Effects of Different Dietary Protein Sources on the Immunological and Physiological Responses of Marron, Cherax Cainii (Austin A

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Different Dietary Protein Sources on the Immunological and Physiological Responses of Marron, Cherax Cainii (Austin A Fish and Shellfish Immunology 88 (2019) 567–577 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Effects of different dietary protein sources on the immunological and T physiological responses of marron, Cherax cainii (Austin and Ryan, 2002) and its susceptibility to high temperature exposure ∗ Ishaaq Saputraa,e, Ravi Fotedara, Sanjay K. Guptaa,b, , Muhammad A.B. Siddika,c, ∗∗ Md Javed Foysala,d, a School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia b ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India c Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh d Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh e Fish Quarantine and Inspection Agency, Cilegon, Banten, Indonesia ARTICLE INFO ABSTRACT Keywords: A two phased feeding trial was conducted to evaluate the effects of alternative protein sources on the im- Marron munophysiological responses of marron. During the phase I, marron were fed with five alternative protein Immune supplemented diets for 90 days, while in phase II, the same marron were exposed to elevated temperature (30 °C) Condition indices and their immunophysiological responses were investigated post exposure. Five isoproteic (crude protein 30%) Gut micro villi and isoenergetic diets were prepared by containing fishmeal, poultry by-product meal, feather meal, lupin meal, Temperature and meat and bone meal as the main protein source. A hundred and fifty juvenile marron (Cherax cainii) of the average weight 9.09 ± 0.21 g were randomly distributed into 15 tanks (three replicates per feeding treatments). In the Phase I, general immune response parameters, such as, total haemocyte count (THC), proportion of hyaline cells, neutral red retention time (NRRT), phagocytic rate (PR), heamolymph bacteraemia, and condition indices of marron were investigated. The highest (P < 0.05) THC among dietary protein sources was obtained in marron fed with PbM at the end of experiment. Marron fed with FeM protein sources resulted in the highest survival rate followed by PbM fed group. Longer microvilli length (3.83 ± 0.18 μm) was demonstrated in marron fed with PbM diet. Diets containing FM and PbM protein sources revealed significantly (P < 0.05) lower number of microvilli/group than diets containing FeM and LM. The results demonstrated that different dietary protein sources in the marron diets did not detect significant (P > 0.05) change of the condition indices throughout the experiment period, however highest Hiw and Hid was recorded in marron fed with PBM at day 45. The PR of marron fed dietary protein from PbM did not change significantly after temperature exposure. Increased NRRT, PR and haemolymph bacteraemia was observed with dietary feeding of FM at the end of the trial. However, results revealed that PbM could be an alternative protein source for culture of marron as reflected in terms of increased THC, longer microvillus length and improved susceptibility to high temperature exposure. Overall, result could serve as useful baseline data in developing cost effective potential diets for marron aquaculture. 1. Introduction constitutes one of the major protein ingredients in crustacean aqua- culture. In past, studies have demonstrated the potential of total or As disease outbreaks are still continuing to be the major threat to partial substitution of fishmeal with alternative protein sources in the aquaculture industry, the use of conventional antibiotics to elim- crustaceans [4] but with variable success. Previous research outcomes inate pathogens have been significantly reduced [1]. Simultaneously, revealed that several plant and animal based-protein sources have the the concert for depleting fishmeal supply is on the rise [2,3] which potential to substitute fishmeal protein in the diets of some decapod ∗ Corresponding author. School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia. ∗∗ Corresponding author. School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia. E-mail addresses: [email protected] (S.K. Gupta), [email protected] (M.J. Foysal). https://doi.org/10.1016/j.fsi.2019.03.012 Received 9 November 2018; Received in revised form 6 March 2019; Accepted 7 March 2019 Available online 11 March 2019 1050-4648/ © 2019 Elsevier Ltd. All rights reserved. I. Saputra, et al. Fish and Shellfish Immunology 88 (2019) 567–577 crustaceans [5,6]. Furthermore, the increase of non-fishmeal inclusion Table 1 in the diets was observed to have detrimental effects on the physiolo- Feed ingredients and proximate composition (% dry weight). gical responses of signal crayfish, Pascifastacus leniusculus [7,8] and Diets black tiger prawn, Penaeus monodon [9]. However, no studies have in- vestigated the changes in the immunophysiological responses of the FM PbM LM FeM MbM marron fed diets containing alternative protein sources to fishmeal. Ingredients (% dry weight) Marron, Cherax cainii, an esteemed aquaculture commodity; are an Fish Meala 30.15 0.00 0.00 0.00 0.00 iconic freshwater species to Western Australia [10,11] which generated Feather Meala 0.00 0.00 0.00 22.00 0.00 AUD 1.5 million per year through its farming [12]. Over and above, the Lupin Meala 0.00 0.00 36.40 0.00 0.00 a significant increase in commercial demand of marron has led toboost Poultry by-Product Meal 0.00 29.50 0.00 0.00 0.00 Meat and Bone meala 0.00 0.00 0.00 0.00 24.30 the research on improvement of immune responses to tackle down the b Soybean Meal 10.80 10.80 21.00 15.65 16.60 disease outbreaks. Innate immunity in crayfish is similar to other Wheat (10 CP) b 48.13 50.88 28.67 48.31 43.13 crustaceans, which involves circulating blood cells or haemocyte to Corn/wheat starchb 4.80 4.80 4.01 5.50 5.50 b eliminate both pathogen and particles from the body through cellular Betacaine 1.20 1.20 3.50 1.02 3.50 b activity [13–15]. Several attempts to improve innate immunity have Cod liver oil 4.20 2.10 3.45 4.80 4.00 Calcium carbonateb 0.02 0.02 0.02 0.02 0.02 been reported in previous studies in crayfish [16–18] and in tiger prawn Ascorbic Acidb 0.05 0.05 0.05 0.05 0.05 [19]. The immunophysiological responses measured by alterations in Vitamin premixb 0.15 0.15 0.15 0.15 0.15 total haemocytes counts (THC), differential haemocyte counts (DHC), Cholesterolb 0.25 0.25 0.25 0.25 0.25 b neutral red dye retention technique (NRRT), phagocytic rate (PR), Casein 0.25 0.25 2.50 2.25 2.50 bacteraemia and condition indices could be used as indicators of im- Proximate composition (g Kg−1 dry weight basis) c mune competence of several crustaceans [16,20,21], including marron, DM% 89.07 87.86 88.46 87.85 87.26 C. tenuimanus [17] in order to understand the underlying mechanism of Ash% 8.24 4.05 6.21 3.18 10.13 GE MJ/kg 18.63 18.57 18.59 18.39 18.34 improved health status. Apart from this, research investigations on CP% 30.13 30.88 30.84 30.46 30.18 improvement of the clinical signs of the digestive system has also been Lipid%c 7.17 7.53 7.26 7.16 7.63 carried out to evaluate the health status of cray fish [22,23]. Fiber%c 1.22 1.35 1.29 1.07 1.27 Marron have gained significant attention as a potential candidate DM (Dry matter); GE (Gross energy); MJ (Mega joule); CP (Crude protein). species for prospective growth of aquaculture owing to its large harvest a Glen Forest Specialty Feeds, Western Australia. size (up to 2 kg), higher price, non-burrowing behavior, simple life b Talloman, Freemantle, Western Australia. cycle and ease of live transport [10,11,24]. Consistent efforts are in c Data were obtained from database. progress to translocate crayfish species from natural habitat to other locations for globalization, therefore the effects of high temperature on 2.2. Experimental animals and design physiological responses necessitates further investigations. Rouse & Kartamulia (1992) investigated the temperature tolerance of marron, Two hundred marron juveniles 0 + years old, average wt. Cherax tenuimanus before its domestication process in the US [10]. (9.09 ± 0.21 g) were procured from Aquatic Resource Management Numerous investigations on effects of temperature in crayfish physio- Pty. Ltd., Manjimup, Western Australia and transported to Curtin logical responses have been carried out [25–31]. However, the effects Aquatic Research Laboratory (CARL), Technology Park, Curtin of temperature exposure on the immunophysiological responses of University, Western Australia. Marron juveniles were then acclimated marron following supplementation with different dietary protein source for two weeks in three cylindrical holding tanks (200 l capacity), which are yet to be revealed. were equipped with continuous aerations and an adequate number of Therefore, the aim of this study was to evaluate the efficacy of hides in the form of PVC pipes. Each acclimation tank was equipped dietary protein sources on the immunophysiological responses and gut with eight PVC pipes (55 mm in diameter, 150 mm long) and a filtra- micrograph of marron. In addition, the susceptibility to the high tem- tion unit. Marron were fed with a commercial marron diet (Glenn perature exposure of marron was delineated in terms of im- Forrest, Australia) with a composition of 28% crude protein, 9% crude munophysiological responses. fat and 5% crude ash, calcium (1.5%), phosphorous (1%), and digestion energy 11 MJ/kg at 3% of body weight during the acclimation period.
Recommended publications
  • Developing a List of Invasive Alien Species Likely to Threaten Biodiversity and Ecosystems in the European Union
    Received: 25 July 2018 | Accepted: 7 November 2018 DOI: 10.1111/gcb.14527 PRIMARY RESEARCH ARTICLE Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union Helen E. Roy1 | Sven Bacher2 | Franz Essl3,4 | Tim Adriaens5 | David C. Aldridge6 | John D. D. Bishop7 | Tim M. Blackburn8,9 | Etienne Branquart10 | Juliet Brodie11 | Carles Carboneras12 | Elizabeth J. Cottier-Cook13 | Gordon H. Copp14,15 | Hannah J. Dean1 | Jørgen Eilenberg16 | Belinda Gallardo17 | Mariana Garcia18 | Emili García‐Berthou19 | Piero Genovesi20 | Philip E. Hulme21 | Marc Kenis22 | Francis Kerckhof23 | Marianne Kettunen24 | Dan Minchin25 | Wolfgang Nentwig26 | Ana Nieto18 | Jan Pergl27 | Oliver L. Pescott1 | Jodey M. Peyton1 | Cristina Preda28 | Alain Roques29 | Steph L. Rorke1 | Riccardo Scalera18 | Stefan Schindler3 | Karsten Schönrogge1 | Jack Sewell7 | Wojciech Solarz30 | Alan J. A. Stewart31 | Elena Tricarico32 | Sonia Vanderhoeven33 | Gerard van der Velde34,35,36 | Montserrat Vilà37 | Christine A. Wood7 | Argyro Zenetos38 | Wolfgang Rabitsch3 1Centre for Ecology & Hydrology, Wallingford, UK 2University of Fribourg, Fribourg, Switzerland 3Environment Agency Austria, Vienna, Austria 4Division of Conservation Biology, Vegetation Ecology and Landscape Ecology, University Vienna, Vienna, Austria 5Research Institute for Nature and Forest (INBO), Brussels, Belgium 6Department of Zoology, University of Cambridge, Cambridge, UK 7The Laboratory, The Marine Biological Association, Plymouth, UK 8University College London,
    [Show full text]
  • Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2.
    [Show full text]
  • Invasion by the Exotic Crayfish, Cherax Destructor Clark (Parastacidae), Into Habitats of Local Crayfish Near Perth, Western Australia
    Invasion by the exotic crayfish, Cherax destructor Clark (Parastacidae), into habitats of local crayfish near Perth, Western Australia. LYNAS, J., STOREY, A., ARMSTRONG, K., PRINCE, J. & KNOTT, B. School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009. AUSTRALIA. ABSTRACT The yabby, Cherax destructor Clark, was introduced into Western Australia in 1932, when ten yabbies were translocated from Victoria to a farm dam near Narembeen. Following subsequent dispersal, this crayfish now co- occurs with two local species C. quinquecarinatus and C. cainii in river systems in the environs of Perth. Congeneric crayfish may persist in sympatry through microhabitat separation. To elucidate the means for co- existance, microhabitat characteristics of the three species were measured in the Canning River system near Perth. Yabbies were associated with sediments having higher clay content than marron; gilgies occurred in river reaches having higher flow than marron. The distribution of the crayfish within this system displayed a mosaic pattern of sympatric distributions, which would allow for competitive interactions between these species. To investigate one aspect of interactions between the introduced yabby and local crayfish species, laboratory-based sediment competition experiments were performed. Similar-sized yabbies displaced both marron and gilgies from preferred substrates. Superior competitive ability under laboratory conditions was manifested through interference, with yabbies preventing local crayfish species from procuring a limiting resource. This study indicates the potential for the introduced yabby to displace local crayfish species. Keywords: introduced crayfish, microhabitat separation, competitive exclusion INTRODUCTION The parastacid freshwater crayfish of the Canning River system, Perth, Western Australia, constitute a fauna of composite origins.
    [Show full text]
  • A Note on the Dependence of Juvenile Marron, Cherax Tenuimanus (Smith) (Decapoda: Parastacidae), on Filter Feeding
    A note on the dependence of juvenile Therefore, as a first step in the investigation of the problem, it was necessary to ascertain whether or not juven- marron, Cherax tenuimanus (Smith) ile marron possessed the mechanical ability to handle the (Decapoda: Parastacidae), on filter laboratory-provided zooplankton and detritus as food. The feeding structural features of the mouthparts of juvenile marron were thus investigated. The juveniles that were selected for this study corre- R.A. van den Berg,* H.J. Schoonbee and sponded to the 'Phase l' juveniles in the study of Morrissy H.H. du Preez (1976). They were completely free-living, had lost the Research Unit for Aquatic and Terrestrial Ecosystems, 'humpback' larval stage, had long setae on the telson (in Department of Zoology, Rand Afrikaans University, contrast to the pleopod attached larval forms which do not P.O. Box 524, Johannesburg 2000, Republicof South Africa have these setae) and showed mouthpart feeding movements. The length from eye orbit to carapace posterior margin ranged from 3,5 mm to 3,8 mm in the 10 individuals investi- gated. The mouthparts of the juvenile crayfish were dissected out, cleared in 50% lactic acid and compared under the Problem areas in the production of Cherax tenuimanus, a fresh- microscope to the mouthparts of adult crayfish as described water crayfish (the 'marron') introduced to South Africa from by Van den Berg & Schoonbee (1989). Australia, are outlined. The high juvenile mortality rate problem On comparing the anatomy of the mouthparts (maxilli- is discussed. With reference to the morphology of the mouthparts peds, maxillae and mandibles) in terms of joint shape, seta of the juveniles, a type of diet is proposed which, it is suggested, will lower the mortality rate.
    [Show full text]
  • Cherax Cainii)
    School of Pharmacy Characterisation of the Innate Immune Responses of Marron (Cherax cainii) Bambang Widyo Prastowo This thesis is presented for the Degree of Doctor of Philosophy of Curtin University March 2017 Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Signature: Date: 24/03/2017 ACKNOWLEDGMENTS I would like to thank the following organizations for the support to this thesis: Australia Award Scholarship (AAS) and School of Pharmacy, Curtin University Australia. I would also like to express my deep gratitude to my present and former supervisors: Dr. Ricardo Lareu, my main supervisor, for sharing knowledge, research experience and opinions in my research and for his patience for correcting my thesis writing. I also be grateful for his continuous support, kindness and understanding during the final stage of my study. Dr. Rima Caccetta, my co-supervisor, for all the constructive criticism, interesting discussion during our meeting, fruitful assistance and her kindness during my research journey. Prof. Ravi Fotedar, my associate supervisor, for introducing me to the marron aquaculture in Western Australia and also in the field of innate immunity. Dr. Andrew McWilliams, my previous main supervisor, for informing me about the world of innate immunity. For his moral support and guidance during my PhD study. I would like to extend my sincere gratitude to the person below: Dr. Jeanne LeMasurier, core facility staff at Curtin Health Innovation Research Institute (CHIRI), for helping me to operate flow cytometer and sorting my cell using fluorescence- activated cell sorting during the early morning of my research.
    [Show full text]
  • Current and Potential Aquatic Invasive Species in Ontario and the Great Lakes Region: a Compilation of Ecological Information
    Science and Research Information Report IR-16 Current and potential aquatic invasive species in Ontario and the Great Lakes region: A compilation of ecological information Science and Research Information Report IR-16 Current and potential aquatic invasive species in Ontario and the Great Lakes region: A compilation of ecological information Elizabeth C. Hatton1, Jeffrey D. Buckley1, Shannon A. Fera1,2, Samantha Henry1, Len M. Hunt3, D. Andrew R. Drake4 and Timothy B. Johnson1 1 Aquatic Research and Development Section, Ministry of Natural Resources and Forestry (MNRF), 41 Hatchery Lane, Picton, ON K0K 2T0 2 Current address: Fisheries Section, Species Conservation Policy Branch, MNRF, 300 Water Street, Peterborough, ON K9J 8M5 3 Centre for Northern Forest Ecosystem Research, MNRF, 103-421 James St S, Thunder Bay, ON P7E 2V6 4 Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 2019 Science and Research Branch Ministry of Natural Resources and Forestry © 2019, Queen’s Printer for Ontario Copies of this publication are available from [email protected]. Cette publication hautement spécialisée, Current and Potential Aquatic Invasive Species in Ontario and the Great Lakes Region: A Compilation of Ecological Information, n’est disponible qu’en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère des Richesses naturelles et des Forêts au [email protected]. Some of the information in this document may not be compatible with assistive technologies.
    [Show full text]
  • A Metabolomic Investigation of a Critically Endangered Freshwater Crayfish
    Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2020 Modernising Conservation Through Technology: A metabolomic investigation of a critically endangered freshwater crayfish Emily D. Lette Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Marine Biology Commons Recommended Citation Lette, E. D. (2020). Modernising Conservation Through Technology: A metabolomic investigation of a critically endangered freshwater crayfish. https://ro.ecu.edu.au/theses/2371 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/2371 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Cherax Cainii) Ecological Risk Screening Summary
    Smooth Marron (Cherax cainii) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, August 2011 Revised, September 2012 and October 2017 Web Version, 12/13/2017 Photo: Burtonpe. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/w/index.php?curid=4061011. (October 2017). 1 Native Range and Status in the United States Native Range From Austin and Bunn (2010): “This species is endemic to South-west Australia. Originally, it had a restricted distribution in the southwest of Western Australia, but has since naturally expanded its range from Esperance to Geraldton [in western Western Australia, about 1000 km] (Department of Fisheries 2008).” 1 Status in the United States From Shireman (1973): “During December 1970, 200 small marron were collected from the Warren River [Western Australia], placed in oxygenated water in plastic bags, and shipped to Louisiana in insulated containers. […] Only six marron survived the winter confinement. On June 1, 1971, they were placed in a 1/20-acre pond. […] The pond was drained October 8, 1971. No marron were recovered. […] Marron probably cannot exist in south Louisiana waters because of water temperature extremes.” From Kartamulia and Rouse (1992): “A program was initiated at Auburn University in 1986 to assess the suitability of marron for culture in the southeastern USA. […] Three thousand marron, average weight 1.2 g, were shipped from a commercial farm, Marron Waters, Int., Perth, Australia […] Nine outdoor concrete tanks […] at the Fisheries Research Unit, Alabama Agricultural Experiment Station, Auburn University, were used for the study. […] At the end of the 12 week experiment, average marron survivals in the 4, 8 and 12/m2 density tanks were 13%, 31%, and 12%, respectively […] The high mortalities experienced during the last half of this experiment as temperatures reached 28 C and above were attributed to heat stress.
    [Show full text]
  • Evaluating Invasive Marbled Crayfish As a Potential Livestock For
    fevo-09-651981 August 10, 2021 Time: 13:50 # 1 ORIGINAL RESEARCH published: 12 August 2021 doi: 10.3389/fevo.2021.651981 Evaluating Invasive Marbled Crayfish as a Potential Livestock for Sustainable Aquaculture Sina Tönges1, Karthik Masagounder2, Frank Lenich3, Julian Gutekunst1, Marvin Tönges4, Jasmin Lohbeck5, Aubry K. Miller5, Florian Böhl2 and Frank Lyko1* 1 Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany, 2 Evonik Operations GmbH, Hanau, Germany, 3 Independent Researcher, Weidenberg, Germany, 4 Independent Researcher, Kassel, Germany, 5 Cancer Drug Development, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany The marbled crayfish (Procambarus virginalis) is a recently discovered freshwater crayfish species, which reproduces by apomictic parthenogenesis, resulting in a monoclonal, and all-female population. The animals were widely distributed through the aquarium trade and have established numerous stable wild populations through anthropogenic releases. They are highly prevalent in Madagascar, where they have become a popular source of nutritional protein. As freshwater crayfish aquaculture in Edited by: open systems is a thriving, but ecologically damaging global industry, alternatives are Bruce Arthur Osborne, urgently needed. Although marbled crayfish are often branded by their invasive mode University College Dublin, Ireland of reproduction, their overall invasiveness is not higher than for other cultured crayfish Reviewed by: Ivo Roessink, species. Furthermore, their resiliency and high adaptability provide a strong rationale for Wageningen University and Research, evaluating them for closed, and environmentally safe aquaculture approaches. Here we Netherlands Jiríˇ Patoka, describe a novel population of marbled crayfish in a former German coal mining area Czech University of Life Sciences that is characterized by acid and polluted water.
    [Show full text]
  • Marron, Freshwater Crayfish Cherax Tenuimanus
    Marron, freshwater crayfish Cherax tenuimanus 1 Taxonomy Species: Cherax tenuimanus (Smith 1912) Family: Parastacidae Order: Decapoda Class: Crustacea Figure 1. Image of Cherax tenuimanus (Source: OpenCage, Wikimedia Commons). The marron crayfish Cherax tenuimanus is a robust freshwater species with a distinct prominence running back from the postorbital spine. In addition, the rostrum is characterised by lateral serrations present both sides, that ends in a sharp spine (Picker & Griffiths 2011). There has been some debate recently about the existence of two distinct species of marron crayfish. Genetic studies (involving allozyme data) have demonstrated that one of these forms (the hairy marron) is restricted to the Margaret River system while the other form (smooth marron) is the one that has been widely distributed as an aquaculture species (Austin & Ryan 2002). The authors proposed naming these two genetically distinct forms Cherax tenuimanus and Cherax cainii, respectively (Austin & Ryan 2002). However, these names are currently under review. Page | 1 2 Natural distribution and habitat The hairy marron C. tenuimanus is native to south-western Australia (Figure 2). This species is considered Critically Endangered on the International Union for Conservation of Nature (IUCN) Red List in its native range (Austin & Bunn 2010) and found only in the upper Margaret River in the south-west of Western Australia (Cubitt 1985). It is thought that C. tenuimanus occupies an area of approximately 10 km². However, the smooth marron C. cainii (the sub-species farmed globally) has a wider natural distribution and also appears to be moving into hairy marron territory (whereas previously the two sub-species were geographically distinct).
    [Show full text]
  • The Native South American Crayfishes (Crustacea, Parastacidae): State of Knowledge and Conservation Status
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. (2014) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/aqc.2488 The native South American crayfishes (Crustacea, Parastacidae): state of knowledge and conservation status MAURICIO PEREIRA ALMERÃOa,*, ERICH RUDOLPHb, CATHERINE SOUTY-GROSSETc, KEITH CRANDALLd, LUDWIG BUCKUPa, JULIEN AMOURETc, ANA VERDIe, SANDRO SANTOSf and PAULA BEATRIZ DE ARAUJOa aFederal University of Rio Grande do Sul, Zoology Department, Porto Alegre, Brazil bDepartment of Biological Sciences and Biodiversity, University of Los Lagos, Osorno, Chile cUniversity of Poitiers, Ecology and Biological Interactions, Poitiers, France dComputational Biology Institute, George Washington University & National Museum of Natural History, Washington, DC, USA eEntomological Section, University of La Republica, Montevideo, Uruguay fFederal University of Santa Maria, Biology Department, Santa Maria, Brazil ABSTRACT 1. South America is considered a world biodiversity hotspot, especially for freshwater ecosystems where there is significant biodiversity and endemism across different taxonomic groups. Native South American crayfishes are characterized by small range distributions, high levels of endemism and specific habitat requirements. 2. Although this group may be considered one of the most threatened among South American freshwater crustaceans, IUCN Red List assessments for most of these species are ‘data deficient’. IUCN assessments are technical evaluations of
    [Show full text]
  • Marron Cherax Cainii (Austin) in Victoria – a Literature Review
    Marron Cherax cainii (Austin) in Victoria – a Literature Review David Bryant and Phil Papas 2007 Arthur Rylah Institute for Environmental Research Technical Report Series No. 167 Arthur Rylah Institute for Environmental Research Technical Report Series No. 167 Marron Cherax cainii (Austin) in Victoria – a literature review David Bryant and Phil Papas Arthur Rylah Institute for Environmental Research 123 Brown Street, Heidelberg, Victoria 3084 November 2007 Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment. Heidelberg, Victoria. Report produced by: Arthur Rylah Institute for Environmental Research Department of Sustainability and Environment PO Box 137 Heidelberg, Victoria 3084 Phone (03) 9450 8600 Website: www.dse.vic.gov.au/ari © State of Victoria, Department of Sustainability and Environment 2007 This publication is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of the State of Victoria, Department of Sustainability and Environment. All requests and enquires should be directed to the Customer Service Centre, 136 186 or email [email protected] Citation Bryant, D. and Papas, P. (2007). ‘Marron Cherax cainii (Austin) in Victoria – a literature review’. Arthur Rylah Institute for Environmental Research Technical Report Series No. 167. (Department of Sustainability and Environment: Heidelberg). ISBN 978-1-74208-219-6 (Print) ISBN 978-1-74208-220-2 (Online) ISSN 1835-3827 (Print) ISSN 1835-3835 (Online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]