Functional Links Between Telomeres and Proteins of the DNA-Damage Response

Total Page:16

File Type:pdf, Size:1020Kb

Functional Links Between Telomeres and Proteins of the DNA-Damage Response Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Functional links between telomeres and proteins of the DNA-damage response Fabrizio d’Adda di Fagagna,1,3,4 Soo-Hwang Teo,2,3 and Stephen P. Jackson2,5 1IFOM Foundation—The FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy; 2The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, UK In response to DNA damage, cells engage a complex set important roles in regulating normal telomeric func- of events that together comprise the DNA-damage re- tions. In this review, we focus on the role of DDR factors sponse (DDR). These events bring about the repair of the in regulating telomere length and stability, and also ex- damage and also slow down or halt cell cycle progression plain how dysfunctional telomeres can trigger the DDR. until the damage has been removed. In stark contrast, Before doing this, however, we first summarize the sa- the ends of linear chromosomes, telomeres, are generally lient features of both telomeres and the DDR. not perceived as DNA damage by the cell even though they terminate the DNA double-helix. Nevertheless, it Telomere structure and biology has become clear over the past few years that many pro- The ends of linear chromosomes contain long stretches teins involved in the DDR, particularly those involved in of DNA tandem repeats (TTAGGG in vertebrates) and responding to DNA double-strand breaks, also play key terminate in a 3Ј protruding single-stranded DNA over- roles in telomere maintenance. In this review, we dis- hang. Due to the inability of the standard lagging-strand cuss the current knowledge of both the telomere and the DNA replication machinery to copy the most distal telo- DDR, and then propose an integrated model for the mere sequences (i.e., those at the very end of the chro- events associated with the metabolism of DNA ends in mosome) and to the additional exonucleolytic processing these two distinct physiological contexts. needed to generate protruding overhangs at both ends, telomeric DNA progressively decreases in length as cells All organisms respond to interruptions in the DNA go through successive division cycles. Hence, in the ab- double-helix by promptly launching the DNA-damage sence of specialized telomere homeostatic mechanisms response (DDR). This involves the mobilization of DNA- this would ultimately lead to the loss of all telomeric repair factors and the activation of pathways, often sequences and subsequently to the loss of more internal termed checkpoint pathways, which temporarily or per- essential genetic information and ensuing cell death. To manently delay cell cycle progression. Although the in- circumvent this, many cells maintain their telomeres by tegrity of the DNA double-helix is perturbed by telo- the action of telomerase, a specialized reverse transcrip- meres (the ends of linear chromosomes), these structures tase that uses its associated RNA component as a tem- generally escape activating the DDR. Several explana- plate to elongate the TG-rich telomeric DNA strand. Al- tions have been proposed to explain the exceptional na- though in vitro telomerase activity is dependent on the ture of telomeres in this regard. Thus, it has been sug- activity of the reverse transcriptase catalytic subunit gested that a telomere might not be recognized by com- (Est2p in the budding yeast Saccharomyces cerevisiae; ponents of the DDR because of its unique DNA TERT in mammals) and the telomerase RNA template sequence and structure, its specific localization within (Tlc1 in S. cerevisiae and hTR in humans), other factors the cell nucleus, and/or because of the actions of specific are clearly needed for telomerase action in vivo (see proteins associated with it. Although this is partly cor- Table 1). For instance, effective telomerase function in S. rect, recent findings have revealed that, contrary to ini- cerevisiae requires Est1p and Est3p, and the loss of either tial expectations, various proteins involved in the DDR of these two proteins—like the loss of Tlc1 or Est2p— physically associate with telomeres and actually play leads to progressive telomere shortening (for review, see Blackburn 2000). Furthermore, and as explained below, effective telomerase action in vivo also requires several [Keywords: Telomere; DNA-damage response; checkpoint; senescence; proteins associated with the DDR. DNA repair] The telomeric repeat sequences are essential for many 3These authors contributed equally to this work. Corresponding authors: of the key biological features of telomeres by virtue of 4E-MAIL [email protected]; FAX 39-02-574303-231. them being recognized by a specific set of sequence- and 5E-MAIL [email protected]; FAX 44-1223-334089. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ structure-specific DNA-binding factors (Table 1; Fig. 1). gad.1214504. Some of these bind to the double-stranded portion of the GENES & DEVELOPMENT 18:1781–1799 © 2004 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/04; www.genesdev.org 1781 Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press d’Adda di Fagagna et al. Table 1. Telomere-associated factors Mammals S. cerevisiae S. pombe C. elegans TRF1: telomere DNA binder Rap1p: telomere length Taz1p: telomere length and and telomerase mediated- regulator structure regulator telomere length regulator Tbf1p: telomere binding factor TIN2: telomerase mediated telomere length regulator TANK1: TRF1 PARP modifier and telomere length regulator TANK2: TRF1 PARP modifier TRF2: telomere DNA binder with telomere end capping function and telomerase independent telomere length regulator RAP1: TRF2 interactor and Rap1p: Taz1p interactor and telomere length regulator telomere length regulator ERCC1/XPF: TRF2 interacting endonuclease MRN complex: TRF2 interactor MRX complex: telomere length MRN: in vivo component of and single stranded overhang the telomere and telomere regulator length regulator Rif1: Trf2 interactor and in Rif1/2p: Rap1p interactors and Rif1p: Taz1p interactor and vivo component of mouse telomere length regulators telomere length regulator telomeres POT1: TRF1 interactor and Cdc13p: single stranded Pot1p: single stranded single stranded telomeric telomeric DNA binder with telomeric DNA binder DNA binder with telomere telomere capping and with telomere capping length regulation functions telomerase recruiting functions functions Stn1p/Ten1p: Cdc13p interactors and mediators of its telomerase recruiting and capping functions Ku: in vivo component of the Ku: in vivo component of the Ku: in vivo component of telomere and telomere length telomere, telomere length the telomere and telomere regulator (?) and single-stranded overhang length regulator regulator DNA-PKcs: in vivo component of the telomere with telomere capping functions EST1A/B: telomere length Est1p: in vivo cofactor of Est1p: in vivo cofactor of regulator (?) telomerase telomerase TERT: catalytic component of Est2p: catalytic component of Trt1p: catalytic component the telomerase complex the telomerase complex of the telomerase complex TR: RNA component of the Tlc1: RNA component of the telomerase complex telomerase complex PARP1: telomere length regulator RPA: in vivo component of the telomere with Est1p-recruiting functions 9–1–1 complex: in vivo MRT-2 and Hus1: regulators component of the of telomere length and telomere and telomere germline mortality length regulator Tel2p: telomere length Rad5: telomere length regulator regulator (?) telomeric DNA and are involved in telomere length while others have important roles in capping the very regulation (e.g. S. cerevisiae Rap1p, Schizosaccharomy- end of the chromosome by virtue of their ability to rec- ces pombe Taz1p, and mammalian TRF1 and TRF2), ognize the telomeric 3Ј overhang (e.g., S. cerevisiae 1782 GENES & DEVELOPMENT Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Telomeres and the DNA-damage response Figure 1. Schematic representation of telomere factors in different organisms. Cdc13, S. pombe Pot1p, and possibly hPOT1). These lat- associated with it, or a combination of both, that is cru- ter factors bind single-stranded DNA through a con- cial for evading the activation of a DDR. In vitro, the served OB (oligonucleotide/oligosaccharide binding) fold mammalian telomere repeat binding protein, TRF2, can domain (Mitton-Fry et al. 2002; Lei et al. 2003) and be- promote T-loop formation (Stansel et al. 2001), and im- cause a DDR ensues in their absence, are believed to play pairing the DNA-binding function of TRF2 in vivo leads crucial roles in preventing the inappropriate triggering of to either ataxia telangiectasia mutated (ATM)- and p53- the DDR by the telomere. Indeed, in S. cerevisiae lacking dependent cell death or to permanent cell cycle arrest, functional Cdc13p, the CA-rich telomeric strand depending on the cell type (Karlseder et al. 1999). Al- complementary to that bound by Cdc13p is rapidly de- though T loops have so far only been demonstrated in graded, leading to RAD9-dependent cell-cycle arrest mammals and Trypanosomes (Munoz-Jordan et al. 2001), (Garvik et al. 1995; see below). Similarly, inactivation of similar structures may exist in other organisms. In S. S. pombe Pot1p leads to rapid and dramatic telomere cerevisiae, evidence has been provided that telomeric shortening,
Recommended publications
  • Anti-CLK2 Antibody (ARG66787)
    Product datasheet [email protected] ARG66787 Package: 100 μg anti-CLK2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes CLK2 Tested Reactivity Hu Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name CLK2 Antigen Species Human Immunogen Synthetic peptide between aa. 1-50 of Human CLK2. Conjugation Un-conjugated Alternate Names CDC-like kinase 2; Dual specificity protein kinase CLK2; EC 2.7.12.1 Application Instructions Application table Application Dilution IHC-P 1:100 - 1:300 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control COLO205 and A549 Calculated Mw 60 kDa Observed Size ~ 60 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS, 0.02% Sodium azide, 50% Glycerol and 0.5% BSA. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol and 0.5% BSA Concentration 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol CLK2 Gene Full Name CDC-like kinase 2 Background This gene encodes a dual specificity protein kinase that phosphorylates serine/threonine and tyrosine- containing substrates.
    [Show full text]
  • 1 Title: Ultra-Conserved Elements in the Human Genome Authors And
    4/22/2004 Title: Ultra-conserved elements in the human genome Authors and affiliations: Gill Bejerano*, Michael Pheasant**, Igor Makunin**, Stuart Stephen**, W. James Kent*, John S. Mattick** and David Haussler*** *Department of Biomolecular Engineering and ***Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA **ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia Corresponding authors: Gill Bejerano ([email protected]) and David Haussler ([email protected]) -------------------------------------------------------------------------------------------------------------------- Supporting on-line material: Separate figures, Like Figure 1 but for each individual chromosome are available in postscript and PDF format, at http://www.cse.ucsc.edu/~jill/ultra.html. Table S1. A table listing all 481 ultra conserved elements and their properties can be found at http://www.cse.ucsc.edu/~jill/ultra.html. The elements were extracted from an alignment of NCBI Build 34 of the human genome (July 2003, UCSC hg16), mouse NCBI Build 30 (February 2003, UCSC mm3), and rat Baylor HGSC v3.1 (June 2003, UCSC rn3). This table does not include an additional, probably ultra conserved element (uc.10) overlapping an alternatively spliced exon of FUSIP1, which is not yet placed in the current assembly of human chromosome 1. Nor does the list contain the ultra conserved elements found in ribosomal RNA sequences, as these are not currently present as part of the draft genome sequences. The small subunit 18S rRNA includes 3 ultra conserved regions of sizes 399, 224, 212bp and the large subunit 28S rRNA contains 3 additional regions of sizes 277, 335, 227bp (the later two are one base apart).
    [Show full text]
  • Network-Based Prediction of Drug Combinations
    Corrected: Publisher correction ARTICLE https://doi.org/10.1038/s41467-019-09186-x OPEN Network-based prediction of drug combinations Feixiong Cheng1,2,3,4,5, Istvań A. Kovacś1,2 & Albert-Laszló ́Barabasí1,2,6,7 Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By 1234567890():,; quantifying the network-based relationship between drug targets and disease proteins in the human protein–protein interactome, we show the existence of six distinct classes of drug–drug–disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development. 1 Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA 02115, USA. 2 Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 3 Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA. 4 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA. 5 Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
    [Show full text]
  • Identification of Three Additional Genes Contiguous to the Glucocerebrosidase Locus on Chromosome 1Q21: Implications for Gaucher Disease Suzanne L
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press LETTER Identification of Three Additional Genes Contiguous to the Glucocerebrosidase Locus on Chromosome 1q21: Implications for Gaucher Disease Suzanne L. Winfield, Nahid Tayebi, Brian M. Martin, Edward I. Ginns, and Ellen Sidransky1 Clinical Neuroscience Branch, Intramural Research Program (IRP), National Institute of Mental Health, Bethesda, Maryland 20892 Gaucher disease results from the deficiency of the lysosomal enzyme glucocerebrosidase (EC 3.2.1.45). Although the functional gene for glucocerebrosidase (GBA) and its pseudogene (psGBA), located in close proximity on chromosome 1q21, have been studied extensively, the flanking sequence has not been well characterized. The recent identification of human metaxin (MTX) immediately downstream of psGBA prompted a closer analysis of the sequence of the entire region surrounding the GBA gene. We now report the genomic DNA sequence and organization of a 75-kb region around GBA, including the duplicated region containing GBA and MTX. The origin and endpoints of the duplication leading to the pseudogenes for GBA and MTX are now clearly established. We also have identified three new genes within the 32 kb of sequence upstream to GBA, all of which are transcribed in the same direction as GBA. Of these three genes, the gene most distal to GBA is a protein kinase (clk2). The second gene, propin1, has a 1.5-kb cDNA and shares homology to a rat secretory carrier membrane protein 37 (SCAMP37). Finally, cote1, a gene of unknown function lies most proximal to GBA. The possible contributions of these closely arrayed genes to the more atypical presentations of Gaucher disease is now under investigation.
    [Show full text]
  • Differentially Methylated Plasticity Genes in the Amygdala of Young
    15548 • The Journal of Neuroscience, November 19, 2014 • 34(47):15548–15556 Neurobiology of Disease Differentially Methylated Plasticity Genes in the Amygdala of Young Primates Are Linked to Anxious Temperament, an at Risk Phenotype for Anxiety and Depressive Disorders X Reid S. Alisch,1 Pankaj Chopra,5 Andrew S. Fox,2,4,6 Kailei Chen,3 Andrew T.J. White,1 Patrick H. Roseboom,1 Sunduz Keles,3 and Ned H. Kalin1,2,4,6 Departments of 1Psychiatry, 2Psychology, 3Statistics, and the 4Health Emotion Research Institute, University of Wisconsin, Madison, Wisconsin 53719, 5Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, and 6Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Wisconsin 53705 Children with an anxious temperament (AT) are at a substantially increased risk to develop anxiety and depression. The young rhesus monkey is ideal for studying the origin of human AT because it shares with humans the genetic, neural, and phenotypic underpinnings of complex social and emotional functioning. Heritability, functional imaging, and gene expression studies of AT in young monkeys revealed that the central nucleus of the amygdala (Ce) is a key environmentally sensitive substrate of this at risk phenotype. Because epigenetic marks (e.g., DNA methylation) can be modulated by environmental stimuli, these data led us to hypothesize a role for DNA methylation in the development of AT. To test this hypothesis, we used reduced representation bisulfite sequencing to examine the cross-sectional genome-wide methylation levels in the Ce of 23 age-matched monkeys (1.3 Ϯ 0.2 years) phenotyped for AT.
    [Show full text]
  • CLK2 (NM 003993) Human Tagged ORF Clone – RC208778 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC208778 CLK2 (NM_003993) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CLK2 (NM_003993) Human Tagged ORF Clone Tag: Myc-DDK Symbol: CLK2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 CLK2 (NM_003993) Human Tagged ORF Clone – RC208778 ORF Nucleotide >RC208778 representing NM_003993 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCGCATCCTCGAAGGTACCACTCCTCAGAGCGAGGCAGCCGGGGGAGTTACCGTGAACACTATCGGA GCCGAAAGCATAAGCGACGAAGAAGTCGCTCCTGGTCAAGTAGTAGTGACCGGACACGACGGCGTCGGCG AGAGGACAGCTACCATGTCCGTTCTCGAAGCAGTTATGATGATCGTTCGTCCGACCGGAGGGTGTATGAC CGGCGATACTGTGGCAGCTACAGACGCAACGATTATAGCCGGGATCGGGGAGATGCCTACTATGACACAG ACTATCGGCATTCCTATGAATATCAGCGGGAGAACAGCAGTTACCGCAGCCAGCGCAGCAGCCGGAGGAA GCACAGACGGCGGAGGAGGCGCAGCCGGACATTTAGCCGCTCATCTTCGCAGCACAGCAGCCGGAGAGCC AAGAGTGTAGAGGACGACGCTGAGGGCCACCTCATCTACCACGTCGGGGACTGGCTACAAGAGCGATATG AAATCGTTAGCACCTTAGGAGAGGGGACCTTCGGCCGAGTTGTACAATGTGTTGACCATCGCAGGGGTGG GGCTCGAGTTGCCCTGAAGATCATTAAGAATGTGGAGAAGTACAAGGAAGCAGCTCGACTTGAGATCAAC GTGCTAGAGAAAATCAATGAGAAAGACCCTGACAACAAGAACCTCTGTGTCCAGATGTTTGACTGGTTTG
    [Show full text]
  • Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases
    International Journal of Molecular Sciences Review Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview Mattias F. Lindberg and Laurent Meijer * Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; [email protected] * Correspondence: [email protected] Abstract: Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2- like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein ki- nases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, ho- mocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer’s disease and related diseases, tauopathies, demen- tia, Pick’s disease, Parkinson’s disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in dia- betes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblas- Citation: Lindberg, M.F.; Meijer, L. tic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections Dual-Specificity, Tyrosine caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological Phosphorylation-Regulated Kinases implications calls for (1) a better understanding of the regulations and substrates of DYRKs and (DYRKs) and cdc2-Like Kinases CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation (CLKs) in Human Disease, an as therapeutic drugs.
    [Show full text]
  • Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article pubs.acs.org/biochemistry Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK Family Members † † ‡ † † † Krisna Prak, Janos Kriston-Vizi, A. W. Edith Chan, Christin Luft, Joana R. Costa, Niccolo Pengo, † and Robin Ketteler*, † MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, U.K. ‡ Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, U.K. *S Supporting Information ABSTRACT: Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification of potent CLK2 inhibitors and identified compounds with a novel chemical scaffold structure, the benzobisthiazoles, that has not been previously reported for kinase inhibitors. We propose models for binding of these compounds to CLK family proteins and key residues in CLK2 that are important for the compound interactions and the kinase activity. We identified structural elements within the benzobisthiazole that determine CLK2 and CLK3 inhibition, thus providing a rationale for selectivity assays. In summary, our results will inform structure-based design of CLK family inhibitors based on the novel benzobisthiazole scaffold. rotein kinases control and modulate a wide variety of production by modulating splicing of the provirus and affecting P biological processes through their catalytic activity,1,2 gene expression of viral genes.12 CLK1 inhibitors are also including signal transduction and gene splicing.
    [Show full text]
  • An Integrated Data Analysis Approach to Characterize Genes Highly Expressed in Hepatocellular Carcinoma
    Oncogene (2005) 24, 3737–3747 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma Mohini A Patil1,6, Mei-Sze Chua2,6, Kuang-Hung Pan3,6, Richard Lin3, Chih-Jian Lih3, Siu-Tim Cheung4, Coral Ho1,RuiLi2, Sheung-Tat Fan4, Stanley N Cohen3, Xin Chen1,5 and Samuel So2 1Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143, USA; 2Department of Surgery and Asian Liver Center, Stanford University, Stanford, CA 94305, USA; 3Department of Genetics, Stanford University, Stanford, CA 94305, USA; 4Department of Surgery and Center for the Study of Liver Disease, University of Hong Kong, Hong Kong, China; 5Liver Center, University of California, San Francisco, CA 94143, USA Hepatocellular carcinoma (HCC) is one of the major cancer deaths worldwide (Parkin, 2001; Parkin et al., causes of cancer deaths worldwide. New diagnostic and 2001). Epidemiological and molecular genetic studies therapeutic options are needed for more effective and early have demonstrated that the development of HCC spans detection and treatment of this malignancy. We identified several decades, often starting with hepatitis B virus 703 genes that are highly expressed in HCC using DNA (HBV) or hepatitis C virus (HCV) infections. Chronic microarrays, and further characterized them in order to carriers of HBV or HCV are at much higher risk of uncover novel tumor markers, oncogenes, and therapeutic developing HCC, especially when infection has been targets for HCC. Using Gene Ontology annotations, genes accompanied by liver cirrhosis (El-Serag, H., 2001; El- with functions related to cell proliferation and cell cycle, Serag, H.B., 2002).
    [Show full text]
  • CLK2 (F-4): Sc-393909
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . CLK2 (F-4): sc-393909 BACKGROUND APPLICATIONS The phosphorylation and dephosphorylation of proteins on serine and threo - CLK2 (F-4) is recommended for detection of CLK2 of mouse, rat and human nine residues is an essential means of regulating a broad range of cellular origin by Western Blotting (starting dilution 1:100, dilution range 1:100- functions in eukaryotes, including cell division, homeostasis and apoptosis. 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml A group of proteins that are intimately involved in this process are the ser ine/ of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range threonine (Ser/Thr) protein kinases. CLK2 (CDC-like kinase 2) is a 499 amino 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range acid nuclear protein that contains one protein kinase domain and belongs to 1:30- 1:3000). the Ser/Thr protein kinase family. Using ATP, CLK2 phosphorylates serine- and Suitable for use as control antibody for CLK2 siRNA (h): sc-72923, CLK2 arginine-rich (SR) components of the spliceosomal complex, possibly playing siRNA (m): sc-72924, CLK2 shRNA Plasmid (h): sc-72923-SH, CLK2 shRNA a role in the control of RNA splicing. CLK2 exists as two alternatively spliced Plasmid (m): sc-72924-SH, CLK2 shRNA (h) Lentiviral Particles: sc-72923-V isoforms, designated short and long, and is encoded by a gene which maps and CLK2 shRNA (m) Lentiviral Particles: sc-72924-V. to human chromosome 1.
    [Show full text]
  • Loss of LMOD1 Impairs Smooth Muscle Cytocontractility and Causes
    Loss of LMOD1 impairs smooth muscle cytocontractility PNAS PLUS and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice Danny Halima,1, Michael P. Wilsonb,1, Daniel Oliverc, Erwin Brosensa, Joke B. G. M. Verheijd, Yu Hanb, Vivek Nandab, Qing Lyub, Michael Doukase, Hans Stoope, Rutger W. W. Brouwerf, Wilfred F. J. van IJckenf, Orazio J. Slivanob, Alan J. Burnsa,g, Christine K. Christieb, Karen L. de Mesy Bentleyh, Alice S. Brooksa, Dick Tibboeli, Suowen Xub, Zheng Gen Jinb, Tono Djuwantonoj, Wei Yanc, Maria M. Alvesa, Robert M. W. Hofstraa,g,2, and Joseph M. Mianob,2 aDepartment of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; bAab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; cDepartment of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557; dDepartment of Genetics, University Medical Center, University of Groningen, 9700 RB Groningen, The Netherlands; eDepartment of Pathology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; fCenter for Biomics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; gStem Cells and Regenerative Medicine, Birth Defects Research Centre, University College London Institute of Child Health, London WC1N 1EH, United Kingdom; hDepartment of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; iDepartment of Pediatric Surgery, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; and jDepartment of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia Edited by Eric N. Olson, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 21, 2017 (received for review December 13, 2016) Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is lacking (6, 7).
    [Show full text]
  • Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK2 Inhibitor for Treatment of Triple-Negative Breast Cancer with a Compromised G1/S Checkpoint
    Author Manuscript Published OnlineFirst on June 4, 2018; DOI: 10.1158/1535-7163.MCT-17-1084 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Synthetic Lethal Strategy Identifies a Potent and Selective TTK and CLK1/2 Inhibitor for Treatment of Triple-negative Breast Cancer with a Compromised G1/S Checkpoint Dan Zhu1, Shuichan Xu1, *Gordafaried Deyanat-Yazdi1, Sophie X. Peng2, Leo A. Barnes2, Rama Krishna Narla2, Tam Tran1, David Mikolon1, *Yuhong Ning4, Tao Shi4, Ning Jiang1, Heather K. Raymon2, Jennifer R. Riggs3 and John F. Boylan1. Celgene Corporation, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121 Author Affiliations: 1 Oncology Research; 2 Pharmacology, 3 Chemistry, 4 Informatics and Knowledge Utilization Department Running Title: Functional Impact of TTK and CLK2 inhibition in TNBC Corresponding Author: Dan Zhu, Department of Biotherapeutics, Celgene Corporation, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121. Phone: 858-795-4971; E-mail: [email protected] *Current Address: Gordafaried Deyanat-Yazdi Eli Lilly and Company 10290 Campus Point Dr, San Diego, CA 92121 Yuhong Ning LabCorp 3595 John Hopkins Ct, San Diego, CA 92121 Word count: 5209 No. of Figures: 6 No. of Tables: 2 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 4, 2018; DOI: 10.1158/1535-7163.MCT-17-1084 Author manuscripts have been peer reviewed and accepted for publication but have not yet
    [Show full text]