S S symmetry Article Deep Learning and Mean-Field Games: A Stochastic Optimal Control Perspective Luca Di Persio 1,* and Matteo Garbelli 2 1 Department of Computer Science, University of Verona, 37134 Verona, Italy; 2 Department of Mathematics, University of Trento, 38123 Trento, Italy;
[email protected] * Correspondence:
[email protected] Abstract: We provide a rigorous mathematical formulation of Deep Learning (DL) methodologies through an in-depth analysis of the learning procedures characterizing Neural Network (NN) models within the theoretical frameworks of Stochastic Optimal Control (SOC) and Mean-Field Games (MFGs). In particular, we show how the supervised learning approach can be translated in terms of a (stochastic) mean-field optimal control problem by applying the Hamilton–Jacobi–Bellman (HJB) approach and the mean-field Pontryagin maximum principle. Our contribution sheds new light on a possible theoretical connection between mean-field problems and DL, melting heterogeneous approaches and reporting the state-of-the-art within such fields to show how the latter different perspectives can be indeed fruitfully unified. Keywords: deep learning; neural networks; stochastic optimal control; mean-field games; Hamilton– Jacobi–Bellman equation; Pontryagin maximum principle 1. Introduction Controlled stochastic processes, which naturally arise in a plethora of heterogeneous fields, spanning, e.g., from mathematical finance to industry, can be solved in the setting of continuous time stochastic control theory. In particular, when we have to analyse complex Citation: Di Persio, L.; Garbelli, M. dynamics produced by the mutual interaction of a large set of indistinguishable players, Deep Learning and Mean-Field Games: A Stochastic Optimal Control an efficient approach to infer knowledge about the resulting behaviour, typical for example Perspective.