Statistical Analysis of the Cosmic Microwave Background
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Instrumental Performance and Results from Testing of the BLAST-TNG Receiver, Submillimeter Optics, and MKID Arrays
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays Nicholas Galitzkia, Peter Adeb, Francesco E. Angil`ea, Peter Ashtonc, Jason Austermannd, Tashalee Billingsa, George Chee, Hsiao-Mei Chof, Kristina Davise, Mark Devlina, Simon Dickera, Bradley J. Dobera, Laura M. Fisselc, Yasuo Fukuig, Jiansong Gaod, Samuel Gordone, Christopher E. Groppie, Seth Hillbranda, Gene C. Hiltond, Johannes Hubmayrd, Kent D. Irwinh, Jeffrey Kleina, Dale Lif, Zhi-Yun Lii, Nathan P. Louriea, Ian Lowea, Hamdi Manie, Peter G. Martinj, Philip Mauskopfe, Christopher McKenneyd, Federico Natia, Giles Novakc, Enzo Pascaleb, Giampaolo Pisanob, Fabio P. Santosc, Douglas Scottk, Adrian Sinclaire, Juan D. Solerl, Carole Tuckerb, Matthew Underhille, Michael Vissersd, and Paul Williamsc aUniversity of Pennsylvania, 209 S 33rd St, Philadelphia, PA, USA bUniversity of Cardiff, The Parade, Cardiff, United Kingdom cCenter for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA dNational Institute of Standards and Technology, 325 Broadway, Boulder, CO, USA eArizona State University, PO Box 871404, Tempe, AZ, USA fSLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA gNagoya University, Furocho, Chikusa Ward, Nagoya, Aichi Prefecture, Japan hStanford University, 382 Via Pueblo Mall, Stanford, CA, USA iUniversity of Virginia, 530 McCormick Road, Charlottesville, VA, USA jUniversity of Toronto, 60 St. George Street, Toronto, ON, Canada lUniversity of British Columbia, 6224 Agricultural Road, Vancouver, BC, Canada kLaboratoire AIM, Paris-Saclay, CEA/IRFU/SAp - CNRS - Universit´eParis Diderot, 91191, Gif-sur-Yvette Cedex, France ABSTRACT Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM). -
Mcwilliams Center for Cosmology
McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology McWilliams Center for Cosmology ,CODQTGG Rachel Mandelbaum (+Optimus Prime) Observational cosmology: • how can we make the best use of large datasets? (+stats, ML connection) • dark energy • the galaxy-dark matter connection I measure this: for tens of millions of galaxies to (statistically) map dark matter and answer these questions Data I use now: Future surveys I’m involved in: Hung-Jin Huang 0.2 0.090 0.118 0.062 0.047 0.118 0.088 0.044 0.036 0.186 0.016 70 0.011 0.011 − 0.011 − 0.011 − 0.011 − 0.011 − 0.011 0.011 − 0.011 0.011 ± ± ± ± ± ± ± ± ± ± 50 η 0.1 30 ∆ Fraction 10 1 24 23 22 21 0.40.81.2 0.20.61.0 0.6 0.2 0.20.6 0.30.50.70.9 1.41.61.82.02.2 0.15 0.25 0.10.30.5 0.4 0.00.4 − − 0−.1 − − − − . 0.090 ∆log(cen. R )[kpc/h] P ∆ 0.011 0.3 cen. Mr cen. color cen. e eff cen log(richness) z cluster e R ± dom 1 0.2 . − cen 0.1 3 Fraction − 21 Research: − 0.118 0.622 0.3 0.011 0.009 Mr 22 1 . ± ± 0.2 0 − . 23 − 0.1 Fraction cen intrinsic alignments in 24 − 0.8 0.062 0.062 0.084 0.7 1.2 0.011 0.011 0.011 0.6 redMaPPer clusters − ± − ± − ± 0.5 color . 0.4 0.8 0.3 Fraction cen 0.2 0.4 0.1 1.0 0.047 0.048 0.052 0.111 0.3 Advisor : 0.011 0.011 0.011 0.011 e − ± − ± − ± − ± . -
AAO of the FUTURE AAO of Next Generation Fibre Positioning Robots
IAU SPECIAL EDITION JULY 2003 NEWSLETTER ANGLO-AUSTRALIAN OBSERVATORY AAO OF THE FUTURE Next generation fibre positioning robots. Microrobotic technology based on the AAO’s Echidna system allows accurate positioning of payloads such as single fibres, guide bundles, mini- IFUs or even pick-off mirrors to be accurately positioned on large focal plates for large and ‘extremely large’ telescopes. See article on page 18. contents 3The Anglo-Australian Planet Search finDs a new “Solar System”-like gas giant (Chris Tinney et al.) 4RAVE hits the galaxy (FreD Watson et al.) 8A search for the highest reDshift raDio galaxies (Carlos De Breuck et al.) 9The 6DF Galaxy Survey (Will SaunDers et al.) 14 The end of observations for the 2dF Galaxy Redshift Survey (Matthew Colless et al.) 18 Directions for future instrumentation Development by the AAO (AnDrew McGrath et al.) 20 AAΩ: the successor to 2dF (Terry Bridges et al.) DIRECTOR’S MESSAGE DIRECTOR’S DIRECTOR’S MESSAGE On behalf of the staff of the Anglo-Australian Observatory, I would like to extend a warm welcome to Sydney to all IAU General Assembly delegates. This special GA edition of the AAO newsletter showcases some of the AAO’s achievements over the past year as well as some exciting new directions in which the AAO is heading in the future. Over the past few years the AAO has increasingly sought to build on its scientific and technical expertise through the design and building of astronomical instrumentation for overseas observatories, whilst maintaining its own telescopes as world-class facilities. The success of science programs such as the Anglo-Australian Planet Search and the 2dF Galaxy Redshift Survey amply demonstrate that the AAO is still facilitating the production of outstanding science by its user communities. -
Dm2gal: Mapping Dark Matter to Galaxies with Neural Networks
dm2gal: Mapping Dark Matter to Galaxies with Neural Networks Noah Kasmanoff Francisco Villaescusa-Navarro Center for Data Science Department of Astrophysical Sciences New York University Princeton University New York, NY 10011 Princeton NJ 08544 [email protected] [email protected] Jeremy Tinker Shirley Ho Center for Cosmology and Particle Physics Center for Computational Astrophysics New York University Flatiron Institute New York, NY 10011 New York, NY 10010 [email protected] [email protected] Abstract Maps of cosmic structure produced by galaxy surveys are one of the key tools for answering fundamental questions about the Universe. Accurate theoretical predictions for these quantities are needed to maximize the scientific return of these programs. Simulating the Universe by including gravity and hydrodynamics is one of the most powerful techniques to accomplish this; unfortunately, these simulations are very expensive computationally. Alternatively, gravity-only simulations are cheaper, but do not predict the locations and properties of galaxies in the cosmic web. In this work, we use convolutional neural networks to paint galaxy stellar masses on top of the dark matter field generated by gravity-only simulations. Stellar mass of galaxies are important for galaxy selection in surveys and thus an important quantity that needs to be predicted. Our model outperforms the state-of-the-art benchmark model and allows the generation of fast and accurate models of the observed galaxy distribution. 1 Introduction Galaxies are not randomly distributed in the sky, but follow a particular pattern known as the cosmic web. Galaxies concentrate in high-density regions composed of dark matter halos, and galaxy clusters usually lie within these dark matter halos and they are connected via thin and long filaments. -
How to Learn to Love the BOSS Baryon Oscillations Spectroscopic Survey
How to learn to Love the BOSS Baryon Oscillations Spectroscopic Survey Shirley Ho Anthony Pullen, Shadab Alam, Mariana Vargas, Yen-Chi Chen + Sloan Digital Sky Survey III-BOSS collaboration Carnegie Mellon University SpaceTime Odyssey 2015 Stockholm, 2015 What is BOSS ? Shirley Ho, Sapetime Odyssey, Stockholm 2015 What is BOSS ? Shirley Ho, Sapetime Odyssey, Stockholm 2015 BOSS may be … Shirley Ho, Sapetime Odyssey, Stockholm 2015 SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey What is it ? What does it do ? What is SDSS III - BOSS ? • A 2.5m telescope in New Mexico • Collected • 1 million spectra of galaxies , • 400,000 spectra of supermassive blackholes (quasars), • 400,000 spectra of stars • images of 20 millions of stars, galaxies and quasars. Shirley Ho, Sapetime Odyssey, Stockholm 2015 What is SDSS III - BOSS ? • A 2.5m telescope in New Mexico • Collected • 1 million spectra of galaxies , • 400,000 spectra of supermassive blackholes (quasars), • 400,000 spectra of stars • images of 20 millions of stars, galaxies and quasars. Shirley Ho, Sapetime Odyssey, Stockholm 2015 SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey What is it ? What does it do ? SDSS III - BOSS Sloan Digital Sky Survey III - Baryon Oscillations Spectroscopic Survey BAO: Baryon Acoustic Oscillations AND Many others! What can we do with BOSS? • Probing Modified gravity with Growth of Structures • Probing initial conditions, neutrino masses using full shape of the correlation function • -
Deep21: a Deep Learning Method for 21Cm Foreground Removal
Prepared for submission to JCAP deep21: a Deep Learning Method for 21cm Foreground Removal T. Lucas Makinen, ID a;b;c;1 Lachlan Lancaster, ID a Francisco Villaescusa-Navarro, ID a Peter Melchior, ID a;d Shirley Ho,e Laurence Perreault-Levasseur, ID e;f;g and David N. Spergele;a aDepartment of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ, 08544, USA bInstitut d’Astrophysique de Paris, Sorbonne Université, 98 bis Boulevard Arago, 75014 Paris, France cCenter for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA dCenter for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA eDepartment of Physics, Univesité de Montréal, CP 6128 Succ. Centre-ville, Montréal, H3C 3J7, Canada f Mila - Quebec Artificial Intelligence Institute, Montréal, Canada E-mail: [email protected], [email protected], fvillaescusa-visitor@flatironinstitute.org, [email protected], shirleyho@flatironinstitute.org, dspergel@flatironinstitute.org Abstract. We seek to remove foreground contaminants from 21cm intensity mapping ob- servations. We demonstrate that a deep convolutional neural network (CNN) with a UNet architecture and three-dimensional convolutions, trained on simulated observations, can effec- tively separate frequency and spatial patterns of the cosmic neutral hydrogen (HI) signal from foregrounds in the presence of noise. Cleaned maps recover cosmological clustering amplitude and phase within 20% at all relevant angular scales and frequencies. This amounts to a reduc- tion in prediction variance of over an order of magnitude across angular scales, and improved −1 accuracy for intermediate radial scales (0:025 < kk < 0:075 h Mpc ) compared to standard Principal Component Analysis (PCA) methods. -
SPIDER Experiment
Searching for the echoes of inflation with H. Cynthia Chiang University of KwaZulu-Natal Madrid: CMB, LSS, 21cm June 24, 2016 B mode polarization in the CMB E modes are the CMB's “intrinsic polarization” We expect them to be there because of scattering processes in the CMB Temperature anisotropies predict E-mode spectra with almost no extra information Not only that, but “standard” CMB scattering physics generates ONLY E modes. Why do we care about B modes? Inflation: exponential expansion of universe (x 1025) at 10-35 sec after big bang creates a gravitational wave background that leaves a B-mode imprint on CMB polarization. Gravitational lensing by large scale structure converts some of the E-mode polarization to B-mode. Use this to study structure formation, “weigh” neutrinos. How can we tell the difference between the above two? Degree vs. arcminute angular scales. The moral of the story: B modes tell us things about the universe that temperature and E modes can't. Inflation scorecard Inflation predicts: Our universe (Planck 2015): A flat universe Ωk = 0.000 ± 0.0025 with nearly scale-invariant ns = 0.968 ± 0.006 density fluctuations, well described by a power law, dns / d lnk = -0.0065 ± 0.0076 with scalar perturbations r0.002 < 0.01 (at 2σ) that are Gaussian fNL = 2.5 ± 5.7 and adiabatic, βiso < 0.03 (at 2σ) with a negligible contribution from topological defects f10 < 0.04 (Adapted from Martin White) Constraining inflation Planck 2015 CMB polarization power spectra E-mode E-mode is mainly sourced by density fluctuations and is the intrinsic polarization of the CMB Degree-scale B-mode from gravitational waves, amplitude described by the tensor-to-scalar ratio r. -
Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind. -
JUAN DIEGO SOLER Address: Max-Planck-Institut Für Astronomie
JUAN DIEGO SOLER Address: Max-Planck-Institut für Astronomie Königstuhl 17 D-69117 Heidelberg Germany Phone: +49-(0)176 64475267 Email: [email protected] Citizenship: Colombian Webpage: http://www.mpia.de/homes/soler/ EDUCATION Sep. 2007 - Sep. 2013 Ph.D. Astronomy and Astrophysics University of Toronto. Toronto, Canada. “In Search of an Imprint of Magnetization in the Balloon-borne Observations of the Polarized Dust Emission from Molecular Clouds” Advisor: Pr. Barth Netterfield Jury: Pr. M. Houde, Pr. P. Martin, Pr. D.-S. Moon, Pr. C. Matzner. Sep. 2004 - Sep. 2006 M.Sc. Physics Universidad de los Andes. Bogotá, Colombia. “Imaging and tomography with silicon microstrip detectors” Advisor: Pr. Carlos A. Avila Sep. 1999 - Sep. 2004 B.Sc. Physics Universidad de los Andes. Bogotá, Colombia. PROFESSIONAL APPOINTMENTS Jan. 2017 - present Post-doctoral Fellow. Max-Planck-Institut für Astronomie, Germany. ERC project “The HI/OH/Recombination line survey of the inner Milky Way (THOR)” directed by Dr. Henrik Beuther. Sep. 2015 - Jan. 2017 Post-doctoral Fellow. Service d’Astrophysique, CEA, France. ERC project “From the magnetized diffuse interstellar medium to the stars” directed by Dr. Patrick Hennebelle. Sep. 2013 - Sep. 2015 Post-doctoral Fellow. Institut d’Astrophysique Spatiale. France. ERC project “Mastering the dusty and magnetized interstellar screen to test inflation cosmology” directed by Dr. Francois Boulanger. Sep. 2008 - Sep. 2013 Research Assistant. University of Toronto. Toronto, Canada. Sep. 2007 - Sep. 2008 Teaching Assistant. University of Toronto. Toronto, Canada. Sep. 2006 - Sep. 2007 Research Assistant. CIEMAT. Madrid, Spain. Study of intensity-modulated radiation therapy (IMRT) in the Unit of Medical Physics directed by Dr. -
Understanding Cosmic Acceleration: Connecting Theory and Observation
Understanding Cosmic Acceleration V(!) ! E Hivon Hiranya Peiris Hubble Fellow/ Enrico Fermi Fellow University of Chicago #OMPOSITIONOFAND+ECosmic HistoryY%VENTS$ UR/ INGTHE%CosmicVOLUTIONOFTHE5 MysteryNIVERSE presentpresent energy energy Y density "7totTOT = 1(k=0)K density DAR RADIATION KENER dark energy YDENSIT DARK G (73%) DARKMATTER Y G ENERGY dark matter DARK MA(23.6%)TTER TIONOFENER WHITEWELLUNDERSTOOD DARKNESSPROPORTIONALTOPOORUNDERSTANDING BARYONS BARbaryonsYONS AC (4.4%) FR !42 !33 !22 !16 !12 Fractional Energy Density 10 s 10 s 10 s 10 s 10 s 1 sec 380 kyr 14 Gyr ~1015 GeV SCALEFACTimeTOR ~1 MeV ~0.2 MeV 4IME TS TS TS TS TS TSEC TKYR T'YR Y Y Planck GUT Y T=100 TeV nucleosynthesis Y IES TION TS EOUT DIAL ORS TIONS G TION TION Z T Energy THESIS symmetry (ILC XA 100) MA EN EE WNOF ESTHESIS V IMOR GENERATEOBSERVABLE IT OR ELER ALTHEOR TIONS EF SIGNATURESINTHE#-" EAKSYMMETR EIONIZA INOFR Y% OMBINA R E6 EAKDO #X ONASYMMETR SIC W '54SYMMETR IMELINEOF EFFWR Y Y EC TUR O NUCLEOSYN ), * +E R 4 PLANCKENER Generation BR TR TURBA UC PH Cosmic Microwave NEUTR OUSTICOSCILLA BAR TIONOFPR ER A AC STR of primordial ELEC non-linear growth of P 44 LIMITOFACC Background Emitted perturbations perturbations: GENER ES carries signature of signature on CMB TUR GENERATIONOFGRAVITYWAVES INITIALDENSITYPERTURBATIONS acoustic#-"%MITT oscillationsED NON LINEARSTR andUCTUR EIMPARTS #!0-!0OBSERVES#-" ANDINITIALDENSITYPERTURBATIONS GROWIMPARTINGFLUCTUATIONS CARIESSIGNATUREOFACOUSTIC SIGNATUREON#-"THROUGH *throughEFFWRITESUPANDGR weakADUATES WHICHSEEDSTRUCTUREFORMATION -
From Dark Matter to Galaxies with Convolutional Networks
From Dark Matter to Galaxies with Convolutional Networks Xinyue Zhang*, Yanfang Wang*, Wei Zhang*, Siyu He Yueqiu Sun*∗ Department of Physics, Carnegie Mellon University Center for Data Science, New York University Center for Computational Astrophysics, Flatiron Institute xz2139,yw1007,wz1218,[email protected] [email protected] Gabriella Contardo, Francisco Shirley Ho Villaescusa-Navarro Center for Computational Astrophysics, Flatiron Institute Center for Computational Astrophysics, Flatiron Institute Department of Astrophysical Sciences, Princeton gcontardo,[email protected] University Department of Physics, Carnegie Mellon University [email protected] ABSTRACT 1 INTRODUCTION Cosmological surveys aim at answering fundamental questions Cosmology focuses on studying the origin and evolution of our about our Universe, including the nature of dark matter or the rea- Universe, from the Big Bang to today and its future. One of the holy son of unexpected accelerated expansion of the Universe. In order grails of cosmology is to understand and define the physical rules to answer these questions, two important ingredients are needed: and parameters that led to our actual Universe. Astronomers survey 1) data from observations and 2) a theoretical model that allows fast large volumes of the Universe [10, 12, 17, 32] and employ a large comparison between observation and theory. Most of the cosmolog- ensemble of computer simulations to compare with the observed ical surveys observe galaxies, which are very difficult to model theo- data in order to extract the full information of our own Universe. retically due to the complicated physics involved in their formation The constant improvement of computational power has allowed and evolution; modeling realistic galaxies over cosmological vol- cosmologists to pursue elucidating the fundamental parameters umes requires running computationally expensive hydrodynamic and laws of the Universe by relying on simulations as their theory simulations that can cost millions of CPU hours. -
Dark Matter Search with the Newsdm Experiment Using Machine Learning Techniques
UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” Scuola Politecnica e delle Scienze di Base Area Didattica di Scienze Matematiche Fisiche e Naturali Dipartimento di Fisica “Ettore Pancini” Laurea Magistrale in Fisica Dark Matter search with the NEWSdm experiment using machine learning techniques Relatori: Candidato: Prof. Giovanni De Lellis Chiara Errico Dott.ssa Antonia Di Crescenzo Matricola N94/457 Dott. Andrey Alexandrov Anno Accademico 2018/2019 Acting with love brings huge happening · Contents Introduction1 1 Dark matter: first evidences and detection3 1.1 First evidences of dark matter.................3 1.2 WIMPs..............................8 1.3 Search for dark matter...................... 11 1.4 Direct detection.......................... 13 1.5 Detectors for direct search.................... 15 1.5.1 Bolometers........................ 16 1.5.2 Liquid noble-gas detector................. 17 1.5.3 Scintillator......................... 18 1.6 Direct detection experiment general result........... 20 1.7 Directionality........................... 21 1.7.1 Nuclear Emulsion..................... 23 2 The NEWSdm experiment 25 2.1 Nano Imaging Trackers...................... 25 2.2 Layout of the NEWSdm detector................ 28 2.2.1 Technical test....................... 29 2.3 Expected background....................... 30 2.3.1 External background................... 31 2.3.2 Intrinsic background................... 34 2.3.3 Instrumental background................. 35 2.4 Optical microscope........................ 35 2.4.1 Super-resolution microscope for dark matter search.. 38 2.5 Candidate Selection........................ 40 2.6 Candidate Validation....................... 42 iii Contents iv 3 Reconstruction of nanometric tracks 47 3.1 Scanning process......................... 47 3.2 Analysis of NIT exposed to Carbon ions............ 49 3.3 Shape analysis........................... 50 3.4 Plasmon analysis......................... 51 3.4.1 Accuracy.......................... 52 3.4.2 Npeaks..........................