The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D

Total Page:16

File Type:pdf, Size:1020Kb

The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information THE PHILOSOPHY OF COSMOLOGY Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limits of sci- ence across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward possible solutions. Written for physicists and philosophers, the emphasis is on con- ceptual questions, and on ways of framing them that are accessible to each community and to a still wider readership: those who wish to understand our modern vision of the Universe, its unavoidable philosophical questions, and its ramifications for scientific methodology. KHALIL CHAMCHAM is a researcher at the University of Oxford. He acted as the exec- utive director of the UK collaboration on the ‘Philosophy of Cosmology’ programme. His main research interests are in the chemical evolution of galaxies, nucleosynthesis, dark matter, and the concept of time. He has co-authored four books and co-edited ten, includ- ing From Quantum Fluctuations to Cosmological Structures and Science and Search for Meaning. JOSEPH SILK FRS is Homewood Professor at the Johns Hopkins University, Research Scientist at the Institut d’Astrophysique de Paris, CNRS and Sorbonne Universities, and Senior Fellow at the Beecroft Institute for Particle Astrophysics at the University of Oxford. He has written seven popular books on cosmology, including The Big Bang, A Short History of the Universe, and The Infinite Cosmos. His research areas include dark matter, the formation of the galaxies, and the big bang theory. He has received numerous awards and prestigious international fellowships. JOHN D. BARROW FRS is Professor of Mathematical Sciences at the University of Cambridge and Director of the Millennium Mathematics Project to improve the appre- ciation of mathematics amongst the general public, teachers, and school students. The recipient of many distinguished prizes, his research interests are in cosmology, gravita- tion, and the interface between particle physics and astronomy. He is also a prolific author; the most recent of his 22 books are 100 Essential Things You Didn’t Know You Didn’t Know about Maths and the Arts, and The Book of Universes. SIMON SAUNDERS is Professor of Philosophy of Physics at the University of Oxford, and a Tutorial Fellow of Merton College, Oxford. He is the lead editor of Many Worlds? Everett, Quantum Theory, and Reality and the author of more than 60 articles in philosophy of physics, with special emphasis on the foundations of quantum mechanics, quantum field theory, and symmetries. He also works on structuralism in philosophy of science and metaphysics, focusing on the logic of identity. He is president-elect of the British Society for the Philosophy of Science. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information THE PHILOSOPHY OF COSMOLOGY Edited By KHALIL CHAMCHAM University of Oxford JOSEPH SILK University of Oxford JOHN D. BARROW University of Cambridge SIMON SAUNDERS University of Oxford © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY10006, USA 477 Williamstown Road, Port Melbourne, VIC3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India 79 Anson Road, #06-04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107145399 c Cambridge University Press 2017 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2017 Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data Names: Chamcham, Khalil, editor. Title: The philosophy of cosmology / [edited by] Khalil Chamcham, University of Oxford, Joseph Silk, University of Oxford, John D. Barrow, University of Cambridge, Simon Saunders, University of Oxford. Description: New York : Cambridge University Press, 2017. | Includes index. Identifiers: LCCN 2016045219 | ISBN 9781107145399 (hardback) Subjects: LCSH: Cosmology. Classification: LCC BD493.P49 2017 | DDC 113–dc23 LC record available at https://lccn.loc.gov/2016045219 ISBN 978-1-107-14539-9 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information Contents List of Contributors page viii Preface x Acknowledgments xii Part I Issues in the Philosophy of Cosmology 1 1 The Domain of Cosmology and the Testing of Cosmological Theories 3 George F. R. Ellis 2 Black Holes, Cosmology and the Passage of Time: Three Problems at the Limits of Science 40 Bernard Carr 3 Moving Boundaries? – Comments on the Relationship Between Philosophy and Cosmology 66 Claus Beisbart 4 On the Question Why There Exists Something Rather Than Nothing 76 Roderich Tumulka Part II Structures in the Universe and the Structure of Modern Cosmology 83 5 Some Generalities About Generality 85 John D. Barrow 6 Emergent Structures of Effective Field Theories 109 Jean-Philippe Uzan 7 Cosmological Structure Formation 136 Joel R. Primack v © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information vi Contents 8 Formation of Galaxies 161 Joseph Silk Part III Foundations of Cosmology: Gravity and the Quantum 179 9 The Observer Strikes Back 181 James Hartle and Thomas Hertog 10 Testing Inflation 206 Chris Smeenk 11 Why Boltzmann Brains do not Fluctuate into Existence from the de Sitter Vacuum 228 Kimberly K. Boddy, Sean M. Carroll and Jason Pollack 12 Holographic Inflation Revised 241 Tom Banks 13 Progress and Gravity: Overcoming Divisions Between General Relativity and Particle Physics and Between Physics and HPS 263 J. Brian Pitts Part IV Quantum Foundations and Quantum Gravity 283 14 Is Time’s Arrow Perspectival? 285 Carlo Rovelli 15 Relational Quantum Cosmology 297 Francesca Vidotto 16 Cosmological Ontology and Epistemology 317 Don N. Page 17 Quantum Origin of Cosmological Structure and Dynamical Reduction Theories 330 Daniel Sudarsky 18 Towards a Novel Approach to Semi-Classical Gravity 356 Ward Struyve Part V Methodological and Philosophical Issues 375 19 Limits of Time in Cosmology 377 Svend E. Rugh and Henrik Zinkernagel 20 Self-Locating Priors and Cosmological Measures 396 Cian Dorr and Frank Arntzenius © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information Contents vii 21 On Probability and Cosmology: Inference Beyond Data? 429 Martin Sahlén 22 Testing the Multiverse: Bayes, Fine-Tuning and Typicality 447 Luke A. Barnes 23 A New Perspective on Einstein’s Philosophy of Cosmology 467 Cormac O’Raifeartaigh 24 The Nature of the Past Hypothesis 486 David Wallace 25 Big and Small 500 David Z. Albert Index 505 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-14539-9 — The Philosophy of Cosmology Edited by Khalil Chamcham , Joseph Silk , John D. Barrow , Simon Saunders Frontmatter More Information Contributors David Z. Albert is Professor at the Department of Philosophy, Columbia University, USA. Frank Arntzenius is Professor of Philosophy at the University of Oxford, University Col- lege, Oxford, UK. Tom Banks is Professor at the New High Energy Theory Center and the Department of Physics, Rutgers University, USA. Luke A. Barnes is a postdoctoral researcher at the Sydney Institute for Astronomy, Uni- versity of Sydney, Australia. John D. Barrow
Recommended publications
  • Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
    Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind.
    [Show full text]
  • Dynamical Relaxation to Quantum Equilibrium
    Dynamical relaxation to quantum equilibrium Or, an account of Mike's attempt to write an entirely new computer code that doesn't do quantum Monte Carlo for the first time in years. ESDG, 10th February 2010 Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] { Typeset by FoilTEX { 1 What I talked about a month ago (`Exchange, antisymmetry and Pauli repulsion', ESDG Jan 13th 2010) I showed that (1) the assumption that fermions are point particles with a continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce: • ..that a mathematically well-defined ‘fifth force', non-local in character, appears to act on the particles and causes their trajectories to differ from the classical ones. • ..that this force appears to have its origin in an objectively-existing `wave field’ mathematically represented by the usual QM wave function. • ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization implies the introduction of forces between particles. • ..the nature of spin. • ..that the action of the force prevents two fermions from coming into close proximity when `their spins are the same', and that in general, this mechanism prevents fermions from occupying the same quantum state. This is a readily understandable causal explanation for the Exclusion principle and for its otherwise inexplicable consequences such as `degeneracy pressure' in a white dwarf star. Furthermore, if assume antisymmetry of wave field not fundamental but develops naturally over the course of time, then can see character of reason for fermionic wave functions having symmetry behaviour they do.
    [Show full text]
  • Discerning “Indistinguishable” Quantum Systems
    Discerning \indistinguishable" quantum systems Adam Caulton∗ Abstract In a series of recent papers, Simon Saunders, Fred Muller and Michael Seevinck have collectively argued, against the folklore, that some non-trivial version of Leibniz's principle of the identity of indiscernibles is upheld in quantum mechanics. They argue that all particles|fermions, paraparti- cles, anyons, even bosons|may be weakly discerned by some physical re- lation. Here I show that their arguments make illegitimate appeal to non- symmetric, i.e. permutation-non-invariant, quantities, and that therefore their conclusions do not go through. However, I show that alternative, sym- metric quantities may be found to do the required work. I conclude that the Saunders-Muller-Seevinck heterodoxy can be saved after all. Contents 1 Introduction 2 1.1 Getting clear on Leibniz's Principle . 2 1.2 The folklore . 4 1.3 A new folklore? . 5 2 Muller and Saunders on discernment 6 2.1 The Muller-Saunders result . 6 2.2 Commentary on the Muller-Saunders proof . 8 ∗c/o The Faculty of Philosophy, University of Cambridge, Sidgwick Avenue, Cambridge, UK, CB3 9DA. Email: [email protected] 1 3 Muller and Seevinck on discernment 10 3.1 The Muller-Seevinck result . 10 3.2 Commentary on the Muller-Seevinck result . 12 4 A better way to discern particles 14 4.1 The basic idea . 14 4.2 The variance operator . 14 4.3 Variance provides a discerning relation . 16 4.4 Discernment for all two-particle states . 18 4.5 Discernment for all many-particle states . 22 5 Conclusion 24 1 Introduction 1.1 Getting clear on Leibniz's Principle What is the fate of Leibniz's Principle of the Identity of Indiscernibles for quantum mechanics? It depends, of course, on how the Principle is translated into modern (enough) parlance for the evaluation to be made.
    [Show full text]
  • Historical Parallels Between, and Modal Realism Underlying Einstein and Everett Relativities
    Historical Parallels between, and Modal Realism underlying Einstein and Everett Relativities Sascha Vongehr National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing 210093, P. R. China A century ago, “ past ” and “ future ”, previously strictly apart, mixed up and merged. Temporal terminology improved. Today, not actualized quantum states, that is merely “ possible ” alternatives, objectively “exist ” (are real) when they interfere. Again, two previously strictly immiscible realms mix. Now, modal terminology is insufficient. Both times, extreme reactions reach from rejection of the empirical science to mystic holism. This paper shows how progress started with the relativization of previously absolute terms, first through Einstein’s relativity and now through Everett’s relative state description, which is a modal realism. The historical parallels suggest mere relativization is insufficient. A deformation of domains occurs: The determined past and the dependent future were restricted to smaller regions of space-time. This ‘light cone description’ is superior to hyperspace foliations and already entails the modal realism of quantum mechanics. Moreover, an entirely new region, namely the ‘absolute elsewhere’ was identified. The historical precedent suggests that modal terminology may need a similar extension. Discussing the modal realistic connection underlying both relativities, Popper’s proof of future indeterminism is turned to shatter the past already into many worlds/minds, thus Everett relativity is merely the
    [Show full text]
  • Probability 1 Simon Saunders the Everett Interpretation of Quantum
    The Everett Interpretation: Probability 1 Simon Saunders The Everett interpretation of quantum mechanics is, inter alia, an interpretation of objective probability: an account of what probability really is. In this respect, it is unlike other realist interpretations of quantum theory or indeed any proposed modification to quantum mechanics (like pilot-wave theory and dynamical collapse theories); in none of these is probability itself the locus of inquiry. As for why the Everett interpretation is so engaged with the question of probability, it is in its nature: its starting point is the unitary, deterministic equations of quantum mechanics, and it introduces no hidden variables with values unknown. Does it explain what objective probability is, or does it explain it away? If there are chances out there in the world, they are the branch weights. All who take the Everett interpretation seriously are agreed on this much: there is macroscopic branching structure to the wave- function, and there are the squared amplitudes of those branches, the branch weights. The branches are worlds – provisionally, worlds at some time. The approach offers a picture of a branching tree with us at some branch, place, and time within. But whether these weights should properly be called “chances” or “physical probabilities” is another matter. For some, even among Everett’s defenders, it is a disappearance theory of chance; there are no physical chances; probability only lives on as implicit in the preferences of rational agents, or as a “caring measure” over branches, or in degrees of confidence when it comes to the confirmation of theories or laws; probability has no place in the physics itself.2 The interpretation was published by Hugh Everett III in 1957 under the name “‘Relative state’ formulation of quantum mechanics”; he named a much longer manuscript “Wave Mechanics Without Probability.”3 Dissent on this point among Everett’s defenders is significant.
    [Show full text]
  • Religion in an Age of Science by Ian Barbour
    Religion in an Age of Science return to religion-online 47 Religion in an Age of Science by Ian Barbour Ian G. Barbour is Professor of Science, Technology, and Society at Carleton College, Northefiled, Minnesota. He is the author of Myths, Models and Paradigms (a National Book Award), Issues in Science and Religion, and Science and Secularity, all published by HarperSanFrancisco. Published by Harper San Francisco, 1990. This material was prepared for Religion Online by Ted and Winnie Brock. (ENTIRE BOOK) An excellent and readable summary of the role of religion in an age of science. Barbour's Gifford Lectures -- the expression of a lifetime of scholarship and deep personal conviction and insight -- including a clear and helpful analysis of process theology. Preface What is the place of religion in an age of science? How can one believe in God today? What view of God is consistent with the scientific understanding of the world? My goals are to explore the place of religion in an age of science and to present an interpretation of Christianity that is responsive to both the historical tradition and contemporary science. Part 1: Religion and the Methods of Science Chapter 1: Ways of Relating Science and Religion A broad description of contemporary views of the relationship between the methods of science and those of religion: Conflict, Independence, Dialogue, and Integration. Chapter 2: Models and Paradigms This chapter examines some parallels between the methods of science and those of religion: the interaction of data and theory (or experience and interpretation); the historical character of the interpretive community; the use of models; and the influence of paradigms or programs.
    [Show full text]
  • Many Worlds? an Introduction
    Many Worlds? An Introduction Simon Saunders This problem of getting the interpretationprovedtoberathermoredifficult than just working out the equation. P.A.M. Dirac Ask not if quantum mechanics is true, ask rather what the theory implies. What does realism about the quantum state imply? What follows then, when quantum theory is applied without restriction, if need be to the whole universe? This is the question that this book addresses. The answers vary widely. According to one view, ‘what follows’ is a detailed and realistic picture of reality that provides a unified description of micro- and macroworlds. But according to another, the result is nonsense—there is no physically meaningful theory at all, or not in the sense of a realist theory, a theory supposed to give an intelligible picture of a reality existing independently of our thoughts and beliefs. According to the latter view, the formalism of quantum mechanics, if applied unrestrictedly, is at best a fragment of such a theory, in need of substantive additional assumptions and equations. So sharp a division about what appears to be a reasonably well-defined question is all the more striking given how much agreement there is otherwise, for all parties to the debate in this book are agreed on realism, and on the need, or the aspiration, for a theory that unites micro- and macroworlds, at least in principle. They all see it as legitimate—obligatory even—to ask whether the fundamental equations of quantum mechanics, principally the Schrodinger¨ equation, already constitute such a system. They all agree that such equations, if they are to be truly fundamental, must ultimately apply to the entire universe.
    [Show full text]
  • How Special Is Our Universe? Fine-Tuning and Cosmological Natural Selection
    6 DECEMBER 2017 How Special is our Universe? Fine-Tuning and Cosmological Natural Selection PROFESSOR JOSEPH SILK Fine-tuning in Nature If the fundamental constants of nature differed from their measured values, life as we know it would not have emerged. Imagine a universe in which the fine structure constant was slightly larger or smaller than the actual value that we measure. Stars like the sun are witness to a titanic battle between the forces of electromagnetism and gravity. The solar system formed from the ashes of burnt-out stars. Displace this equilibrium slightly and the very existence of nuclear-burning stars is at risk. In such a universe, stars would never have formed, or might have collapsed to black holes. Perhaps there are many other universes, most of which are uncongenial to life. Theories of the multiverse are designed to accommodate the possibility that there are only incredibly rare examples of life-containing universes. We live in one of these, whether by cosmological natural selection or by the consequences of an ultimate theory that has yet to be formulated. Simple physical arguments can account for the fundamental scaling relations of stars and galaxies. To be fair to simulators, the dispersion in these relations contains most of the relevant physics, and can only be adequately explored via state-of-the-art numerical simulations over a vast and currently inadequate dynamical range. Here however I focus here not on the scaling laws but on the actual scales: characteristic, minimum and maximum, from protostars to stars, galaxies and supermassive black holes. Unlike the scientists of antiquity, astronomers today have two significant advantages.
    [Show full text]
  • 1 Introduction Progressive Steps Toward a Unified Conception of Individuality Across the Sciences Alexandre Guay and Thomas
    Introduction Progressive Steps toward a Unified Conception of Individuality across the Sciences Alexandre Guay and Thomas Pradeu In Guay, A. & Pradeu, T. (eds.) Individuals Across the Sciences. New York : Oxford University Press, 2015, ISBN 978-0-19-938251-4, p. 1-21. 1.1 Connecting Metaphysics and the Sciences How to define and identify individuals has been a recurring issue throughout the history of philosophy. It was, for example, pointedly studied by Aristotle in his Metaphysics and Categories, by Locke in his Essay, and by Leibniz in his New Essays. Most contemporary philosophers consider the problem of individuality from a general, metaphysical, point of view, as is the case, in particular, of Peter Strawson in his landmark book Individuals: An Essay in Descriptive Metaphysics (Strawson 1959) and David Wiggins in Sameness and Substance (1980) and subsequently in Sameness and Substance Renewed (2001). In sharp contrast, the preferred approach in philosophy of science has been to define, in a very focused and circumscribed way, the ontological status of certain individuals, most often within a specific scientific domain, typically physics (e.g., Saunders 2006, French and Krause 2006, Ladyman and Ross 2007, Muller and Seevinck 2009, Caulton and Butterfield 2012, Dorato and Morganti 2013, Morganti 2013, French 2014), or biology (e.g., Hull 1978, 1980, 1992, Buss 1987, Maynard-Smith and Szathmáry 1995, Michod 1999, Wilson 1999, Gould 2002, Wilson 2005, Dupré and O’Malley 2007, Godfrey- Smith 2009, Clarke 2010, Pradeu 2012, Bouchard and Huneman 2013, Wilson and Barker 2013). Today, many consider that the approach used in philosophy of science has been much more precise and globally much more fruitful than the purely metaphysical approach, often criticized for being excessively general and at odds with “real” science (this view is defended, in particular, in Redhead 1995, Maudlin 2007, Ladyman and Ross 2007, Ross, Ladyman, and Kincaid 2013; see also French 2014).
    [Show full text]
  • Chance in the Everett Interpretation
    6 Chance in the Everett Interpretation Simon Saunders It is unanimously agreed that statistics depends somehow on probability. But, as to what probability is and how it is connected with statistics, there has seldom been such complete disagreement and breakdown of communication since the Tower of Babel. (Savage [1954 p.2]) For the purposes of this chapter I take Everettian quantum mechanics (EQM) to be the unitary formalism of quantum mechanics divested of any probability interpretation, but including decoherence theory and the analysis of the universal state in terms of emergent, quasiclassical histories, or branches, along with their branch amplitudes, all entering into a vast superposition. I shall not be concerned with arguments over whether the universal state does have this structure; those arguments are explored in the pages above. (But I shall, later on, consider the mathematical expression of this idea of branches in EQM in more detail.) My argument is that the branching structures in EQM, as quantified by branch amplitudes (and specifically as ratios of squared moduli of branch amplitudes), play the same roles that chances are supposed to play in one- world theories of physical probability. That is, in familiar theories, we know that (i) Chance is measured by statistics, and perhaps, among observable quantities, only statistics, but only with high chance. (ii) Chance is quantitatively linked to subjective degrees of belief, or credences: all else being equal, one who believes that the chance of E is p will set his credence in E equal to p (the so-called ‘principal principle’). (iii) Chance involves uncertainty; chance events, prior to their occurrence, are uncertain.
    [Show full text]
  • View Curriculum Vitae
    PETER J. LEWIS Curriculum Vitae July 19, 2019 Department of Philosophy, Dartmouth College 6035 Thornton Hall, 19 College St Hanover, NH 03755 Tel: 603-646-2308 Email: [email protected] Web page: https://sites.google.com/site/peterlewisphilosophy/ EDUCATION: Ph.D. in philosophy, University of California, Irvine, March 1996. M.A. in philosophy, University of California, Irvine, June 1992. B.A. in physics, Brasenose College, Oxford, June 1988. EMPLOYMENT: Professor, Dartmouth College, July 2017 to present. Associate Professor, University of Miami, August 2007 to July 2017 Assistant Professor, University of Miami, August 2001 to August 2007. Visiting Lecturer, University of Miami, August 2000 to August 2001. Visiting Lecturer and Honorary Visiting Assistant Professor, University of Hong Kong, December 1998 to August 2000. Assistant Professor, Texas Tech University, September 1998 to August 2000. Visiting Assistant Professor, Texas Tech University, May 1997 to May 1998. Visiting Instructor, Texas Tech University, September 1995 to May 1997. Teaching Associate/Assistant, University of California, Irvine, September 1990 to June 1995. AREAS OF SPECIALIZATION: Philosophy of Physics, Philosophy of Science. AREAS OF COMPETENCE: Epistemology, Metaphysics. BOOKS: Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics. Oxford University Press (2016). REFEREED ARTICLES: (with Don Fallis), “Accuracy, conditionalization, and probabilism”, forthcoming in Synthese, doi: 10.1007/s11229-019-02298-3. “Against ‘experience’”, forthcoming in S. Gao (ed.), Quantum Mechanics and Consciousness. Oxford University Press. “Bohmian philosophy of mind?” forthcoming in J. Acacio de Barros and C. Montemayor (eds.), Quanta and Mind: Essays on the Connection between Quantum Mechanics and Consciousness. Springer. “Quantum Mechanics and its (Dis)Contents”, forthcoming in J.
    [Show full text]
  • 1 Katherine Freese George E. Uhlenbeck Professor of Physics
    1 Katherine Freese George E. Uhlenbeck Professor of Physics Department of Physics University of Michigan Ann Arbor, MI 48109 (734) 604-1325 (cell) [email protected] Citizenship: USA Education: Sept. 1973 - June 1974: Massachusetts Institute of Technology Sept. 1974 - June 1977: Princeton University, B.A. in Physics '77 Sept. 1979 - Jan. 1982: Columbia University, M.A. in Physics '81 Feb. 1982 - Aug. 1984: University of Chicago, Ph.D. in Physics '84 Thesis Advisor: Dr. David N. Schramm Positions: 1984-85 Postdoctoral fellow at Harvard Center for Astrophysics 1985-87 Postdoctoral fellow at Institute for Theoretical Physics, Santa Barbara, California 1987-88 Presidential Fellow at UC Berkeley 1988-91 Assistant Professor of Physics, Massachusetts Institute of Technology 1991-99 Associate Professor of Physics (with tenure), University of Michigan 1999-2009 Professor of Physics, University of Michigan 2009{ George E. Uhlenbeck Professor of Physics, University of Michigan Awards, Honors and National/International Service: 2012: awarded Honorary Doctorate (Honoris Causa) at the University of Stockholm 2012: Simons Foundation Fellowship in Theoretical Physics 2011-2012: Member, Executive Board of the American Physical Society 2009{ : named George E. Uhlenbeck Professor of Physics at the Univ. of Michigan 2009{ : named Fellow, American Physical Society 2008-2113: American Physical Society General Councillor 2005-2008: Member, Astronomy and Astrophysics Advisory Committee (AAAC) mandated by Congress 2007: Visiting Professor, Perimeter Institute for Theoretical Physics 2006-2007: Visiting Miller Professor, UC Berkeley 2006: NSF Panel to evaluate Theory Proposals 2006: Reviewer, Deep Underground Science and Engineering Laboratory (DUSEL) 2006-2007: Member, Dark Matter Scientific Advisory Group (DMSAG) reporting to DOE and NSF 2005: External Review Committee, Physics Dept.
    [Show full text]