A Game-Theoretic Approach Towards Collaborative Coded Computation Offloading

Total Page:16

File Type:pdf, Size:1020Kb

A Game-Theoretic Approach Towards Collaborative Coded Computation Offloading 1 A Game-theoretic Approach Towards Collaborative Coded Computation Offloading Jer Shyuan Ng, Wei Yang Bryan Lim, Zehui Xiong, Dusit Niyato, Fellow, IEEE, Cyril Leung, Dong In Kim, Fellow, IEEE, Junshan Zhang, Fellow, IEEE, Qiang Yang, Fellow, IEEE Abstract—Coded distributed computing (CDC) has emerged as a promising approach because it enables computation tasks to be carried out in a distributed manner while mitigating straggler effects, which often account for the long overall completion times. Specifically, by using polynomial codes, computed results from only a subset of edge servers can be used to reconstruct the final result. However, incentive issues have not been studied systematically for the edge servers to complete the CDC tasks. In this paper, we propose a tractable two-level game-theoretic approach to incentivize the edge servers to complete the CDC tasks. Specifically, in the lower level, a hedonic coalition formation game is formulated where the edge servers share their resources within their coalitions. By forming coalitions, the edge servers have more Central Processing Unit (CPU) power to complete the computation tasks. In the upper level, given the CPU power of the coalitions of edge servers, an all-pay auction is designed to incentivize the edge servers to participate in the CDC tasks. In the all-pay auction, the bids of the edge servers are represented by the allocation of their CPU power to the CDC tasks. The all-pay auction is designed to maximize the utility of the cloud server by determining the allocation of rewards to the winners. Simulation results show that the edge servers are incentivized to allocate more CPU power when multiple rewards are offered, i.e., there are multiple winners, instead of rewarding only the edge server with the largest CPU power allocation. Besides, the utility of the cloud server is maximized when it offers multiple homogeneous rewards, instead of heterogeneous rewards. Index Terms—Coded distributed computing, straggler effects mitigation, hedonic game, all-pay auction, Bayesian Nash equilibrium F 1 INTRODUCTION OUPLED with reliable wireless communication tech- tation tasks collaboratively, the communication costs can be C nologies, IoT devices can serve as important sources of high due to the frequent exchange of intermediate results. sensor data for Artificial Intelligence (AI) technologies to be Secondly, the response times vary across the edge servers leveraged, towards the development of data-driven applica- due to several factors such as imbalanced work allocation, tions [1]. In particular, many machine learning models are contention of shared resources and network congestion [6], developed to monitor various large-scale physical phenom- [7]. Thirdly, the confidentiality of the data may be com- ena for smart city applications, such as prediction of road promised as eavesdroppers may monitor data transmission conditions [2], air quality monitoring [3] and tracking of over wireless channels. medical conditions [4]. Edge computing [5] has emerged as a Coded distributed computing (CDC) [8] has been pro- promising approach that extends cloud computing services posed as an efficient method for distributed computation to the edge of the networks. In particular, by leveraging tasks at the edge of the network. In particular, coding tech- on the computational capabilities, e.g., Central Processing niques are used to design computation strategies that divide Unit (CPU) power, of the edge servers, e.g., base stations the entire dataset and allocate subsets of data to the edge and edge devices, e.g., laptops and tablets, the cloud server servers for computations. In the distributed edge computing can offload its computation tasks to the edge servers and network, one of the main challenges is the straggler effects arXiv:2102.08667v1 [cs.GT] 17 Feb 2021 devices. where the task completion time is determined by the slowest However, there are several challenges pertaining to the edge server as the cloud server needs to wait for all edge distributed edge computing network that need to be ad- servers to return their results before it can reconstruct the dressed for efficient and scalable implementation. Firstly, final result. As a result, the latency of the distributed com- since several edge servers perform the distributed compu- putation tasks can be high [9], [10]. By using CDC schemes1, instead of having to wait for all edge servers to complete • JS. Ng and WYB. Lim are with Alibaba Group and Alibaba-NTU Joint their computation tasks, the cloud server only needs to wait Research Institute, Nanyang Technological University, Singapore. for a subset of edge servers to return their results. Hence, • Z. Xiong is with Pillar of Information Systems Technology and Design, CDC schemes can reduce computation latency by obviating Singapore University of Technology Design. • D. Niyato is with School of Computer Science and Engineering, Nanyang the need to wait for the slower edge servers. Technological University, Singapore. However, incentives are essential for the edge servers • C. Leung is with The University of British Columbia and Joint NTU-UBC to participate in or to complete their allocated CDC sub- Research Centre of Excellence in Active Living for the Elderly (LILY). tasks. To design an appropriate incentive mechanism, it is • DI. Kim is with Sungkyunkwan University, South Korea. • J. Zhang is with School of Electrical, Computer and Energy Engineering, 1. CDC schemes do not only mitigate straggler effects, but can also Arizona State University, USA. reduce communication costs and ensure security in the distributed edge • Q. Yang is with Hong Kong University of Science and Technology, Hong computing network. This paper focuses on CDC schemes that aim to Kong, China. mitigate straggler effects. 2 important to consider the unique characteristics of the CDC formation game, and (iii) auction design. framework. Specifically, even though the edge servers are each allocated a subset of the entire dataset for computa- 2.1 Coded Distributed Computing (CDC) tions, some of the edge servers’ computed results may not Given the emergence of big data which necessitates be used to reconstruct the final result, e.g., due to straggling. computation- and storage-intensive processing, large-scale These edge servers in turn do not receive any compensation. distributed systems have received significant attention from As a result, this may discourage the participation of certain both the research and industrial communities. A number edge servers. To address this challenge, we propose an all- of studies in the literature have focused on the minimiza- pay auction to model the competition between the different tion of communication load of the distributed computation edge servers and at the same time, improve the participation tasks. Network coding in the context of distributed cache of edge servers so as to elicit more CPU power for the CDC systems has been a promising approach to increase network tasks. throughput and improve performance by jointly optimizing In distributed edge computing networks, the edge data placement and delivery phases [11], [12]. servers may work together with various edge devices, by Recently, coding techniques have increasingly been used forming coalitions in order to complete their computation in distributed computing networks. One of the active re- tasks. To model the cooperation between the edge servers search areas is the minimization of the communication and devices, we propose a hedonic coalition formation game load in the data shuffling phase through coded multicast in which the edge devices decide which edge server to join transmission as this phase accounts for a large proportion of based on their utility-maximizing objectives. In analogy to the overall execution time [13]. There is a tradeoff between practical scenarios, the edge devices make decisions that computation load and communication load [14]. In order maximize their utilities without taking into consideration to reduce the number of communication rounds, which is the effect of their decisions on other edge servers or devices. significant for distributed iterative algorithms, [15] proposes The main aim of this work is to develop an incentive a computing technique that jointly codes the computation mechanism for enabling efficient completion of CDC tasks at multiple iterations by leveraging on the storage and for IoT applications. Our key contributions are summarized computation redundancy of the workers. The work in [16] as follows: considers the network topology of the distributed systems 1) We highlight the importance of incentives in CDC, in designing an efficient CDC scheme for practical imple- which is an issue ignored, but crucial toward eco- mentation. It relaxes the assumption that the physically- nomically sustainable distributed systems, by exist- separated servers are connected to a single error-free com- ing works. mon communication bus. 2) We propose a two-level game theoretic approach to Apart from the studies that focus on the minimization of incentivize the edge servers to contribute their CPU communication load in the distributed computing networks, power for the CDC tasks. coding techniques are also used to alleviate the stragglers’ 3) We formally show that the edge servers may im- delays that limit the performance as distributed computing prove their utilities by forming coalitions. We, there- systems are scaled up. This is achieved by reducing the fore, introduce a hedonic coalition formation game recovery
Recommended publications
  • Pareto Optimality in Coalition Formation
    Pareto Optimality in Coalition Formation Haris Aziz NICTA and University of New South Wales, 2033 Sydney, Australia Felix Brandt∗ Technische Universit¨atM¨unchen,80538 M¨unchen,Germany Paul Harrenstein University of Oxford, Oxford OX1 3QD, United Kingdom Abstract A minimal requirement on allocative efficiency in the social sciences is Pareto op- timality. In this paper, we identify a close structural connection between Pareto optimality and perfection that has various algorithmic consequences for coali- tion formation. Based on this insight, we formulate the Preference Refinement Algorithm (PRA) which computes an individually rational and Pareto optimal outcome in hedonic coalition formation games. Our approach also leads to var- ious results for specific classes of hedonic games. In particular, we show that computing and verifying Pareto optimal partitions in general hedonic games, anonymous games, three-cyclic games, room-roommate games and B-hedonic games is intractable while both problems are tractable for roommate games, W-hedonic games, and house allocation with existing tenants. Keywords: Coalition Formation, Hedonic Games, Pareto Optimality, Computational Complexity JEL: C63, C70, C71, and C78 1. Introduction Ever since the publication of von Neumann and Morgenstern's Theory of Games and Economic Behavior in 1944, coalitions have played a central role within game theory. The crucial questions in coalitional game theory are which coalitions can be expected to form and how the members of coalitions should divide the proceeds of their cooperation. Traditionally the focus has been on the latter issue, which led to the formulation and analysis of concepts such as ∗Corresponding author Email addresses: [email protected] (Haris Aziz), [email protected] (Felix Brandt), [email protected] (Paul Harrenstein) Preprint submitted to Elsevier August 27, 2013 the core, the Shapley value, or the bargaining set.
    [Show full text]
  • Pareto-Optimality in Cardinal Hedonic Games
    Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand Pareto-Optimality in Cardinal Hedonic Games Martin Bullinger Technische Universität München München, Germany [email protected] ABSTRACT number of agents, and therefore it is desirable to consider expres- Pareto-optimality and individual rationality are among the most nat- sive, but succinctly representable classes of hedonic games. This ural requirements in coalition formation. We study classes of hedo- can be established by encoding preferences by means of a complete nic games with cardinal utilities that can be succinctly represented directed weighted graph where an edge weight EG ¹~º is a cardinal by means of complete weighted graphs, namely additively separable value or utility that agent G assigns to agent ~. Still, this underlying (ASHG), fractional (FHG), and modified fractional (MFHG) hedo- structure leaves significant freedom, how to obtain (cardinal) pref- nic games. Each of these can model different aspects of dividing a erences over coalitions. An especially appealing type of preferences society into groups. For all classes of games, we give algorithms is to have the sum of values of the other individuals as the value that find Pareto-optimal partitions under some natural restrictions. of a coalition. This constitutes the important class of additively While the output is also individually rational for modified fractional separable hedonic games (ASHGs) [6]. hedonic games, combining both notions is NP-hard for symmetric In ASHGs, an agent is willing to accept an additional agent into ASHGs and FHGs. In addition, we prove that welfare-optimal and her coalition as long as her valuation of this agent is non-negative Pareto-optimal partitions coincide for simple, symmetric MFHGs, and in this sense, ASHGs are not sensitive to the intensities of single- solving an open problem from Elkind et al.
    [Show full text]
  • Optimizing Expected Utility and Stability in Role Based Hedonic Games
    Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference Optimizing Expected Utility and Stability in Role Based Hedonic Games Matthew Spradling University of Michigan - Flint mjspra@umflint.edu Abstract Table 1: Ex. RBHG instance with |P | =4,R= {A, B} In the hedonic coalition formation game model Roles Based r, c u (r, c) u (r, c) u (r, c) u (r, c) Hedonic Games (RBHG), agents view teams as compositions p0 p1 p2 p3 of available roles. An agent’s utility for a partition is based A, AA 2200 upon which roles she and her teammates fulfill within the A, AB 0322 coalition. I show positive results for finding optimal or sta- B,AB 3033 ble role matchings given a partitioning into teams. In set- B,BB 1111 tings such as massively multiplayer online games, a central authority assigns agents to teams but not necessarily to roles within them. For such settings, I consider the problems of op- timizing expected utility and expected stability in RBHG. I As per (Spradling and Goldsmith 2015), a Role Based He- show that the related optimization problems for partitioning donic Game (RBHG) instance consists of: are NP-hard. I introduce a local search heuristic method for • P approximating such solutions. I validate the heuristic by com- : A population of players parison to existing partitioning approaches using real-world • R: A set of roles data scraped from League of Legends games. • C: A set of compositions, where a composition c ∈ C is a multiset (bag) of roles from R. Introduction • U : P × R × C → Z defines the utility function ui(r, c) In coalition formation games, agents from a population have for each player pi.
    [Show full text]
  • The Dynamics of Europe's Political Economy
    Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng DISSERTATION The Dynamics of Europe’s Political Economy: a game theoretical analysis Ausgeführt zum Zwecke der Erlangung des akademischen Grades einer Doktorin der Sozial- und Wirtschaftswissenschaften unter der Leitung von Univ.-Prof. Dr. Hardy Hanappi Institut für Stochastik und Wirtschaftsmathematik (E105) Forschunggruppe Ökonomie Univ.-Prof. Dr. Pasquale Tridico Institut für Volkswirtschaftslehre, Universität Roma Tre eingereicht an der Technischen Universität Wien Fakultät für Mathematik und Geoinformation von Mag. Gizem Yildirim Matrikelnummer: 0527237 Hohlweggasse 10/10, 1030 Wien Wien am Mai 2017 Acknowledgements I would like to thank Professor Hardy Hanappi for his guidance, motivation and patience. I am grateful for inspirations from many conversations we had. He was always very generous with his time and I had a great freedom in my research. I also would like to thank Professor Pasquale Tridico for his interest in my work and valuable feedbacks. The support from my family and friends are immeasurable. I thank my parents and my brother for their unconditional and unending love and support. I am incredibly lucky to have great friends. I owe a tremendous debt of gratitude to Sarah Dippenaar, Katharina Schigutt and Markus Wallerberger for their support during my thesis but more importantly for sharing good and bad times. I also would like to thank Gregor Kasieczka for introducing me to jet clustering algorithms and his valuable suggestions.
    [Show full text]
  • Fractional Hedonic Games
    Fractional Hedonic Games HARIS AZIZ, Data61, CSIRO and UNSW Australia FLORIAN BRANDL, Technical University of Munich FELIX BRANDT, Technical University of Munich PAUL HARRENSTEIN, University of Oxford MARTIN OLSEN, Aarhus University DOMINIK PETERS, University of Oxford The work we present in this paper initiated the formal study of fractional hedonic games, coalition formation games in which the utility of a player is the average value he ascribes to the members of his coalition. Among other settings, this covers situations in which players only distinguish between friends and non-friends and desire to be in a coalition in which the fraction of friends is maximal. Fractional hedonic games thus not only constitute a natural class of succinctly representable coalition formation games, but also provide an interesting framework for network clustering. We propose a number of conditions under which the core of fractional hedonic games is non-empty and provide algorithms for computing a core stable outcome. By contrast, we show that the core may be empty in other cases, and that it is computationally hard in general to decide non-emptiness of the core. 1 INTRODUCTION Hedonic games present a natural and versatile framework to study the formal aspects of coalition formation which has received much attention from both an economic and an algorithmic perspective. This work was initiated by Drèze and Greenberg[1980], Banerjee et al . [2001], Cechlárová and Romero-Medina[2001], and Bogomolnaia and Jackson[2002] and has sparked a lot of follow- up work. A recent survey was provided by Aziz and Savani[2016]. In hedonic games, coalition formation is approached from a game-theoretic angle.
    [Show full text]
  • Pareto Optimality in Coalition Formation
    Pareto Optimality in Coalition Formation Haris Aziz Felix Brandt Paul Harrenstein Technische Universität München IJCAI Workshop on Social Choice and Artificial Intelligence, July 16, 2011 1 / 21 Coalition formation “Coalition formation is of fundamental importance in a wide variety of social, economic, and political problems, ranging from communication and trade to legislative voting. As such, there is much about the formation of coalitions that deserves study.” A. Bogomolnaia and M. O. Jackson. The stability of hedonic coalition structures. Games and Economic Behavior. 2002. 2 / 21 Coalition formation 3 / 21 Hedonic Games A hedonic game is a pair (N; ) where N is a set of players and = (1;:::; jNj) is a preference profile which specifies for each player i 2 N his preference over coalitions he is a member of. For each player i 2 N, i is reflexive, complete and transitive. A partition π is a partition of players N into disjoint coalitions. A player’s appreciation of a coalition structure (partition) only depends on the coalition he is a member of and not on how the remaining players are grouped. 4 / 21 Classes of Hedonic Games Unacceptable coalition: player would rather be alone. General hedonic games: preference of each player over acceptable coalitions 1: f1; 2; 3g ; f1; 2g ; f1; 3gjf 1gk 2: f1; 2gjf 1; 2; 3g ; f1; 3g ; f2gk 3: f2; 3gjf 3gkf 1; 2; 3g ; f1; 3g Partition ff1g; f2; 3gg 5 / 21 Classes of Hedonic Games General hedonic games: preference of each player over acceptable coalitions Preferences over players extend to preferences over coalitions Roommate games: only coalitions of size 1 and 2 are acceptable.
    [Show full text]
  • 15 Hedonic Games Haris Azizaand Rahul Savanib
    Draft { December 5, 2014 15 Hedonic Games Haris Azizaand Rahul Savanib 15.1 Introduction Coalitions are a central part of economic, political, and social life, and coalition formation has been studied extensively within the mathematical social sciences. Agents (be they humans, robots, or software agents) have preferences over coalitions and, based on these preferences, it is natural to ask which coalitions are expected to form, and which coalition structures are better social outcomes. In this chapter, we consider coalition formation games with hedonic preferences, or simply hedonic games. The outcome of a coalition formation game is a partitioning of the agents into disjoint coalitions, which we will refer to synonymously as a partition or coalition structure. The defining feature of hedonic preferences is that every agent only cares about which agents are in its coalition, but does not care how agents in other coali- tions are grouped together (Dr`ezeand Greenberg, 1980). Thus, hedonic preferences completely ignore inter-coalitional dependencies. Despite their relative simplicity, hedonic games have been used to model many interesting settings, such as research team formation (Alcalde and Revilla, 2004), scheduling group activities (Darmann et al., 2012), formation of coalition governments (Le Breton et al., 2008), cluster- ings in social networks (see e.g., Aziz et al., 2014b; McSweeney et al., 2014; Olsen, 2009), and distributed task allocation for wireless agents (Saad et al., 2011). Before we give a formal definition of a hedonic game, we give a standard hedonic game from the literature that we will use as a running example (see e.g., Banerjee et al.
    [Show full text]
  • Issues of Fairness and Computation in Partition Problems
    Fair and Square: Issues of Fairness and Computation in Partition Problems Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Nhan-Tam Nguyen aus Hilden Düsseldorf, Juli 2017 aus dem Institut für Informatik der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. Jörg Rothe Koreferent: Prof. Dr. Edith Elkind Tag der mündlichen Prüfung: 20.12.2017 Selbstständigkeitserklärung Ich versichere an Eides Statt, dass die Dissertation von mir selbstständig und ohne unzulässige fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist. Desweiteren erkläre ich, dass ich eine Dissertation in der vorliegenden oder in ähnlicher Form noch bei keiner anderen Institution eingereicht habe. Teile dieser Arbeit wurden bereits in den folgenden Schriften veröffentlicht oder zur Begutach- tung eingereicht: Baumeister et al. [2014], Baumeister et al. [2017], Nguyen et al. [2015], Nguyen et al. [2018], Heinen et al. [2015], Nguyen and Rothe [2016], Nguyen et al. [2016]. Düsseldorf, 7. Juli 2017 Nhan-Tam Nguyen Acknowledgments First and foremost, I owe a debt of gratitude to Jörg Rothe, my advisor, for his positive en- couragement, understanding, patience, and for asking the right questions. I’m grateful for his guidance through the academic world. Dorothea Baumeister deserves much thanks for being my mentor and her thorough feedback. I’d like to thank Edith Elkind for agreeing to review my thesis and be part of my defense and examination, as well as for sharing the durian at AAMAS 2016 in Singapore.
    [Show full text]
  • Pareto-Optimality in Cardinal Hedonic Games
    Pareto-Optimality in Cardinal Hedonic Games Martin Bullinger Technische Universität München München, Germany [email protected] ABSTRACT number of agents, and therefore it is desirable to consider expres- Pareto-optimality and individual rationality are among the most nat- sive, but succinctly representable classes of hedonic games. This ural requirements in coalition formation. We study classes of hedo- can be established by encoding preferences by means of a complete nic games with cardinal utilities that can be succinctly represented directed weighted graph where an edge weight EG ¹~º is a cardinal by means of complete weighted graphs, namely additively separable value or utility that agent G assigns to agent ~. Still, this underlying (ASHG), fractional (FHG), and modified fractional (MFHG) hedo- structure leaves significant freedom, how to obtain (cardinal) pref- nic games. Each of these can model different aspects of dividing a erences over coalitions. An especially appealing type of preferences society into groups. For all classes of games, we give algorithms is to have the sum of values of the other individuals as the value that find Pareto-optimal partitions under some natural restrictions. of a coalition. This constitutes the important class of additively While the output is also individually rational for modified fractional separable hedonic games (ASHGs) [6]. hedonic games, combining both notions is NP-hard for symmetric In ASHGs, an agent is willing to accept an additional agent into ASHGs and FHGs. In addition, we prove that welfare-optimal and her coalition as long as her valuation of this agent is non-negative Pareto-optimal partitions coincide for simple, symmetric MFHGs, and in this sense, ASHGs are not sensitive to the intensities of single- solving an open problem from Elkind et al.
    [Show full text]
  • Graphical Hedonic Games of Bounded Treewidth
    Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Graphical Hedonic Games of Bounded Treewidth Dominik Peters Department of Computer Science University of Oxford, UK [email protected] p Abstract NP-hard to maximise social welfare; and it is often even Σ2- complete to identify hedonic games with non-empty core. Hedonic games are a well-studied model of coalition See Ballester (2004), Sung and Dimitrov (2010), Woeginger formation, in which selfish agents are partitioned into (2013), and Peters and Elkind (2015) for a selection of such disjoint sets and agents care about the make-up of the coalition they end up in. The computational problems results. of finding stable, optimal, or fair outcomes tend to be A standard criticism of hardness results such as these is that computationally intractable in even severely restricted they apply only in the worst case. Instances arising in practice instances of hedonic games. We introduce the notion of can be expected to show much more structure than the highly a graphical hedonic game and show that, in contrast, on contrived instances produced in 3SAT-reductions. In non- classes of graphical hedonic games whose underlying cooperative game theory, graphical games (Kearns, Littman, graphs are of bounded treewidth and degree, such prob- and Singh 2001) are an influential way to allow formalisation lems become easy. In particular, problems that can be of the notion of a ‘structured’ game. In a graphical game, specified through quantification over agents, coalitions, and (connected) partitions can be decided in linear time. agents form the vertices of an undirected graph, and each The proof is by reduction to monadic second order logic.
    [Show full text]
  • Hedonic Diversity Games
    Session 2E: Game Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada Hedonic Diversity Games Robert Bredereck Edith Elkind Ayumi Igarashi TU Berlin University of Oxford Kyushu University Berlin, Germany Oxford, U.K. Fukuoka, Japan [email protected] [email protected] [email protected] ABSTRACT homophilic preferences, while others have heterophilic preferences, We consider a coalition formation setting where each agent belongs i.e., they seek out coalitions with agents who are not like them. to one of the two types, and agents’ preferences over coalitions There is a very substantial body of research on homophily and are determined by the fraction of the agents of their own type in heterophily in group formation. It is well-known that in a variety of each coalition. This setting differs from the well-studied Schelling’s contexts, ranging from residential location [25, 28, 29] to classroom model in that some agents may prefer homogeneous coalitions, activities and friendship relations [22, 23], individuals prefer to while others may prefer to be members of a diverse group, or a be together with those who are similar to them. There are also group that mostly consists of agents of the other type. We model settings where agents prefer to be in a group with agents of the this setting as a hedonic game and investigate the existence of stable other type(s): for instance, in a coalition of buyers and sellers, a outcomes using hedonic games solution concepts. We show that a buyer prefers to be in a group with many other sellers and no core stable outcome may fail to exist and checking the existence of other buyers, so as to maximize their negotiating power.
    [Show full text]
  • Facultad De Economía Y Empresa Dpto. Análisis Económico Three
    Facultad de Economía y Empresa Dpto. Análisis Económico Three Essays on Game Theory and Social Choice Oihane Gallo1 2 Ph.D Thesis Advisors: Elena Inarra and Jorge Alcalde-Unzu Bilbao, 2020 1Dpto. Análisis Económico, Facultad de Economía y Empresa, Universidad del País Vasco (UPV/EHU), Av. Lehendakari Aguirre 83, 48015 Bilbao (SPAIN), , email: oi- [email protected], personal page: https://sites.google.com/site/oihanegallofernandez/. 2This research was supported by the Basque Government through scholarship PRE_2019_2_0116. (c)2020 OIHANE GALLO FERNANDEZ Acknowledgements After five years of hard work it is time to look back and realize how many people have supported me, not only when there were successes, but also when forces fal- tered. This adventure was not in my plans when I started my Master’s degree and if it had not been for one of my advisors, Elena Iñarra of the University of the Basque Country, I would never have embarked on it. I would like to thank Elena for choos- ing me, guiding me, and supporting me through this long process. The development of this dissertation would not have been possible without her patience and the time she has devoted to me. It was in my first workshop, in Vigo, where I met a person who would play a rele- vant role in my thesis. He is my advisor Jorge Alcalde-Unzu of the Public University of Navarre. He introduced me to a new field and even though the process has not been easy, he has always encouraged me to improve my reasoning and resolution skills.
    [Show full text]