California Environmental Quality Act Initial Study and Mitigated Negative Declaration January 13, 2016

Total Page:16

File Type:pdf, Size:1020Kb

California Environmental Quality Act Initial Study and Mitigated Negative Declaration January 13, 2016 Routine Maintenance of Stream Channels California Environmental Quality Act Initial Study And Mitigated Negative Declaration January 13, 2016 City of Sacramento Department of Utilities 1395 35th Avenue Sacramento, CA 95822 Contact: William Roberts (916) 808-6955 Prepared by: Blankinship & Associates, Inc. 1590 Drew Avenue, Suite 120 Davis, CA 95618 Contact: Stephen Burkholder (530) 757-0941 Submitted to: California Department of Fish and Wildlife North Central Region 1701 Nimbus Road Rancho Cordova, CA 95670 Contact: Tanya Sheya (916) 358-2953 City of Sacramento, Department of Utilities Initial Study & Mitigated Negative Declaration Routine Maintenance of Stream Channels CEQA Initial Study & Mitigated Negative Declaration Table of Contents Page 1 Executive Summary ...................................................................................................... 4 1.1 Regulatory Setting ..................................................................................................... 5 1.2 Required Approvals ................................................................................................... 5 1.3 Existing Conditions .................................................................................................... 5 1.4 Environmental Setting ................................................................................................ 5 1.5 Project Description ................................................................................................... 11 2 Initial Study .................................................................................................................. 13 2.1 CEQA Initial Study & Environmental Check List Form ............................................. 13 2.2 Environmental Factors Potentially Affected ............................................................. 14 2.3 Determination (To be completed by lead agency) .................................................. 14 3 Evaluation of Environmental Impacts .......................................................................... 15 3.1 Aesthetics ................................................................................................................ 15 3.2 Agriculture Resources .............................................................................................. 18 3.3 Air Quality ................................................................................................................ 20 3.4 Biological Resources ............................................................................................... 23 3.5 Cultural Resources .................................................................................................. 38 3.6 Geology and Soils .................................................................................................... 41 3.7 Greenhouse Gas Emissions .................................................................................... 44 3.8 Hazards and Hazardous Materials ........................................................................... 45 3.9 Hydrology and Water Quality ................................................................................... 48 3.10 Land Use Planning ................................................................................................... 51 3.11 Mineral Resources ................................................................................................... 52 3.12 Noise ........................................................................................................................ 53 3.13 Population and Housing ........................................................................................... 55 3.14 Public Services ........................................................................................................ 56 3.15 Recreation ................................................................................................................ 57 3.16 Transportation/Traffic ............................................................................................... 58 3.17 Utilities and Service Systems ................................................................................... 60 3.18 Mandatory Findings of Significance ......................................................................... 62 4 Mitigation Measures .................................................................................................... 64 4.1 Summary of Mitigation Measures ............................................................................ 64 4.2 Mitigation Monitoring and Reporting Program ......................................................... 69 5 References .................................................................................................................. 70 6 Persons and Agencies Contacted ............................................................................... 72 7 List of Preparers .......................................................................................................... 72 Revision Date: January 13, 2016 Page 2 Blankinship & Associates, Inc. City of Sacramento, Department of Utilities Initial Study & Mitigated Negative Declaration List of Figures Figure 1a through Figure 1c .........................Project Location Map List of Tables Table 1 .........................................................Sacramento County Air Quality Status Table 2 .........................................................Species & Habitat Summary List of Appendices Appendix A ....................................................Project Activity Example Cut Sheets Appendix B ....................................................Species Descriptions Appendix C ...................................................Giant Garter Snake Occurrence & Mitigation Map Appendix D....................................................Example Special Status Species Reference Cards Appendix E ....................................................CEQA and Other Documentation (to be completed) Notice of Intent (NOI) Notice of Completion (NOC) Public Notice Notice of Determination (NOD) State Clearing House Letter CDFW Filing Fee Receipt Appendix F ....................................................Comments and Response to Comments Limitations Services provided by Blankinship & Associates, Inc. related to the Initial Study and Mitigated Negative Declaration the City of Sacramento, Department of Utilities’ routine maintenance of stream of channels subject to jurisdiction by the California Department of Fish and Wildlife under Fish and Game Code (FGC) section 1602 and related documents were prepared consistent with the level of care and skill ordinarily exercised by other professionals under similar circumstances at the same time the services were performed under the terms of agreement with the City of Sacramento, Department of Utilities, Contract No. 2014- 0035. No warranty, guarantee or certification, express or implied, is included. Revision Date: January 13, 2016 Page 3 Blankinship & Associates, Inc. City of Sacramento, Department of Utilities Initial Study & Mitigated Negative Declaration 1 EXECUTIVE SUMMARY Under the California Environmental Quality Act, the lead agency for this Project (The City of Sacramento Department of Utilities) has prepared a Mitigated Negative Declaration, along with an Initial Study for the Routine Maintenance of Stream Channels (Project). The purpose of this document is to investigate potential impacts the Project may have on the environment. Impacts of the Project may be classified as: Potentially Significant Impact, Less Than Significant with Mitigation Incorporated, Less Than Significant Impact, or No Impact. The Lead Agency has determined that the Project would not result in significant or potentially significant impacts. The content and format of this document meets the standards of the California Environmental Quality Act (CEQA). A description of the Project’s environmental and regulatory setting, and a description of the proposed activities are included in this document. The initial study is guided by an environmental checklist, which examines key aspects of 18 environmental resource factors. The impact to each aspect is classified as described above, and a response justifying the classification is provided. Where necessary, Project specific mitigation measures are prescribed to reduce impacts that are not otherwise mitigated by the observance of existing laws, regulations, policies, or permit conditions. The Project would not result in impacts to Agriculture Resources, Land Use Planning, Mineral Resources, Population and Housing, Public Services, Recreation, Transportation/Traffic, or Utilities and Service Systems. By adherence to existing standard operating procedures and/or best management practices; through compliance with existing laws, regulations, or permit conditions; or through the adoption of Project specific mitigation measures, the Project would result in less than significant impacts to Aesthetics, Air Quality, Biological Resources, Cultural Resources, Geology and Soil, Greenhouse Gas Emissions, Hazards and Hazardous Materials, Hydrology and Water Quality, and Noise. The Project would not result in significant impacts to environmental resource factors reviewed as part of the initial study. Revision Date: January 13, 2016 Page 4 Blankinship & Associates, Inc. City of Sacramento, Department of Utilities Initial Study & Mitigated Negative Declaration 1.1 Regulatory Setting The California Department of Fish and Wildlife (CDFW) issued
Recommended publications
  • Evidence of Lingual-Luring by an Aquatic Snake
    Journal of Herpetology, Vol. 34 No. 1 pp 67-74, 2000 Copyright 2000 Society for the Study of Amphibians and Reptiles Evidence of Lingual-luring by an Aquatic Snake HARTWELL H. WELSH, JR. AND AMY J. LIND Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Dr., Arcata, California 95521, USA. E-mail: hwelsh/[email protected] ABSTRACT.-We describe and quantify the components of an unusual snake behavior used to attract fish prey: lingual-luring. Our earlier research on the foraging behavior of the Pacific Coast aquatic garter snake (Thamnophis atratus) indicated that adults are active foragers, feeding primarily on aquatic Pacific giant salamanders (Dicamptodon tenebrosus) in streambed substrates. Juvenile snakes, however, use primarily ambush tactics to capture larval anurans and juvenile salmonids along stream margins, behaviors that include the lingual-luring described here. We found that lingual-luring differed from typical chemosensory tongue-flicking by the position of the snake, contact of the tongue with the water surface, and the length of time the tongue was extended. Luring snakes are in ambush position and extend and hold their tongues out rigid, with the tongue-tips quivering on the water surface, apparently mimicking insects in order to draw young fish within striking range. This behavior is a novel adaptation of the tongue-vomeronasal system by a visually-oriented predator. The luring of prey by snakes has been asso- luring function (Mushinsky, 1987; Ford and ciated primarily with the use of the tail, a be- Burghardt, 1993). However, Lillywhite and Hen- havior termed caudal luring (e.g., Neill, 1960; derson (1993) noted the occurrence of a pro- Greene and Campbell, 1972; Heatwole and Dav- longed extension of the tongue observed in vine ison, 1976; Jackson and Martin, 1980; Schuett et snakes (e.g., Kennedy, 1965; Henderson and al., 1984; Chizar et al., 1990).
    [Show full text]
  • Progress Report for the San Joaquin Valley Giant Garter Snake
    PROGRESS REPORT: 2003 SAN JOAQUIN VALLEY GIANT GARTER SNAKE CONSERVATION PROJECT Prepared by: Todd Williams, Wildlife Biologist Veronica Wunderlich, Biological Science Technician U.S. Fish & Wildlife Service San Luis National Wildlife Refuge Complex Box 2176 Los Banos, CA 93635 INTRODUCTION & BACKGROUND: The giant garter snake, Thamnophis gigas (Rossman & Stewart 1987), was designated as a federally threatened species throughout its range in October 1993 and (USFWS 1993). Giant garter snakes are endemic to the Central Valley of California, and historically occurred throughout the San Joaquin and Sacramento Valleys (Hansen and Brode 1980). They are thought to have occurred as far north as Butte County and south to Kern County, within the boundaries of the foothills of the Coastal and Sierra Nevada ranges. The current range of the giant garter snake is confined to the Sacramento Valley and isolated portions of the San Joaquin Valley (USFWS 1999). The giant garter snake is primarily an aquatic species that feeds on small fishes, tadpoles, and frogs (Fitch 1941). Historically, prey items included thick-tailed chub (Gila crassicauda), Sacramento blackfish (Orthodox microlepidus), and the California red- legged frog (Rana aurora draytoni), all of which have been extirpated from the giant garter snake’s current range (Rossman et al 1996). The habitat requirements of giant garter snakes include wetland areas with sufficient emergent vegetation for cover, openings in the vegetation for basking, and access to rodent burrows for shelter and winter periods of reduced activity (USFWS 1993). Giant garter snakes tend to be absent from rivers that support populations of large predatory fish as well as watercourses that have sand, gravel or rocky substrates (Hansen 1980).
    [Show full text]
  • Giant Garter Snake: the Role of Rice and Effects of Water Transfers
    Giant Garter Snake: The Role of Rice and Effects of Water Transfers Report of Point Blue Conservation Science May 2017 W. David Shuford Giant Garter Snake: The role of rice and effects of water transfers May 2017 Point Blue Conservation Science W. David Shuford Suggested Citation: Shuford, W. D. 2017. Giant Garter Snake: The role of rice and effects of water transfers. Report of Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA 94954. Point Blue Contribution No. 2133. Point Blue Conservation Science – Point Blue’s 140 staff and seasonal scientists conserve birds, other wildlife and their ecosystems through scientific research and outreach. At the core of our work is ecosystem science, studying birds and other indicators of nature’s health. Visit Point Blue on the web www.pointblue.org. Main Points Effects on the federally and state threatened giant garter snake are a major concern under a long-term (10-year) plan to transfer water from sellers in the Sacramento Valley to users south of the Delta or in the San Francisco Bay Area. Water will be made available for transfer from cropland idling, crop shifting, groundwater substitution, reservoir release, and conservation. A maximum of 60,693 acres of rice land would be fallowed each year if the full amount of 565,614 acre feet of surface water is transferred annually. This level of idling potentially could have major impacts on this snake given the current importance of the rice landscape in the Sacramento Valley to the species’ continued survival. Giant garter snakes in the Sacramento Valley have a strong association with natural wetlands and aquatic agricultural habitats, particularly rice and associated water conveyances.
    [Show full text]
  • Giant Garter Snake Habitat Quantification Tool
    Giant Garter Snake Habitat Quantification Tool Part of the Multispecies Habitat Quantification Tool for the Central Valley Habitat Exchange Scientific Rationale and Methods Document, Version 5 Multispecies Habitat Quantification Tool: Giant Garter Snake Acknowledgements The development of the scientific approach for quantifying impacts and benefits to multiple species for use in the Central Valley Habitat Exchange (Exchange) would not have been possible without the input and guidance from a group of technical experts who worked to develop the contents of this tool. This included members of the following teams: Central Valley Habitat Exchange Project Coordinators John Cain (American Rivers) Daniel Kaiser (Environmental Defense Fund) Katie Riley (Environmental Incentives) Exchange Science Team Stefan Lorenzato (Department of Water Resources) Stacy Small-Lorenz (Environmental Defense Fund) Rene Henery (Trout Unlimited) Nat Seavy (Point Blue) Jacob Katz (CalTrout) Tool Developers Amy Merrill (Stillwater Sciences) Sara Gabrielson (Stillwater Sciences) Holly Burger (Stillwater Sciences) AJ Keith (Stillwater Sciences) Evan Patrick (Environmental Defense Fund) Kristen Boysen (Environmental Incentives) Giant Garter Snake TAC Brian Halstead (USGS) Laura Patterson (CDFW) Ron Melcer (formerly DWR; with Delta Stewardship Council as of February 2017) Chinook Salmon TAC Alison Collins (Metropolitan Water District) Brett Harvey (DWR) Brian Ellrott (NOAA/NMFS) Cesar Blanco (USFWS) Corey Phillis (Metropolitan Water District) Dave Vogel (Natural Resource
    [Show full text]
  • Edna), with a Case Study of Painted Turtle (Chrysemys Picta) Edna Under Field Conditions Clare I
    Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-28-2019 A Brief Review of Non-Avian Reptile Environmental DNA (eDNA), with a Case Study of Painted Turtle (Chrysemys picta) eDNA under Field Conditions Clare I. M. Adams University of Otago Luke A. Hoekstra Iowa State University, [email protected] Morgan R. Muell Southern Illinois University Carbondale Fredric J. Janzen Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Environmental Sciences Commons, Genetics Commons, and the Terrestrial and Aquatic Ecology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/341. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. A Brief Review of Non-Avian Reptile Environmental DNA (eDNA), with a Case Study of Painted Turtle (Chrysemys picta) eDNA under Field Conditions Abstract Environmental DNA (eDNA) is an increasingly used non-invasive molecular tool for detecting species presence and monitoring populations. In this article, we review the current state of non-avian reptile eDNA work in aquatic systems, as well as present a field experiment on detecting the presence of painted turtle (Chrysemys picta) eDNA.
    [Show full text]
  • Thamnophis Gigas)
    Herpetological Conservation and Biology 13(1):80–90. Submitted: 2 June 2017; Accepted: 11 December 2017; Published 30 April 2018. REPRODUCTIVE FREQUENCY AND SIZE-DEPENDENCE OF FECUNDITY IN THE GIANT GARTERSNAKE (THAMNOPHIS GIGAS) JONATHAN P. ROSE1, JULIA S.M. ERSAN, GLENN D. WYLIE, MICHAEL L. CASAZZA, AND BRIAN J. HALSTEAD U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, California 95620, USA 1Corresponding author, email: [email protected] Abstract.—How reproductive output changes with age or size is a key life-history trait that can affect which demographic rates most influence population growth. Although many studies have investigated the reproductive ecology of gartersnakes, we know little about reproduction in the threatened Giant Gartersnake, Thamnophis gigas. We used X-radiography to determine reproductive status and estimated fecundity for 73 female T. gigas collected from several regions within the range of this species in the Sacramento Valley of California, USA, and synthesize these data with data from litters born in captivity to improve our understanding of reproduction in this species. Average total litter size determined from X-rays (15.9) and captive-born litters (15.5) are within the ranges reported from other gartersnakes, but captive-born litters had high rates of stillbirth. Only 154 of 202 neonates from captive snakes were born alive, and seven of 13 litters contained at least one stillborn neonate. We found that fecundity was positively related to maternal snout-vent length, and some evidence that larger litters contained smaller neonates. The proportion of X-rayed females that were gravid was 0.50 in 2014, 0.47 in and 2015, and 0.64 in 2016.
    [Show full text]
  • Giant Garter Snake (Thamnopsis Gigas)
    Reptiles Giant Garter Snake (Thamnopsis gigas) Giant Garter Snake (Thamnopsis gigas) Status State: Threatened Federal: Threatened Population Trend Global: Declining State: Declining Within Inventory Area: Unknown Data Characterization The location database for the giant garter snake (Thamnopsis gigas) within its known range in California includes 142 data records from 1908 to 2000. Of these, 30 were documented within the past 10 years, 12 or which are of high precision and may be accurately located. Two of these records are located outside but near the ECCC HCP/NCCP inventory area. This database includes records of individual sightings and locations of occupied, vacant, and natal dens. A moderate amount of literature is available for the giant garter snake because of its threatened status. Most of the literature pertains to habitat requirements, distribution, population demographics, threats, and management activities. A recovery plan for the giant garter snake has been published (U.S. Fish and Wildlife Service 1999). Range The giant garter snake is endemic to the valley floor of the Sacramento and San Joaquin Valleys of California. Records coincide with the historical distribution of large flood basins, freshwater marshes, and tributary streams of the Central Valley of California (Hansen and Brode 1980). The historic distribution of the giant garter snake extended from Sacramento and Contra Costa Counties southward to Buena Vista Lake near Bakersfield in Kern County. Some experts consider Contra Costa County outside the current range of giant garter snake; however the lack of records from the County may be due to a lack of survey effort (Hansen pers. comm.) (see below).
    [Show full text]
  • Ecology of the Cascades Frog (Rana Cascadae)
    Ecology of the Cascades Frog ( Rana cascadae) and Interactions with Garter Snakes and Nonnative Trout in the Trinity Alps Wilderness, California By: Justin M. Garwood and Hartwell H. Welsh Jr. December 2007 Final Report To: California Department of Fish and Game National Fish and Wildlife Foundation Habitat Conservation Planning Branch Bring Back The Natives Grant Program 1416 Ninth Street, Suite 1280 and 1120 Connecticut Avenue NW, Suite 900 Sacramento, CA 95814 Washington, DC 20036 Amphibian Specialist Group i Cascades Frog Ecology in California Cover Photos: Adult female Cascades frog ( Rana cascadae ), aquatic garter snake ( Thamnophis atratus ) captured in Echo Lake basin regurgitating an Eastern brook trout ( Salvelinus fontinalis ), surveying Atlantis meadows west of Red Mountain summit, Trinity Alps Wilderness, California. ( Photos: J. Garwood ) ii Cascades Frog Ecology in California ECOLOGY OF THE CASCADES FROG ( RANA CASCADAE ) AND INTERACTIONS WITH GARTER SNAKES AND NONNATIVE TROUT IN THE TRINITY ALPS WILDERNESS, CALIFORNIA December 2007 FINAL REPORT TO THE CALIFORNIA DEPARTMENT OF FISH AND GAME AND NATIONAL FISH AND WILDLIFE FOUNDATION DFG CONTRACT NO. P0385107 NFWF CONTRACT NO. 2004-0075-000, Bring Back The Natives Grant Administered By: Humboldt State University Sponsored Programs Foundation P.O. Box 1185 Arcata, CA 95518-1185 PRINCIPAL INVESTIGATORS: Justin M. Garwood and Hartwell H. Welsh, Jr. USDA Forest Service Pacific Southwest Research Station Redwood Sciences Laboratory 1700 Bayview Dr. Arcata, CA 95521 STATE OF CALIFORNIA CONTRACT MANAGER Betsy Bolster Staff Environmental Scientist Department of Fish and Game Wildlife Branch 1416 Ninth Street, Suite 1280 Sacramento, CA 95814 iii Cascades Frog Ecology in California ECOLOGY OF THE CASCADES FROG ( RANA CASCADAE ) AND INTERACTIONS WITH GARTER SNAKES AND NONNATIVE TROUT IN THE TRINITY ALPS 1/ WILDERNESS, CALIFORNIA December, 2007 By Justin M.
    [Show full text]
  • Garter Snake Population Dynamics from a 16-Year Study: Considerations for Ecological Monitoring
    Ecological Applications, 15(1), 2005, pp. 294±303 q 2005 by the Ecological Society of America GARTER SNAKE POPULATION DYNAMICS FROM A 16-YEAR STUDY: CONSIDERATIONS FOR ECOLOGICAL MONITORING AMY J. LIND,1 HARTWELL H. WELSH,JR., AND DAVID A. TALLMON2 USDA Forest Service, Paci®c Southwest Research Station, Redwood Sciences Laboratory, 1700 Bayview Drive, Arcata, California 95521 USA Abstract. Snakes have recently been proposed as model organisms for addressing both evolutionary and ecological questions. Because of their middle position in many food webs they may be useful indicators of trophic complexity and dynamics. However, reliable data on snake populations are rare due to the challenges of sampling these patchily distributed, cryptic, and often nocturnal species and also due to their underrepresentation in the eco- logical literature. Studying a diurnally active stream-associated population of garter snakes has allowed us to avoid some of these problems so that we could focus on issues of sampling design and its in¯uence on resulting demographic models and estimates. From 1986 to 2001, we gathered data on a population of the Paci®c coast aquatic garter snake (Thamnophis atratus) in northwestern California by conducting 3±5 surveys of the population annually. We derived estimates for sex-speci®c survival rates and time-dependent capture probabilities using population analysis software and examined the relationship between our calculated capture probabilities and variability in sampling effort. We also developed population size and density estimates and compared these estimates to simple count data (often used for wildlife population monitoring). Over the 16-yr period of our study, we marked 1730 snakes and had annual recapture rates ranging from 13% to 32%.
    [Show full text]
  • Petition to Add Bullfrogs to List of Restricted Species
    State of California – Fish and Game Commission PETITION TO THE CALIFORNIA FISH AND GAME COMMISSION FOR REGULATION CHANGE FGC 1 (NEW 10/23/14) Page 1 of 3 Tracking Number: (Click here to enter text.) To request a change to regulations under the authority of the California Fish and Game Commission (Commission), you are required to submit this completed form to: California Fish and Game Commission, 1416 Ninth Street, Suite 1320, Sacramento, CA 95814 or via email to [email protected]. Note: This form is not intended for listing petitions for threatened or endangered species (see Section 670.1 of Title 14). Incomplete forms will not be accepted. A petition is incomplete if it is not submitted on this form or fails to contain necessary information in each of the required categories listed on this form (Section I). A petition will be rejected if it does not pertain to issues under the Commission’s authority. A petition may be denied if any petition requesting a functionally equivalent regulation change was considered within the previous 12 months and no information or data is being submitted beyond what was previously submitted. If you need help with this form, please contact Commission staff at (916) 653- 4899 or [email protected]. SECTION I: Required Information. Please be succinct. Responses for Section I should not exceed five pages 1. Person or organization requesting the change (Required) Name of primary contact person: Jennifer Loda, on behalf of Petitioners Center for Biological Diversity and Save the Frogs! Address: 1212 Broadway, Suite 800; Oakland, CA 94609 Telephone number: 510-844-7100 x336 Email address: [email protected] 2.
    [Show full text]
  • Standard Common and Current Scientific Names for North American Amphibians, Turtles, Reptiles & Crocodilians
    STANDARD COMMON AND CURRENT SCIENTIFIC NAMES FOR NORTH AMERICAN AMPHIBIANS, TURTLES, REPTILES & CROCODILIANS Sixth Edition Joseph T. Collins TraVis W. TAGGart The Center for North American Herpetology THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY www.cnah.org Joseph T. Collins, Director The Center for North American Herpetology 1502 Medinah Circle Lawrence, Kansas 66047 (785) 393-4757 Single copies of this publication are available gratis from The Center for North American Herpetology, 1502 Medinah Circle, Lawrence, Kansas 66047 USA; within the United States and Canada, please send a self-addressed 7x10-inch manila envelope with sufficient U.S. first class postage affixed for four ounces. Individuals outside the United States and Canada should contact CNAH via email before requesting a copy. A list of previous editions of this title is printed on the inside back cover. THE CEN T ER FOR NOR T H AMERI ca N HERPE T OLOGY BO A RD OF DIRE ct ORS Joseph T. Collins Suzanne L. Collins Kansas Biological Survey The Center for The University of Kansas North American Herpetology 2021 Constant Avenue 1502 Medinah Circle Lawrence, Kansas 66047 Lawrence, Kansas 66047 Kelly J. Irwin James L. Knight Arkansas Game & Fish South Carolina Commission State Museum 915 East Sevier Street P. O. Box 100107 Benton, Arkansas 72015 Columbia, South Carolina 29202 Walter E. Meshaka, Jr. Robert Powell Section of Zoology Department of Biology State Museum of Pennsylvania Avila University 300 North Street 11901 Wornall Road Harrisburg, Pennsylvania 17120 Kansas City, Missouri 64145 Travis W. Taggart Sternberg Museum of Natural History Fort Hays State University 3000 Sternberg Drive Hays, Kansas 67601 Front cover images of an Eastern Collared Lizard (Crotaphytus collaris) and Cajun Chorus Frog (Pseudacris fouquettei) by Suzanne L.
    [Show full text]
  • Progress Report for the San Joaquin Valley Giant Garter Snake Conservation Project – 2004
    Progress report for the San Joaquin Valley giant garter snake conservation project – 2004 Justin Sloan Los Banos Wildlife Complex California Department of Fish and Game 18110 Henry Miller Road Los Banos, CA 93635 Los Banos Wildlife Area Publication #: 27 Agreement # 114202J069 Table of Contents Chapter 1. Giant garter snake trapping at Volta Wildlife Area Introduction 1 Study Area 3 Methods 5 Results 7 Discussion 12 Future Research 14 Acknowledgements 15 Literature Cited 16 Appendix 18 Chapter 2. Further evaluation of external radio transmitter use on the valley garter snake Introduction 19 Study Area 20 Methods 23 Results 25 Discussion 27 Future Research 28 Acknowledgements 29 Literature Cited 29 ii Figures Chapter 1 Figure 1. Areas trapped for giant garter snakes at Volta Wildlife Area in 2004. 4 Figure 2. Giant garter snake capture locations at Volta Wildlife Area in 2004. 8 Figure 3. Snout-vent length (SVL) and mass of giant garter snakes captured at Volta Wildlife Area in 2004. 9 Figure 4. Change in mass of three giant garter snakes between 2003 and 2004. 10 Figure 5. Change in snout-vent length (SVL) of three giant garter snakes between 2003 and 2004. 10 Chapter 2 Figure 1. Volta Wildlife Area. 22 Figure 2. Attachment of external radio transmitter on valley garter snake using Micropore tape. 24 Figure 3. Antenna extending beyond tail of valley garter snake; transmitter attached using Blenderm tape. 24 Figure 4a. Damage to tail caused by Blenderm tape. 26 Figure 4b. Damage to tail caused by Blenderm tape. 26 iii Tables Chapter 1 Table 1. Location of visual surveys in the Grasslands Resources Conservation District.
    [Show full text]