The War of the Soups and the Sparks

Total Page:16

File Type:pdf, Size:1020Kb

The War of the Soups and the Sparks THE WAR OF THE SOUPS AND THE SPARKS THE STORY OF NEURONAL COMMUNICATION THE DISCOVERY OF NEUROTRANSMITTERS John Newport Langley (1852-1925) • Established the foundation of what is known about the autonomic nervous system THE DISCOVERY OF NEUROTRANSMITTERS The discovery of neurotransmitters in the PNS arose out of studies of the effects of drugs on visceral organs and skeletal muscles. John Newport Langley (1852-1925) • Adrenaline had the same effect on organs even after their nerves had been cut and had degenerated JOHN NEWPORT LANGLEY (A SPARK) “The known physical character of drugs are insufficient to account for the effects they produce; in consequence I consider that there is a chemical combination between the drug and a constituent of the cell – the receptive substance . There are two broad classes of receptive substances: those which give rise to contraction and those which give rise to inhibition.” THOMAS RENTON ELLIOTT (A SOUP) Thomas Renton Elliott (1877-1961) • Student of Langley • First to suggest that sympathetic nerves secrete adrenaline • Largely ignored HENRY HALLETT DALE (A SOUP WANNABE) Henry Hallett Dale (1875-1968) • Student of Langley • Observed that acetylcholine, more than any other drug, duplicated the effects of parasympathetic nerve stimulation • Did not speculate that parasympathetic nerves might secrete acetylcholine • Anticipated the discovery of cholinesterase due to the short duration of acetylcholine’s action OTTO LOEWI (A SOUP) Otto Loewi (1873-1961) “The night before Easter Sunday of that year I awoke, turned on the light, and jotted down a few notes on a tiny slip of thin paper. The I fell asleep again. It occurred to me at six o’clock in the morning that during the night I had written down something most important, but I was unable to decipher the scrawl. The next night, at three o’clock, the idea returned, It was the design of an experiment to determine whether or not the hypothesis of chemical transmission that I had uttered seventeen years ago was correct. I go up immediately, went to the laboratory, and performed a simple experiment on a frog heart according to the nocturnal design.” OTTO LOEWI (A SOUP) The Experiment – “Vagusstoff” and “Acceleransstoff” THE 1936 NOBEL PRIZE Physiology or Medicine Henry Dale & Otto Loewi JOHN ECCLES (A SPARK) John Eccles (1903-1997) • Friendly disagreements with Dale • Suggested to bioassay their tennis socks after Dale remarked that their sweat was undoubtedly the result of acetylcholine secretion • Problem with chemical transmission – difficulty in repeating the results of the experiment • Problem with electrical transmission – explaining inhibition • “Acetylcholine is all wet.” Response - “Prefer wet acetylcholine to dry eddy currents.” .
Recommended publications
  • Williams Dissertation 4.17.12
    ACTIVATION, DESENSITIZATION AND POTENTIATION OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTORS: RELEVANCE TO ALPHA7-TARGETED THERAPEUTICS By DUSTIN KYLE WILLIAMS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 CHAPTER 1 ANIMAL ELECTRICITY: HISTORICAL INTRODUCTION For many centuries the prevailing theories of neurotransmission had no concept of electricity. “Animal spirits”, an immeasurable force thought to be the source of animation, imagination, reason, and memory, was believed to be contained within the fluid stored in the ventricles and distributed throughout the body via the nerves which acted as conduits of this vital fluid [1, 2]. This fundamental hypothesis was upheld and propagated for more than 1,500 years by many well-known and influential philosophers, physicians, and scientists including Aristotle, Galen, Descartes, Borelli, and Fontanta, each contributing unique variations to the basic idea [2-4]. It was not until the late 18th century that Luigi Galvani discovered electricity as the currency of the nervous system, and even then this important discovery was not readily accepted. Understanding bioelectricity as we do today was truly a multi-national effort that took place over hundreds of years. Pre-Galvani to Hodgkin & Huxley By the 1660s, Jan Swammerdam (The Netherlands; 1637-1680) had shown that muscles could contract without any physical connection to the brain, providing perhaps the first evidence against the fallacious animal spirits hypothesis [4]. He devised an isolated nerve-muscle preparation from the frog and showed that mechanical stimulation of the nerve resulted in muscle contraction.
    [Show full text]
  • Otto Loewi (1873–1961): Dreamer and Nobel Laureate
    Singapore Med J 2014; 55(1): 3-4 M edicine in S tamps doi:10.11622/smedj.2014002 Otto Loewi (1873–1961): Dreamer and Nobel laureate Alli N McCoy1, MD, PhD, Siang Yong Tan2, MD, JD ronically, Otto Loewi is better known for the way in barely passed the end-of-year examination, requiring a year which he came upon the idea that won him the Nobel of remediation before he was able to complete his medical Prize than for the discovery itself. Loewi’s prize-winning degree in 1896. experiment came to him in a dream. According to Loewi, Loewi’s first job as an assistant in the city hospital at I“The night before Easter Sunday of [1920] I awoke, turned on the Frankfurt proved frustrating, as he could not provide effective light and jotted down a few notes on a tiny slip of thin paper. treatment for patients with tuberculosis and pneumonia. Then I fell asleep again. It occurred to me at 6.00 o’clock in Disheartened, he decided to leave clinical medicine for a the morning that during the night I had written down something basic science research position in the laboratory of prominent important, but I was unable to decipher the scrawl. The next German pharmacologist, Hans Meyer, at the University of night, at 3.00 o’clock, the idea returned. It was the design of Marburg an der Lahn. While Loewi would eventually win an experiment to determine whether or not the hypothesis of international acclaim for his contribution to neuroscience, his chemical transmission that I had uttered 17 years ago was correct.
    [Show full text]
  • E Neurobiology of Learning and Memory – As Related in the Memoirs of Eric R
    www.surgicalneurologyint.com Surgical Neurology International Editor-in-Chief: Nancy E. Epstein, MD, Clinical Professor of Neurological Surgery, School of Medicine, State U. of NY at Stony Brook. SNI: Socioeconomics, Politics, and Medicine Editor James A Ausman, MD, PhD University of California at Los Angeles, Los Angeles, CA, USA Open Access Book Review e neurobiology of learning and memory – as related in the memoirs of Eric R. Kandel Miguel A. Faria Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. E-mail: *Miguel A. Faria - [email protected] Author : Eric R. Kandel Published by : W.W. Norton & Co., New York, NY, USA Price : $19.95 ISBN-13 : 978-0393329377 ISBN-10 : 9780393329377 Year : 2006 *Corresponding author: Miguel A. Faria, MD Clinical Professor of Surgery (Neurosurgery, ret.) and Adjunct Professor of Medical History (ret.), Mercer University School of Medicine, United States. [email protected] is magnificent tome by Eric R. Kandel, M.D., a psychoanalyst and neuroscience researcher, Received : 22 July 2020 is both a delightful autobiography and a scrupulously detailed history of the neurobiology of Accepted : 22 July 2020 learning and memory, a relatively new area of neuroscience that Kandel refers to as a “new [7] Published : 15 August 2020 science of mind.” His own fundamental work in this area made him a recipient of a Nobel Prize in Physiology or Medicine in 2000, which he shared with two other distinguished investigators, DOI Drs. Arvid Carlsson (for elucidating the effects of dopamine in Parkinson’s disease) and Paul 10.25259/SNI_458_2020 Greengard (for the discovery of signal transduction in neurons).
    [Show full text]
  • In Search of Memory
    In Search of Memory (The emergence of a new science of mind) Eric R. Kandel (Book review by Carles Sierra. Published in AI Journal 2010, vol 174) This book is a passionate praise of scientific inquiry. The initial biography of the author, from a childhood in nazi-occupied Vienna to a youth of liberal education in the USA, set the character of Eric Kandel as a determined person. His family escaped, when he was 9 years old, the nazi prosecution of Jews in 1939. The book accounts for his personal biography at large put in the context of the research of his time and his contribution to neurosciences. He accounts also for the results of many other European researchers that unfortunately had to leave their countries during WWII. The book is hard to put down, Kandel masters scientific writing and gives a clear and chronological history of the fascinating discoveries of the neurosciences in the twentieth century, The book also accounts for the personal quest of the author to find the ultimate biological explanation of human behaviour, that is, how learning processes and memory are sustained by neurological mechanisms, electrical, chemical and genetic. Memory is the essence of all of us. When we lose our memory we fade away. As Kandel puts it: ‘we are who we are because of what we learn and what we remember.’ The book is organised along three different types of content. On the one hand the personal biography of the author that allows the reader to enjoy the motives, illusions and emotions of a researcher, a detailed explanation of research findings that introduce the reader to the big names in neuroscience during the nineteenth and twentieth centuries, and a chronological description of the research focus of Eric Kandel.
    [Show full text]
  • Synaptic Transmission Makes History
    BOOK REVIEW Synaptic transmission “its “extraordinarily evanescent” action” could be due to rapid hydrolysis, but refrained from speculating that parasympathetic nerves release acetyl- makes history choline. This work set the stage for Loewi, whose idea for the experiment demonstrating neurohumoral transmission appeared in a dream. In 1921, The War of the Soups Loewi collected the effluent saline from a frog heart after vagus nerve and the Sparks stimulation and showed that it caused slowing of the heartbeat of a second, uninnervated heart. Loewi (in 1926) and Dale (in 1929) subsequently By Elliot S Valenstein provided evidence that ‘Vagusstoff’, or ‘vagus material’, was acetylcholine. Columbia University Press, 2005 Fortune smiled on Loewi because subsequent work identified numerous 256 pp, hardcover, $29.50 ways in which the experiment could have failed, but the responses of his ISBN 0231135882 critics spurred him on to carry out controls and further key experiments to firmly establish neurohumoral transmission in the heart. Reviewed by Nicholas C Spitzer Did chemical transmission act only to regulate the pacing of the heart? Dale’s interest in acetylcholine was reawakened by Loewi’s discoveries. This tidy volume recounts an exciting and important piece of Skeletal muscle contracted after local application of acetylcholine, but http://www.nature.com/natureneuroscience neuroscience history, when investigators strove to understand the basis whether or not motor nerves secrete it remained unknown. Dale needed of synaptic transmission. The recognition of Cajal’s ‘neuron doctrine’ a sensitive method for detection of the small amounts of acetylcholine (rewarded with the Nobel Prize in 1906) created a vexing problem: given released from nerve terminals and became aware of Wilhelm that each neuron is a separate entity, how do they communicate? Was it Feldberg’s sensitive leech muscle preparation.
    [Show full text]
  • Federation Member Society Nobel Laureates
    FEDERATION MEMBER SOCIETY NOBEL LAUREATES For achievements in Chemistry, Physiology/Medicine, and PHysics. Award Winners announced annually in October. Awards presented on December 10th, the anniversary of Nobel’s death. (-H represents Honorary member, -R represents Retired member) # YEAR AWARD NAME AND SOCIETY DOB DECEASED 1 1904 PM Ivan Petrovich Pavlov (APS-H) 09/14/1849 02/27/1936 for work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged. 2 1912 PM Alexis Carrel (APS/ASIP) 06/28/1873 01/05/1944 for work on vascular suture and the transplantation of blood vessels and organs 3 1919 PM Jules Bordet (AAI-H) 06/13/1870 04/06/1961 for discoveries relating to immunity 4 1920 PM August Krogh (APS-H) 11/15/1874 09/13/1949 (Schack August Steenberger Krogh) for discovery of the capillary motor regulating mechanism 5 1922 PM A. V. Hill (APS-H) 09/26/1886 06/03/1977 Sir Archibald Vivial Hill for discovery relating to the production of heat in the muscle 6 1922 PM Otto Meyerhof (ASBMB) 04/12/1884 10/07/1951 (Otto Fritz Meyerhof) for discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle 7 1923 PM Frederick Grant Banting (ASPET) 11/14/1891 02/21/1941 for the discovery of insulin 8 1923 PM John J.R. Macleod (APS) 09/08/1876 03/16/1935 (John James Richard Macleod) for the discovery of insulin 9 1926 C Theodor Svedberg (ASBMB-H) 08/30/1884 02/26/1971 for work on disperse systems 10 1930 PM Karl Landsteiner (ASIP/AAI) 06/14/1868 06/26/1943 for discovery of human blood groups 11 1931 PM Otto Heinrich Warburg (ASBMB-H) 10/08/1883 08/03/1970 for discovery of the nature and mode of action of the respiratory enzyme 12 1932 PM Lord Edgar D.
    [Show full text]
  • Molecular Genetic Stijdies on Voltage-Gated Ion Channels
    MOLECULAR GENETIC STIJDIES ON VOLTAGE-GATED ION CHANNELS Thesis by Mani Ramaswarni In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1990 (Submitted April 19th, 1990) u ACKNOWLEDGEMENTS This thesis owes a lot to other members of the Tanouye lab - good friends and colleagues who have directly contributed to my graduate research work. They are Mathew Mathew, Mark Tanouye, Ken McCormack, Bernardo Rudy, Alexander Kamb, Medha Gautam, Linda Iverson, Ali Lashgari and Ross MacMahon. In addition, I must thank Mathew Mathew, Chi-Bin Chien and Bill Trevarrow for their expert help with the more esoteric uses of a Macintosh computer; it has been invaluable in the writing of this thesis. I find any comprehensive acknowledgement of my other debts to be totally inadequate. My personal friends and other members of the Caltech community who have provided assistance and warmth to "an alien in an alien land," must believe that I remember their kindnesses. ill ABSTRACT Several different methods have been employed in the study of voltage-gated ion channels. Electrophysiological studies on excitable cells in vertebrates and molluscs have shown that many different voltage-gated potassium (K+) channels and sodium channels may coexist in the same organism. Parallel genetic studies in Drosophila have identified mutations in several genes that alter the properties of specific subsets of physiologically identified ion channels. Chapter 2 describes molecular studies that identify two Drosophila homologs of vertebrate sodium-channel genes. Mutations in one of these Drosophila sodium-channel genes are shown to be responsible for the temperature-dependent paralysis of a behavioural mutant para ts.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Revista de la Facultad de Medicina ISSN: 2357-3848 ISSN: 0120-0011 Universidad Nacional de Colombia Barco-Ríos, John; Duque-Parra, Jorge Eduardo; Barco-Cano, Johanna Alexandra From substance fermentation to action potential in modern science (part two) Revista de la Facultad de Medicina, vol. 66, no. 4, 2018, October-December, pp. 623-627 Universidad Nacional de Colombia DOI: 10.15446/revfacmed.v66n4.65552 Available in: http://www.redalyc.org/articulo.oa?id=576364271017 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Rev. Fac. Med. 2018 Vol. 66 No. 4: 623-7 623 REFLECTION PAPER DOI: http://dx.doi.org/10.15446/revfacmed.v66n4.65552 From substance fermentation to action potential in modern science (part two) De la fermentación de sustancias al potencial de acción en la ciencia moderna (segunda parte) Received: 08/06/2017. Accepted: 12/12/2017. John Barco-Ríos1,2 • Jorge Eduardo Duque-Parra1,2 • Johanna Alexandra Barco-Cano2,3 1 Universidad de Caldas - Faculty of Health Sciences - Department of Basic Sciences - Manizales - Colombia. 2 Universidad de Caldas - Department of Basic Sciences - Caldas Neuroscience Group - Manizales - Colombia. 3 Universidad de Caldas - Faculty of Health Sciences - Clinical Department - Manizales - Colombia. Corresponding author: John Barco-Ríos. Department of Basic Sciences, Faculty of Health Sciences, Universidad de Caldas. Calle 65 No. 26-10, office: M203. Telephone number: +57 6 8781500. Manizales. Colombia. Email: [email protected].
    [Show full text]
  • The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013
    The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013 by Thomas C. Südhof Dept. of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, USA. 1. THE NEUROTRANSMITTER RELEASE ENIGMA Synapses have a long history in science. Synapses were frst functionally demon- strated by Emil duBois-Reymond (1818–1896), were morphologically identifed by classical neuroanatomists such as Rudolf von Kölliker (1817–1905) and San- tiago Ramon y Cajal (1852–1934), and named in 1897 by Michael Foster (1836– 1907). Although the chemical nature of synaptic transmission was already sug- gested by duBois-Reymond, it was long disputed because of its incredible speed. Over time, however, overwhelming evidence established that most synapses use chemical messengers called neurotransmitters, most notably with the pioneer- ing contributions by Otto Loewi (1873–1961), Henry Dale (1875–1968), Ulf von Euler (1905–1983), and Julius Axelrod (1912–2004). In parallel, arguably the most important advance to understanding how synapses work was provided by Bernard Katz (1911–2003), who elucidated the principal mechanism of syn- aptic transmission (Katz, 1969). Most initial studies on synapses were carried out on the neuromuscular junction, and central synapses have only come to the fore in recent decades. Here, major contributions by many scientists, including George Palade, Rodolfo Llinas, Chuck Stevens, Bert Sakmann, Eric Kandel, and Victor Whittaker, to name just a few, not only confrmed the principal results obtained in the neuromuscular junction by Katz, but also revealed that synapses 259 6490_Book.indb 259 11/4/14 2:29 PM 260 The Nobel Prizes exhibit an enormous diversity of properties as well as an unexpected capacity for plasticity.
    [Show full text]
  • Williams Dissertation 4.17.12
    ACTIVATION, DESENSITIZATION AND POTENTIATION OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTORS: RELEVANCE TO ALPHA7-TARGETED THERAPEUTICS By DUSTIN KYLE WILLIAMS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Dustin Kyle Williams 2 To the most important people in my life: my family 3 ACKNOWLEDGMENTS I would like to thank my wife, Julie Williams, and my parents, Kevin and Kathy Williams for their unconditional love and flawless support through the graduate school experience, even when I have had to place work before them. I would like to thank Dr. Roger Papke for his mentorship over the last five years. I have had more success under his arm than I ever could have expected when I started graduate school. In addition, I am thankful for the many collaborative meetings I participated in with Dr. Nicole Horenstein and Dr. Jingyi Wang. I would like to thank Mathew Kimbrell for his fine work in helping to create the stably transfected cell lines, and for the interactions I have had with all members of the Papke laboratory. I wish to express gratitude to the members of my advisory committee, Dr. Nicole Horenstein, Dr. Brian Cooper, Dr. Michael King, and Dr. Brian Law, for their counsel and guidance. I am thankful for the financial support I have received from the National Institute on Aging Training Grant T32-AG000196. 4 TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................................................................................... 4 LIST OF TABLES ............................................................................................................. 8 LIST OF FIGURES ........................................................................................................... 9 LIST OF ABBREVIATIONS ...........................................................................................
    [Show full text]
  • Nobel Laureates in Physiology Or Medicine
    All Nobel Laureates in Physiology or Medicine 1901 Emil A. von Behring Germany ”for his work on serum therapy, especially its application against diphtheria, by which he has opened a new road in the domain of medical science and thereby placed in the hands of the physician a victorious weapon against illness and deaths” 1902 Sir Ronald Ross Great Britain ”for his work on malaria, by which he has shown how it enters the organism and thereby has laid the foundation for successful research on this disease and methods of combating it” 1903 Niels R. Finsen Denmark ”in recognition of his contribution to the treatment of diseases, especially lupus vulgaris, with concentrated light radiation, whereby he has opened a new avenue for medical science” 1904 Ivan P. Pavlov Russia ”in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged” 1905 Robert Koch Germany ”for his investigations and discoveries in relation to tuberculosis” 1906 Camillo Golgi Italy "in recognition of their work on the structure of the nervous system" Santiago Ramon y Cajal Spain 1907 Charles L. A. Laveran France "in recognition of his work on the role played by protozoa in causing diseases" 1908 Paul Ehrlich Germany "in recognition of their work on immunity" Elie Metchniko France 1909 Emil Theodor Kocher Switzerland "for his work on the physiology, pathology and surgery of the thyroid gland" 1910 Albrecht Kossel Germany "in recognition of the contributions to our knowledge of cell chemistry made through his work on proteins, including the nucleic substances" 1911 Allvar Gullstrand Sweden "for his work on the dioptrics of the eye" 1912 Alexis Carrel France "in recognition of his work on vascular suture and the transplantation of blood vessels and organs" 1913 Charles R.
    [Show full text]
  • Principles-Of-Autonomic-Medicine-V
    Principles of Autonomic Medicine v. 2.1 DISCLAIMERS This work was produced as an Official Duty Activity while the author was an employee of the United States Government. The text and original figures in this book are in the public domain and may be distributed or copied freely. Use of appropriate byline or credit is requested. For reproduction of copyrighted material, permission by the copyright holder is required. The views and opinions expressed here are those of the author and do not necessarily state or reflect those of the United States Government or any of its components. References in this book to specific commercial products, processes, services by trade name, trademark, manufacturer, or otherwise do not necessarily constitute or imply their endorsement, recommendation, or favoring by the United States Government or its employees. The appearance of external hyperlinks is provided with the intent of meeting the mission of the National Institute of Neurological Disorders and Stroke. Such appearance does not constitute an endorsement by the United States Government or any of its employees of the linked web sites or of the information, products or services contained at those sites. Neither the United States Government nor any of its employees, including the author, exercise any editorial control over the information that may be found on these external sites. Permission was obtained from the following for reproduction of pictures in this book. Other reproduced pictures were from -- 1 -- Principles of Autonomic Medicine v. 2.1 Wikipedia Commons or had no copyright. Tootsie Roll Industries, LLC (Tootsie Roll Pop, p. 26) Dr. Paul Greengard (portrait photo, p.
    [Show full text]