Contribution to a Better Knowledge of Biology, Distribution and Diversity Of

Total Page:16

File Type:pdf, Size:1020Kb

Contribution to a Better Knowledge of Biology, Distribution and Diversity Of Contribution to a better knowledge of biology, distribution and diversity of demersal species along the Lebanese coast, eastern Mediterranean : a focus on Lessepsian fish species Stefano Lelli To cite this version: Stefano Lelli. Contribution to a better knowledge of biology, distribution and diversity of demersal species along the Lebanese coast, eastern Mediterranean : a focus on Lessepsian fish species. Ocean, Atmosphere. Université de Perpignan, 2017. English. NNT : 2017PERP0051. tel-02516572 HAL Id: tel-02516572 https://tel.archives-ouvertes.fr/tel-02516572 Submitted on 24 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l’école doctorale Energie et Environnement Et de l’unité de recherche CEntre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM) UMR 5110 CNRS UPVD Spécialité : Océanologie Présentée par Stefano LELLI Contribution to a better knowledge of biology, distribution and diversity of demersal species along the Lebanese coast, eastern Mediterranean: a focus on Lessepsian fish species. Soutenue le 22 Décembre 2017 devant le jury composé de Rachid AMARA, Professeur, HDR, Universités du Rapporteur Littoral Côte d’Opale Adib SAAD, Professeur, Université de Tishreen, Rapporteur Syrie Matteo MURENU, Maître de conférences, Examinateur Université de Cagliari, Italie Philippe LENFANT, Professeur, HDR, UPVD Examinateur Gaby KHALAF, Professeur, CNRS Libanais Directeur Marion VERDOIT-JARRAYA, Maître de Co-directrice conférences, UPVD 1 Acknowledgements I would like to express my deep gratitude to the people who were part of this extensive endeavour and to all the Institutions that made it possible. To the CIHEAM-Agronomic Institute of Bari that always placed absolute trust in me and granted me excellent support. To the staff of the CIHEAM- Pesca Libano project that dedicated its efforts towards the successful achievements of our objectives. For the coordination and support and in specific for upholding the smooth implementation of field activities, I wish to thank the National Council for Scientific Research, Lebanon (CNRS) and in particular the Secretary General Mouïn Hamzé, all the staff of the CANA project and the crew of the R/V CANA-CNRS. My gratitude also goes to the Department of Fisheries and Wildlife of Ministry of Agriculture of the Republic of Lebanon (DFW-MoA) for indicating strategic areas of interventions and simplifying formal procedures for field work. Furthermore, I never forget that all this could not have been possible without the financial support and the confidence granted by the Italian Cooperation. For its higher support in the constant effort to share durable strategies for the fisheries sector in Lebanon, I express my gratitude and appreciation to the General Fisheries Commission for the Mediterranean (GFCM). Also, I am grateful to the FAO regional project EastMed and to the Institute for Coastal Marine Environment of the CNR (IAMC-CNR) for their vital technical support and to the ENVIMED Mistral CNRS France for its financial support for the LESSEPS project. All these institutions are made up of human beings that encouraged, suggested, brainstormed, discussed or simply lent me a hand before, during and after the implementation of the field activities. I wish to acknowledge a debt of gratitude to Biagio Di Terlizzi, Samir Majdalani and Francesco Colloca for their continuous guidance, their help and the friendship they honor me with. My gratitude also goes to Myriam Lteif, Sharif Jemaa and all the colleagues of the NCMS of Batroun and to Dahej el Mokdad, Imad Lahoud and the rangers of the MoA assigned to the DFW-MoA. This study could not have been completed without the support of the Lebanese fishermen, their bravery and tough job in the sea. In particular, I wish to acknowledge the fishermen Toufic Assal from Batroun and Nicholas Rahmé from Tyre for their vital technical advice. Lastly, I wish to acknowledge the privilege to have worked with extremely knowledgeable supervisors. I offer them my deep gratitude, to my supervisor Professor Gaby Khalaf and my co- supervisor Dr. Marion Verdoit-Jarraya. I would like to offer my deepest gratitude to the members of the jury who all gave me the honor and pleasure of being present during my thesis defense and their remarks were very beneficial to me. I am indebted to Université de Perpignan Via Domitia (UPVD), especially the director of the Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), Wolfgang Ludwig for welcoming me during my thesis. 2 3 Table of contents Table of contents .............................................................................................................. 4 Chapter 1 General Introduction ...................................................................................... 12 Overview ................................................................................................................................ 12 The Mediterranean Sea: Biodiversity, threats and fisheries ...................................................... 13 Geographical overview ..................................................................................................... 13 Biodiversity........................................................................................................................ 13 Threats .............................................................................................................................. 14 Fisheries ............................................................................................................................ 14 Demersal species: Status, fisheries and threats ........................................................................ 16 Worldwide overview ......................................................................................................... 16 Demersal species life history traits ................................................................................... 18 Mediterranean Demersal species ..................................................................................... 19 Mediterranean Demersal species fisheries and threats ................................................... 20 Various management tools for coastal ecosystems ......................................................... 20 Eastern Mediterranean Demersal species ........................................................................ 21 Lessepsian species and invasions............................................................................................. 23 Definition of non-indigenous species (NIS) ....................................................................... 23 Brief history of the ‘Erythrean’ invasion ........................................................................... 23 Description of the main arrivals of NIS in eastern Mediterranean .................................. 25 Ecological and economic impacts of invasions in general. ............................................... 28 Objectives of the study ........................................................................................................... 30 Chapter 2 Materials and Methods .................................................................................. 34 Characteristics of the study area ............................................................................................. 34 Data collection ....................................................................................................................... 36 Background ....................................................................................................................... 36 Sampling design ................................................................................................................ 36 Sampling gears .................................................................................................................. 39 Protocols for sampling activities ....................................................................................... 41 Biological indices and sexual maturity ..................................................................................... 43 Weight-length relationship ............................................................................................... 43 Condition factor ................................................................................................................ 43 Sexual maturity ................................................................................................................. 43 4 Stomach contents analysis ...................................................................................................... 47 Diet composition ............................................................................................................... 47 Feeding strategy ................................................................................................................ 48 Ageing fish and growth curves ...............................................................................................
Recommended publications
  • Ophidion Rochei
    Kéver et al. Frontiers in Zoology 2012, 9:34 http://www.frontiersinzoology.com/content/9/1/34 RESEARCH Open Access Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae Loïc Kéver1*, Kelly S Boyle1, Branko Dragičević2, Jakov Dulčić2, Margarida Casadevall3 and Eric Parmentier1 Abstract Background: Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies. However, sound recordings are scarce and little is known about acoustic communication in this family. This paper focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in juveniles, females and males of O. rochei. Results: Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder, supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the ‘rocker bone’ typically found in males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic, multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s) with a pulse period of ca. 100 ms. Juvenile and female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse period (±3.7 ms), and never exceeded a few dozen milliseconds (18 ± 11 ms). Moreover, unlike male sounds, female sounds did not have alternating long and short pulse periods.
    [Show full text]
  • Beyond Cement Competition 2019
    1. Introduction 1.1. Overview 1.2. Chekka and the Collar Towns: Understanding the Challenges 1.3. The Competition: Open Call for Alternative Visions ● Competition Guidelines ● Goals of the Competition 2. Three Sites, One Vision 2.1. Ruptures and Continuities: Relations Between the Sites 2.2. Site A: Chekka-Heri Seafront ● Understanding the Site ● Current Problematic ● Stakeholders 2.3. Site B: Badbhoun’s Quarry ● Understanding the Site ● Current Problematic ● Stakeholders 2.4. Site C: Koura’s Agricultural Middle Plain ● Understanding the Site ● Current Problematic ● Stakeholders 3. Competition Requirements and Conditions 3.1. Structure and Jury Deliberation 3.1.1. Competition Organizer and Supporters 3.1.2. Competition Type 3.1.3. Eligibility 3.1.4. Jury Panel 3.1.5. Award 3.1.6. Evaluation Criteria 3.1.7. Timeline 3.2. Submission Requirements 3.2.1. List of Required Deliverables 3.2.2. Further Instructions 3.3. Terms and Conditions 3.3.1. Official Language 3.3.2. Anonymity 3.3.3. Communication 3.3.4. Confidentiality Beyond Cement Competition 2019 3.3.5. Ownership of Entries 3.3.6. Authorship and Originality of Entries 3.3.7. Exhibition, Publication, and Promotion 3.3.8. Submission of Entries Deadlines 3.3.9. Changes to the Competition 3.3.10. Handling of Deliverables 3.3.11. Indemnity Clause Appendices In addition to the appendices referenced in the text above, The following includes other materials that participants are encouraged to go through as they provide important information relevant to the specific sites and the competition as a whole. 1. Maps 1.1 Base maps 1.2 Master plans 1.3 Mapping 1.4 Graphs 2.
    [Show full text]
  • The Satrap of Western Anatolia and the Greeks
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 The aS trap Of Western Anatolia And The Greeks Eyal Meyer University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Ancient History, Greek and Roman through Late Antiquity Commons Recommended Citation Meyer, Eyal, "The aS trap Of Western Anatolia And The Greeks" (2017). Publicly Accessible Penn Dissertations. 2473. https://repository.upenn.edu/edissertations/2473 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2473 For more information, please contact [email protected]. The aS trap Of Western Anatolia And The Greeks Abstract This dissertation explores the extent to which Persian policies in the western satrapies originated from the provincial capitals in the Anatolian periphery rather than from the royal centers in the Persian heartland in the fifth ec ntury BC. I begin by establishing that the Persian administrative apparatus was a product of a grand reform initiated by Darius I, which was aimed at producing a more uniform and centralized administrative infrastructure. In the following chapter I show that the provincial administration was embedded with chancellors, scribes, secretaries and military personnel of royal status and that the satrapies were periodically inspected by the Persian King or his loyal agents, which allowed to central authorities to monitory the provinces. In chapter three I delineate the extent of satrapal authority, responsibility and resources, and conclude that the satraps were supplied with considerable resources which enabled to fulfill the duties of their office. After the power dynamic between the Great Persian King and his provincial governors and the nature of the office of satrap has been analyzed, I begin a diachronic scrutiny of Greco-Persian interactions in the fifth century BC.
    [Show full text]
  • Studies of a Goneplax Rhomboides Population Off Quarry Bay 55
    Studies of a Goneplax rhomboides population off Quarry Bay R. J. A. ATKINSON Dept of Marine Biology, University of Liverpool, Isle of Man Present address: University Marine Biological Station, Millport, Isle of Cumbrae, Scotland. Introduction This work was conducted during a course in sublittoral marine ecology sponsored by the Lundy Field Society and the Department of Marine Biology, University College of North Wa les, Menai Bridge, Anglesey. The observations reported here result from a team effort in volving Mr. A.R. Andrews, Miss M. Cooper, Mr. J. Creak, Mr. M. Davies, Dr. P.M. Hardy , Mr. J.B . Markham , Mr . C. Roberts, Mr. D. Tierney, Mr. J.G. Wilson and myself. The main objects of the exercise were to familiarise ourselves with various types of burows in the mud and employ a number of techniques to study them. This involved the preparation of polyester resin casts of selected burrows, mapping the distribution of burrows and observing the area by night as well as by day. Although Goneplax rhomboides (L.) was responsible for must of the conspicuous burrows in the area several distinctive burrows occupied by the Red Band Fish (Cepola rnbescens L.) were fou nd .. The squat lobster Munida bamffica (Pennant) was occasionally seen in th e en­ trances of burrows but these burrows appeared to be vacated Goneplax burrows. Methods A 48 metre tape measure was pinned into the mud substratum 17m below C.D. off Quarry Bay. Those burrows that occurred within lm either side of the tape were mapped using pencils on prepared perspex 'slates'. Interrelationships between holes in th e mud we re ascertained by creating a current of water in the burrow and noting those openings through which mud clouds emerged.
    [Show full text]
  • The State of Mediterranean and Black Sea Fisheries 2018
    Food and Agriculture General Fisheries Commission for the Mediterranean Organization of the Commission générale des pêches United Nations pour la Méditerranée ISSN 2413-6905 THE STATE OF MEDITERRANEAN AND BLACK SEA FISHERIES 2018 Reference: FAO. 2018. The State of Mediterranean and Black Sea Fisheries General Fisheries Commission for the Mediterranean. Rome, Italy. pp. 164. THE STATE OF MEDITERRANEAN AND BLACK SEA FISHERIES 2018 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 Required citation: FAO. 2018. The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean. Rome. 172 pp. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specifc companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily refect the views or policies of FAO. ISBN 978-92-5-131152-3 © FAO, 2018 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • Islandscapes Under Question: the Maltese Archipelago, Pantelleria and Marettimo and Their Contexts in Classical Antiquity
    Islandscapes under question: the Maltese Archipelago, Pantelleria and Marettimo and their contexts in classical Antiquity. PASCAL ARNAUD “Malta, my dear sir, is in my thoughts, sleeping and waking” (Sir Horatio Nelson) During the last two decades, three new concepts were introduced in the field of maritime archaeology, and in maritime history as a whole. The first was that of “Maritime Cultural Landscape” defined as the “whole network of sailing routes, old as well as new, with ports and harbours along the coast, and its related con- structions and remains of human activity, underwater as well as terrestrial” (Westerdhal 1992: 6). It opposed Natural Landscape (i.e. geo-biological determin- isms) and Cultural Landscape (human impact) and reached a fair success in the fol- lowing years among many scholars (Parker 1999). It quickly led to the specializa- tion of the notion of Landscape as to indicate natural landscape, as opposed to other particular, mainly cultural, landscapes (Gosden & Head 1994). The concept of “Seascape” (Gosden & Pavlides 1994) was thus applied to islands considered as lands partially determined by the sea, in a balanced view of the complementary im- pacts of Man and Nature. Increased interest in Island Archaeology, especially among prehistorians, led many to consider islands as a world per se and insularity as a sufficient common feature. In other words, the implicit premise of island ar- chaeology was “that insular human societies show intrinsic characteristics essen- tially dissimilar from those on mainlands” (Boomert & Bright 2007: 3). In 1996, a dissertation about Archaeology of the Early Cyclades, published four years later (Broodbank 2000) introduced the notion of “Islandscape”, which focused on the Islands, especially under the cultural aspect of maritime connectivity, a concept made essential by recent research in the history of the classical Mediterranean as a whole (Horden & Purcell 2000).
    [Show full text]
  • The Haifa–Beirut–Tripoli Railway
    APPENDIX 2 THE HAIFA–BEIRUT–TRIPOLI RAILWA Y By A. E. FIEL D Syria does not lend itself easily to railway construction . Very little such work was undertaken between the two world wars. In 1940, however, the possibility of Allied occupation of the Lebanon, and the hope that Turke y would join the Allies, made it very desirable that there should be a direct link between the standard gauge line from the British bases i n Egypt and Palestine then terminating at Haifa, and the northern Syrian system ending at Tripoli . Earlier the French administration had considered the linking of Haifa and Tripoli by a route along the coast, but the project had been shelved for fear that the port of Haifa would benefit at the expense of Beirut. In 1940 and 1941 Middle East Command had surveys made of various routes as far as the Lebanon border . From a map study the first route favoured was from Haifa round the north o f the Sea of Galilee to Rayak where the proposed railway would join th e Homs-Aleppo-Turkey standard gauge line . This was ruled out because it involved very heavy cutting in basalt . The next possibility considered was an extension of the line northwards from Haifa along the coast to th e Litani River and thence inland to Metulla-Rayak, but the route could not be explored before the conquest of Syria in July 1941 . It then became evident that much heavy bridge work would be necessary in the Litani gorges which would not be economically justifiable as a wartime project .
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Cusk Eels, Brotulas [=Cherublemma Trotter [E
    FAMILY Ophidiidae Rafinesque, 1810 - cusk eels SUBFAMILY Ophidiinae Rafinesque, 1810 - cusk eels [=Ofidini, Otophidioidei, Lepophidiinae, Genypterinae] Notes: Ofidini Rafinesque, 1810b:38 [ref. 3595] (ordine) Ophidion [as Ophidium; latinized to Ophididae by Bonaparte 1831:162, 184 [ref. 4978] (family); stem corrected to Ophidi- by Lowe 1843:92 [ref. 2832], confirmed by Günther 1862a:317, 370 [ref. 1969], by Gill 1872:3 [ref. 26254] and by Carus 1893:578 [ref. 17975]; considered valid with this authorship by Gill 1893b:136 [ref. 26255], by Goode & Bean 1896:345 [ref. 1848], by Nolf 1985:64 [ref. 32698], by Patterson 1993:636 [ref. 32940] and by Sheiko 2013:63 [ref. 32944] Article 11.7.2; family name sometimes seen as Ophidionidae] Otophidioidei Garman, 1899:390 [ref. 1540] (no family-group name) Lepophidiinae Robins, 1961:218 [ref. 3785] (subfamily) Lepophidium Genypterinae Lea, 1980 (subfamily) Genypterus [in unpublished dissertation: Systematics and zoogeography of cusk-eels of the family Ophidiidae, subfamily Ophidiinae, from the eastern Pacific Ocean, University of Miami, not available] GENUS Cherublemma Trotter, 1926 - cusk eels, brotulas [=Cherublemma Trotter [E. S.], 1926:119, Brotuloides Robins [C. R.], 1961:214] Notes: [ref. 4466]. Neut. Cherublemma lelepris Trotter, 1926. Type by monotypy. •Valid as Cherublemma Trotter, 1926 -- (Pequeño 1989:48 [ref. 14125], Robins in Nielsen et al. 1999:27, 28 [ref. 24448], Castellanos-Galindo et al. 2006:205 [ref. 28944]). Current status: Valid as Cherublemma Trotter, 1926. Ophidiidae: Ophidiinae. (Brotuloides) [ref. 3785]. Masc. Leptophidium emmelas Gilbert, 1890. Type by original designation (also monotypic). •Synonym of Cherublemma Trotter, 1926 -- (Castro-Aguirre et al. 1993:80 [ref. 21807] based on placement of type species, Robins in Nielsen et al.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Regione Siciliana Comune Di Mazara Del Vallo Provincia Di Trapani
    Regione Siciliana Comune di Mazara del Vallo Provincia di Trapani PROGETTO DEFINITIVO PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO COLLEGATO ALLA RTN CON POTENZA NOMINALE DI 4,677 MWp DA REALIZZARSI NEL COMUNE DI MAZARA DEL VALLO (TP), C/DA ANTALBO Elaborato: RELAZIONE AGRONOMICA Relazione: Disegnato: Approvato: Rilasciato: AP ENGINEERING AP ENGINEERING R_12 Foglio 210x297 (A4) Prima Emissione Progetto: Data: Committente: IMPIANTO MAZARA 13/08/2020 Sicily Sun One S.r.l. Via Rosario Livatino, 22 - Castel San Giorgio (SA) Cantiere: Progettista: MAZARA - C/DA ANTALBO AP Engineering srls, Via Vespri 83 - 91100 Trapani P.IVA 02655170815 Email: [email protected] PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO COLLEGATO ALLA RTN CON POTENZA NOMINALE DI 4,677 MWp DA REALIZZARSI NEL COMUNE DI MAZARA DEL VALLO (TP), C/DA ANTALBO Relazione agronomica R. 12 INDICE 1. Premessa ................................................................................................................................................... 3 2. Descrizione impianto da realizzare ............................................................................................................ 3 3. Localizzazione dell’intervento ................................................................................................................... 4 3.1 Dati catastali ............................................................................................................................................ 6 3.2 L’area vasta di riferimento .....................................................................................................................
    [Show full text]
  • Parasitic Infection of Sole Solea Solea by Prosorhynchus Spp
    DISEASES OF AQUATIC ORGANISMS Vol. 58: 179–184, 2004 Published March 10 Dis Aquat Org Parasitic infection of sole Solea solea by Prosorhynchus spp. metacercariae (Digenea, Bucephalidae) in Atlantic nurseries under mussel cultivation influence Pascal Laffargue1, Grégory Baudouin1, Pierre Sasal2, Christophe Arnaud1, Marie-Laure Begout Anras1, Françoise Lagardère1,* 1CREMA-L’Houmeau (UMR10 CNRS-Ifremer), BP5, 17137 L’Houmeau, France 2Laboratoire de Biologie animale, UMR 5555 CNRS, Université de Perpignan, av. de Villeneuve, 66860 Perpignan Cédex, France ABSTRACT: Cysts of metacercariae were obtained on 2 dates from juvenile sole Solea solea sea- sampled in an area of mussel cultivation (Pertuis Charentais, Bay of Biscay, France). An initial assess- ment of parasite genus and infestation level was based on 192 cysts extracted from 2 fish samples, taken in August (n = 20) and December 2000 (n = 14). Our results confirmed the sole as second inter- mediate host of bucephalid trematodes of the genus Prosorhynchus, which has not previously been noticed in Atlantic stocks. Prevalence, ca. 65% on both dates, indicated an substantial infestation of these small fish, with a mean abundance of parasites increasing from August (3.3 ± 1.1) to December (8.1 ± 3.4). Cysts were localised in all body parts of the host, and positioning varied depending on sampling date. However, the cephalic area was always the most infested (72.7 and 49.1% in August and December, respectively). Parasite measurements suggested a protracted infestation process, which may be initiated in spring during sole settlement. Most of the largest metacercariae had the rhynchus characteristics of P. crucibulum, though the possibility of them being other species (P.
    [Show full text]