Approved Conservation Advice for Eucalyptus Raveretiana (Black Ironbox)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cape York Peninsula Regional Biosecurity Plan 2016 - 2021
Cape York Peninsula Regional Biosecurity Plan 2016 - 2021 Cape York Peninsula Regional Biosecurity Plan 2016 – 2021 Page 1 Cape York Peninsula Regional Biosecurity Plan 2016 - 2021 ACKNOWLEDGMENTS This document was developed and produced by Cape York Natural Resource Management Ltd (Cape York NRM). Cape York NRM would like to acknowledge the following organisations and their officers for their contribution and support in developing the Cape York Peninsula Regional Biosecurity Plan: Cook Shire Council Northern Peninsula Area Regional Council Aurukun, Hopevale, Kowanyama Lockhart, Mapoon, Napranum, Pormpuraaw and Wujal Wujal Aboriginal Shire Councils Weipa Town Authority Rio Tinto (Alcan) Biosecurity Queensland Department of Environment and Heritage Protection Department of Natural resources and Mines Department of Agriculture and Water Resources Far North Queensland Regional Organisation of Councils Individual Cape York Peninsula Registered Native Title Body Corporates and Land Trusts Cape York Weeds and Feral Animals Incorporated Copyright 2016 Published by Cape York Natural Resource Management (Cape York NRM) Ltd. The Copyright Act 1968 permits fair dealing for study research, news reporting, criticism or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgment of the source is included. Major extracts of the entire document may not be reproduced by any process without the written permission of the Chief Executive Officer, Cape York Natural Resource Management (Cape York NRM) Ltd. Please reference as: Cape York Natural Resource Management 2016, Cape York Peninsula Regional Biosecurity Plan 2016 -2021, Report prepared by the Cape York Natural Resource Management (Cape York NRM) Disclaimer: This Plan has been compiled in good faith as a basis for community and stakeholder consultation and is in draft form. -
Developing Additional Herbicide Control Options for Rubber Vine (Cryptostegia Grandiflora R.Br.)
Twentieth Australasian Weeds Conference Developing additional herbicide control options for rubber vine (Cryptostegia grandiflora R.Br.) Shane D. Campbell and Dannielle A. Brazier Department of Agriculture and Fisheries, Tropical Weeds Research Centre, PO Box 187, Charters Towers, Queensland 4820, Australia ([email protected]) Summary Herbicide control of rubber vine (Cryp- along with its classification as a Weed of National tostegia grandiflora R.Br.), a Weed of National Sig- Significance (Doak and Deveze 2004). A large body of nificance in Australia, can be effectively achieved in research has been undertaken into the impacts, ecology most situations using a range of chemicals and various and control of this weed over the last 30 years (Tom- techniques, including basal bark, cut stump, foliar and ley 1995, Grice 1996, Palmer and Vogler 2012). This aerial applications. Nevertheless control in areas with has resulted in the identification of effective control poor access and with native vegetation still poses dif- options for different densities and situations, includ- ficulties for some land managers, particularly doing ing the individual and integrated use of biocontrol, so in a cost effective manner. chemical, and mechanical techniques and the use of The successful incorporation of low-volume fire (Doak and Deveze 2004, Palmer and Vogler 2012). high-concentration herbicide applications into control In recent years low-volume high-concentration programs for several woody weeds in recent years herbicide applications (e.g. splatter guns) have become prompted further testing of this technique for control increasingly used in Queensland as an effective option of rubber vine. The efficacy of single rates of four for controlling some other woody weeds in difficult herbicides plus a combination of two herbicides was to access areas, such as lantana (Lantana camara L.), compared against an untreated control. -
Restricted Invasive Plants of Queensland
Restricted invasive plants Restricted invasive plants of Queensland Restricted invasive plants of Queensland Hudson pear (Cylindropuntia rosea syn. Cylindropuntia pallida) Fireweed (Senecio madagascariensis) Mother-of-millions (Kalanchoe delagoense) Bunny ears (Opuntia microdasys) The new Biosecurity Act The Biosecurity Act 2014 protects Queensland’s economy, Species not listed as restricted may be listed as prohibited biodiversity and people’s lifestyles from the threats posed under the Act or may be listed by a local government level by invasive pests and diseases under local laws. Under the Act, certain species of invasive plants are listed Australian Government legislation administered by the as ‘restricted’ biosecurity matter. Australian Department of Agriculture also applies to the import of all plants into Australia. What is restricted matter? • Mexican bean tree (Cecropia pachystachya, C. palmata and C. peltata) Restricted matter is listed in the Act and includes a range • Mexican feather grass (Nassella tenuissima) of invasive plants that are present in Queensland. These invasive plants are having significant adverse impacts • miconia (M. calvescens, M. cionotricha, M. nervosa in Queensland and it is desirable to manage them and and M. racemosa) prevent their spread, thereby protecting un-infested • mikania vine (Mikania micrantha) parts of the State. • mimosa pigra (Mimosa pigra) The Act requires everyone to take all reasonable and practical measures to minimise the biosecurity risks • bunny ears (Opuntia microdasys) associated with invasive plants and animals under • riverina prickly pear (Opunita elata) their control. This is called a general biosecurity obligation (GBO). • water mimosa (Neptunia oleracea and N. plena). The specific restriction requirements also apply to a Restricted invasive plants that are person when dealing with restricted invasive matter. -
The Pharmacological and Therapeutic Importance of Eucalyptus Species Grown in Iraq
IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 7, Issue 3 Version.1 (March 2017), PP. 72-91 The pharmacological and therapeutic importance of Eucalyptus species grown in Iraq Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Iraq Abstract:- Eucalyptus species grown in Iraq were included Eucalyptus bicolor (Syn: Eucalyptus largiflorens), Eucalyptus griffithsii, Eucalyptus camaldulensis (Syn: Eucalyptus rostrata) Eucalyptus incrassate, Eucalyptus torquata and Eucalyptus microtheca (Syn: Eucalyptus coolabahs). Eucalypts contained volatile oils which occurred in many parts of the plant, depending on the species, but in the leaves that oils were most plentiful. The main constituent of the volatile oil derived from fresh leaves of Eucalyptus species was 1,8-cineole. The reported content of 1,8-cineole varies for 54-95%. The most common constituents co-occurring with 1,8- cineole were limonene, α-terpineol, monoterpenes, sesquiterpenes, globulol and α , β and ϒ-eudesmol, and aromatic constituents. The pharmacological studies revealed that Eucalypts possessed gastrointestinal, antiinflammatory, analgesic, antidiabetic, antioxidant, anticancer, antimicrobial, antiparasitic, insecticidal, repellent, oral and dental, dermatological, nasal and many other effects. The current review highlights the chemical constituents and pharmacological and therapeutic activities of Eucalyptus species grown in Iraq. Keywords: Eucalyptus species, constituents, pharmacological, therapeutic I. INTRODUCTION: In the last few decades there has been an exponential growth in the field of herbal medicine. It is getting popularized in developing and developed countries owing to its natural origin and lesser side effects. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [1-50]. -
Cryptostegia Spp. Rubber Vine Asclepiadaceae
Cryptostegia spp. Rubber vine Asclepiadaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i January, 2003 OVERVIEW Cryptostegia species, C. grandiflora and C. madagascariensis, are widely cultivated and have become pests in places where they are introduced, including Australia, where C. grandiflora has been called one of their worst weeds, and in Florida, where C. madagascariensis is considered a category II weed by the Florida Exotic Pest Plant Council. On Maui, the distribution of Cryptostegia spp. is still small and the species are only sparingly naturalized in two locations. Cryptostegia is also sparingly naturalized in Kawaihae, Hawai'i, and likely cultivated at least on O'ahu and possibly other Hawaiian Islands. Because of its weedy history and limited distribution on Maui, Cryptostegia spp. has been targeted by the Maui Invasive Species Committee (MISC) for eradication. Hopefully, this invader will be stopped before it is rampant and widespread. Controlling this aggressive vine now could potentially save large amounts of resources, time, and money in the future. TAXONOMY Family: Asclepiadaceae (milkweed family) (Neal 1965). Latin name: Cryptostegia grandiflora R. Br. and Cryptostegia madagascariensis Bojer. (Bailey and Bailey 1976). Synonyms: Nerium grandiflorum Roxb. ex R. Br. (PLANTS 2001). Common names: Rubber vine, India rubber vine, Palay rubber vine (Neal 1965, Bailey and Bailey 1976, PLANTS 2001). Taxonomic notes: Cyrptostegia is within the milkweed family, Asclepiadaceae, which includes about 220 gernera and 2,000 species of perennial herbs, shrubs, and vines, with milky juice (Neal 1965). The genus, Cyrptostegia, is made up of probably three species of woody lianas with milky sap, native to tropical Africa and Madagascar (Bailey and Bailey 1976). -
MNES Threatened Species Dossier, Part 1
EPBC Referral – Threatened Species Dossier ABP Project ARROW BOWEN PIPELINE EPBC MNES Threatened Species Dossiers EPBC Referral – Threatened Species Dossier ABP Project Table of Contents 1 Flora ................................................................................................................................................ 1 1.1 Dichanthium queenslandicum (King Blue-grass) ................................................................................... 1 1.1.1 Conservation status ........................................................................................................................... 1 1.1.2 Description ........................................................................................................................................ 1 1.1.3 Distribution ........................................................................................................................................ 1 1.1.4 Habitat ............................................................................................................................................... 2 1.1.5 Ecology ............................................................................................................................................. 3 1.1.6 Survey effort and methods undertaken for ABP ................................................................................ 3 1.1.7 Threats .............................................................................................................................................. 3 1.1.8 -
Cryptostegia Grandiflora Global Invasive Species Database (GISD)
FULL ACCOUNT FOR: Cryptostegia grandiflora Cryptostegia grandiflora System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Gentianales Asclepiadaceae Common name India rubber vine (English), caucho de la India (Spanish, Galapagos), rubber vine (English), palay rubber vine (English), purple allamanda (English), liane de gatope (French, New Caledonia) Synonym Nerium grandiflorum , Roxb. ex R. Br. Similar species Summary Cryptostegia grandiflora is a self supporting, many-stemmed vine that is capable of growing over trees up to 15m high, smothering and pulling them down. It occurs in dry and moist forests in disturbed situations where there is temporary or permanent water, such as in rainforest openings and along roadsides. C. grandiflora is poisonous to stock when consumed and it forms impenetrable thickets that may restrict stock access to water. It decreases water catchments due to increased transpiration resulting in a loss of trees and native vines, which in turn leads to a loss of biodiversity and habitat. view this species on IUCN Red List Species Description Cryptostegia grandiflora, is a self supporting, scrambling, many-stemmed vine that grows to 2 metres tall with long trailing whips. A milky sap oozes from stems, leaves and seedpods when cut or broken. Leaves are dark green and glossy, 6-10cm long, 3-5cm wide and in opposite pairs. Roots have been found at a depth of 13 metres in mine shafts. Roots of seedlings are twice as long as shoots. The growth form of the vine differs depending on the surrounding conditions. They can form dense canopies of overpapping plants with long whips, form towers upto 30mts high the height of native trees and grow as freestanding shrubs in the absence of other vegetation. -
Regional Ecosystem Technical Descriptions for Einasleigh Uplands
Department of Science, Information Technology, Innovation and the Arts Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 9.10.3) and their component vegetation communities (e.g. 9.10.3a, 9.10.3b). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2012 section 3.3.1). The technical descriptions are subject to review and are updated as additional -
Cryptostegia Grandiflora Click on Images to Enlarge
Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Cryptostegia grandiflora Click on images to enlarge Family Apocynaceae Scientific Name Cryptostegia grandiflora R.Br. Brown, R. (1820) Edwards's Botanical Register 5 : t. 43. Type: Bot. Reg. 5: t. 435 (1820). Lecto. fide J. Marohasy & P. I. Forster, Austral. Sys. Bot. 4: 574 (1991). Leaves and flowers, habit. Copyright CSIRO Common name Rubber Vine; Palay Rubber-vine; Indian Rubber-vine; Vine, Rubber; Rubber-plant Weed * Stem Usually grows as a vine but can flower and fruit as a shrub. Vine stem diameters to 4 cm recorded. Stem vessels tend to be arranged in annular rings. Milky exudate from the pith as well as the bark. Leaves and fruit. Copyright Australian Plant Image Index Leaves (APII). Twigs and stems marked by prominent pale-coloured lenticels. Petioles and twigs produce a milky exudate. Leaf blades of moderate size, about 5-7 x 2.5-3 cm. Lateral veins curved throughout their length but not forming distinct loops. Reticulate veins quite distinct, forming a definite net. A number of peg-like glands visible in the leaf axils. Flowers Flowers about 50 mm diam. Calyx producing a milky exudate. Each calyx lobe with two or three small triangular glands on the inner (adaxial) surface. Corolla glabrous, +/- white on the inside but mainly mauve or purple outside. Pollen pale brown, granular, +/- aggregated in pollinia. Carpels +/- free at the apex but joined towards the base. -
Eton Range Realignment Project ATTACHMENT 2 to EPBC Ref: 2015/7552 Preliminary Documentation Residual Impact Assessment and Offset Proposal - 37
APPENDIX 3: KSAT RESULTS – PELLET COUNTS Table 5: KSAT results per habitat tree. Species Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Total Eucalyptus tereticornis 9 30 16 - 42 7 104 Eucalyptus crebra 91 16 29 2 0 25 163 Corymbia clarksoniana 11 0 0 1 4 5 21 Corymbia tessellaris 5 0 0 0 0 20 25 Corymbia dallachiana - 12 - - - - 12 Corymbia intermedia - 3 1 0 11 - 15 Corymbia erythrophloia - - 0 - 0 - 0 Eucalyptus platyphylla - - - 0 0 0 0 Lophostemon - - - 0 0 - 0 suaveolens Total 116 61 46 3 57 57 Ref: NCA15R30439 Page 22 27 November 2015 Copyright 2015 Kleinfelder APPENDIX 4: SITE PHOTOS The following images were taken from the centre of each BioCondition quadrat and represent a north east south west aspect, top left to bottom right. Ref: NCA15R30439 Page 23 27 November 2015 Copyright 2015 Kleinfelder Plate 3: BioCondition quadrat 1 (RE11.3.4/11.12.3) Ref: NCA15R30439 Page 24 27 November 2015 Copyright 2015 Kleinfelder Plate 4: BioCondition quadrat 2 (RE11.3.4/11.12.3) Ref: NCA15R30439 Page 25 27 November 2015 Copyright 2015 Kleinfelder Plate 5: BioCondition quadrat 3 (RE11.12.3) Ref: NCA15R30439 Page 26 27 November 2015 Copyright 2015 Kleinfelder Plate 6: BioCondition quadrat 4 (RE11.3.9) Ref: NCA15R30439 Page 27 27 November 2015 Copyright 2015 Kleinfelder Plate 7: BioCondition quadrat 5 (RE11.3.25) Ref: NCA15R30439 Page 28 27 November 2015 Copyright 2015 Kleinfelder Plate 8: BioCondition quadrat 6 (RE11.12.3/11.3.4/11.3.9) Ref: NCA15R30439 Page 29 27 November 2015 Copyright 2015 Kleinfelder Appendix E: Desktop Assessment for Potential -
Introduction to the Census of the Queensland Flora 2015
Introduction to the Census of the Queensland flora 2015 Queensland Herbarium 2015 Version 1.1 Department of Science, Information Technology and Innovation Prepared by Peter D Bostock and Ailsa E Holland Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The State of Queensland (Department of Science, Information Technology and Innovation) 2015 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek permission from DSITI, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland, Department of Science, Information Technology and Innovation as the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation for introduction (this document) Bostock, P.D. -
Thèse 11.11.19
THESE PRESENTEE ET PUBLIQUEMENT SOUTENUE DEVANT LA FACULTE DE PHARMACIE DE MARSEILLE LE LUNDI 25 NOVEMBRE 2019 PAR MME ERAU Pauline Né(e) le 6 octobre 1989 à Avignon EN VUE D’OBTENIR LE DIPLOME D’ETAT DE DOCTEUR EN PHARMACIE L’EUCALYPTUS : BOTANIQUE, COMPOSITION CHIMIQUE, UTILISATION THÉRAPEUTIQUE ET CONSEIL À L’OFFICINE JURY : Président : Pr OLLIVIER Evelyne, Professeur en Pharmacognosie, Ethnopharmacologie et Homéopathie Membres : Dr BAGHDIKIAN Béatrice, Maitre de conférences en Pharmacognosie, Ethnopharmacologie et Homéopathie M VENTRE Mathieu , Pharmacien d’officine 2 3 4 5 6 7 8 Remerciements Je remercie toutes les personnes qui m’ont aidé pendant l’élabo ration de ma thèse et plus particulièrement les personnes qui font partie du jury de soutenance : - Ma directrice de thèse Madame Badghdikian Béatrice pour son intérêt ses conseils durant la rédaction et la correction de ma thèse, - Madame Ollivier Evelyne, Professeur en Pharmacognosie, Ethnopharmacologie et Homéopathie d’av oir accepté de présider ce jury, - Monsieur Ventre Mathieu pour sa patience après toutes ces années et la confiance que vous m’accordez. 9 Je remercie également de manière plus personnelle toutes les personnes qui m’ont entourée ces dernières années : - Sylvain, qui a tout fait pour m’aider, qui m’a soutenu et surtout supporté dans tout ce que j’ai entrepris, - Alexandre, qui a su, à sa manière, patienter pendant les longues heures de relecture de ce document, - Mes p arents et mes sœurs pour leur soutien depuis toujours , - Un grand merci aussi à toute l’équipe de la pharmacie Ventre : Mme Ventre, Virginie et (par ordre alphabétique) Céline, Jennifer, Marie, Marion, Maryline, Perrine et Virginie qui me supportent au quotidien, - Je remercie toutes les personnes avec qui j’ai partagé mes études et que je suis ravie de revoir après toutes ces années : Jean-Luc, Paul, Elsa, Loïc, Michael, Marion… 10 « L’Université n’entend donner aucune approbat ion, ni improbation aux opinions émises dans les thèses.