hand at expanding it.

For additional information and updates on this book, visit WWWAMSORGBOOKPAGESGSM 

GSM/103 AMS on the Web www.ams.orgwww.ams.org